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Preface

PURPOSE	OF	THIS	BOOK

This.book. is. the. culmination.of. a. request. to.prepare. a.wide-ranging. compilation.
of. methods. for. extrapolation. of. ecological. risks.. In. the. context. of. ecotoxicology,.
extrapolation.is.the.use.of.existing.information.for.the.prediction.or.forecasting.of.
events.in.another.situation.that.is.biologically,.temporally,.or.spatially.different.from.
that. where. the. existing. information. was. gathered.. It. is. generally. recognized. that.
extrapolation. is. a. key. component. of. risk. assessment. for. the. protection. of. human.
health.and.the.environment..It.is.also.recognized.that.extrapolation.is.conducted.in.
an.environment.of.uncertainty.that.may.be.different.for.every.situation..Thus.it.is.not.
possible.to.develop.generic.methods.of.extrapolation.that.will.address.all.or.even.a.
subset.of.situations.in.a.completely.satisfactory.manner.

With.this.in.mind,.we.have.approached.this.book.with.a.view.to.compiling.and.
describing. various. methods. of. extrapolation. in. the. framework. of. ecological. risk.
assessment.(ERA).as.well.as.identifying.the.data.needs.and.situations.where.these.
extrapolations.can.be.most.usefully.applied..This.book.is.directed.to.risk.assessors.
and.to.the.scientific.community.as.a.whole.by.reviewing.the.current.state.of.extrapo-
lation.techniques.and.approaches..The.major.focus.is.on.extrapolation.of.effects,.but.
it.also.deals.with.extrapolation.of.exposures.in.the.context.of.interactions.between.
the.toxicant.and.the.matrix..It.also.contains.a.practical.guide.to.the.application.of.
these.extrapolation.procedures.that.are.designed.to.be.useful.to.regulators.and.risk.
managers.at.several.levels.and.in.the.education.of.students.in.these.disciplines.

As.extrapolation.is.intertwined.with.risk.assessment,. the.chapters.in.the.book.
follow.the.generalized.framework.for.assessing.risks..The.chapters.themselves.also.
follow.a.similar.framework,.starting.with.a.problem.formulation.and.ending.with.
a.discussion.of.uncertainty.and.data.needs..Chapter.1.acts.as.a.general. introduc-
tion.to.the.terminology.of.extrapolation.and.how.this.is.incorporated.into.the.tiered.
approach.to.risk.assessment..It.also.deals.with.how.extrapolation.is.used.in.selecting.
assessment.endpoints.and.measures.of.effect.and.how.this.is.integrated.into.regula-
tory.frameworks..Extrapolation.uncertainty.is.also.discussed.

In.keeping.with.the.need.to.characterize.and.understand.exposures.in.risk.assess-
ment,. the.second.chapter,.on.matrix.and.media.extrapolation,.deals.with. the.very.
important.physical.and.chemical.interactions.between.the.exposure.matrix.and.the.
biological.availability.of.the.substance..This.process.is.key.to.extrapolation.in.both.
the.spatial.and.the.temporal.contexts,.where.there.are.differences.in.the.environments.
where.organisms.may.be.exposed..This.chapter.reviews.the.methods.of.extrapolation.
that.may.be.used.and.provides.guidance.as.to.the.tools.to.use.for.this.purpose.

Extrapolations. of. the. other. significant. components. of. risk. assessment,. mea-
sures.of.effects,.are.reviewed.in.Chapters.3.through.7,.which.present.a.hierarchical.
approach.based.on.biological.organization..Extrapolation.of.effect.measures.through.
(quantitative).structure-activity.relationships.([Q]SARs).is.often.necessitated.because.
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of.the.large.number.of.substances.for.which.environmental.effects.data.are.not.avail-
able.but. that.must.be.regulated.under. legal. instruments. that. require.risk.manage-
ment..Like.matrix.and.media.extrapolation,.most.(Q)SARs.make.use.of.the.physical.
and.chemical.properties.of.substances.and.link.these.with.data.from.toxicity.tests.
with.similar.substances.(training.data.sets).to.predict.toxicity.to.model.species.based.
on.known.or.hypothetical.sites.of.action.at.the.molecular.level..Chapter.3.reviews.
the.most.readily.available.(Q)SAR.approaches,.species-to-species.extrapolation,.and.
discusses.the.use.of.these.in.a.number.of.regulatory.situations.

Chapter.4.deals.with.extrapolations.of.effects.across.levels.of.biological.organi-
zation..These.range.from.the.biochemical.and.physiological.responses.in.the.target.
organelles.and.tissues.to.the.complex.interactions.that.may.occur.in.whole.ecosys-
tems.and.finally.to.the.landscape..The.sequence.in.the.chapter.follows.the.concept.
of.tiers.in.that.the.responses.being.characterized.become.more.realistic.and.closer.
to.the.assessment.endpoints.and.ecological.entities.that.are.to.be.protected.as.one.
moves.to.higher.tiers.

Although.the.physical.interactions.between.a.toxic.substance.and.a.given.matrix.
play.an.important.role.in.extrapolation.(Chapter.2),.exposures.to.mixtures.of.sub-
stances. in. the. environment. are. a. real. issue. that. is. receiving. increasing. attention.
in.the.scientific,.regulatory,.and.public.communities..Interactions.may.occur.at.all.
levels. of. biological. organization,. from. the. target. site,. through. toxicokinetics. and.
toxicodynamics,.to.mixture-driven.species.responses.caused.by.differential.toxici-
ties.of.components.of.mixtures.and.their.interactions.through.trophic.and.functional.
relationships.. Chapter. 5. reviews. extrapolation. tools. for. mixtures. of. defined. and.
undefined.components.and.how.these.may.be.used.to.address.this.complex.issue.

Temporal.extrapolation. is. important. in. terms.of. the.duration.of. the.exposure,.
the.number.of.exposures,.and.the.nature.of.the.response.to.these.in.the.organism..
Chapter.6.reviews.relationships.between.temporal.exposure.in.relation.to.acute-to-
chronic.extrapolation,.reversibility,.and.latency.in.terms.of.the.interaction.between.
substances.and.individual.organisms..Other.temporal.extrapolation.approaches.are.
needed.when.considering.temporal.processes.in.organisms.themselves..These.relate.
to.seasonal.variability.in.sensitivity,.recovery.at.the.population.level,.and.adaptation.
to.stressors.

Differences.in.sensitivity.between.organisms.in.diverse.biogeographic.regions.
are.addressed.in.Chapter.7.on.spatial.extrapolations..These.are.key.in.extrapolating.
from.effect.data.generated.with.organisms.from.temperate.regions.to.other.regions,.
such.as.the.tropics.or.the.polar.regions,.where,. in.general,. less.data.are.available..
Also.important.is.extrapolation.from.freshwater.to.saltwater.organisms,.an.issue.that.
is.also.applicable.to.matrix.extrapolation.(Chapter.2)..Extrapolation.from.smaller.to.
larger.spatial.units.is.also.addressed.in.Chapter.7,.where.landscape.and.watershed.
extrapolation.is.reviewed.and.approaches.are.assessed.

Areas.of.uncertainty,.future.directions,.and.the.resulting.research.needs.are.sum-
marized.in.Chapter.8,.and.a.Glossary.of.terms.is.provided.in.Chapter.9..This.is.fol-
lowed.by.the.last.chapter,.10,.a.stand-alone.document.that.offers.practical.guidance.
suitable.to.several.levels.of.users,.from.those.in.the.laboratory.to.those.making.the.
risk.management.decisions..This.chapter.is.less.detailed.in.discussing.extrapolation.
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but.links.to.a.more.detailed.discussion.of.relevant.questions.and.choices.of.methods.
in.the.other.chapters.of.the.book.

HOW	THIS	BOOK	CAME	ABOUT

This.book.is.the.end.result.of.a.joint.submission.by.a.consortium.of.research.groups.
(nodes).to.the.American.Chemistry.Council’s.(ACC).Long.Range.Initiative.Program..
The.participating.nodes.are.the.Centre.for.Toxicology.at.the.University.of.Guelph.and.
Canadian.Network.of.Toxicology.Centres.(Canada).working.in.partnership.with.the.
Human.&.Environmental.Safety.Division,.Procter.&.Gamble.Company.(United.States);.
Alterra.—.Department.for.Water.and.Climate,.Wageningen.University.and.Research.
Centre.(The.Netherlands);.and.the.Laboratory.for.Ecological.Risk.Assessment.—.the.
National.Institute.of.Public.Health.and.the.Environment.(The.Netherlands).

The. goals. of. the. Extrapolation. Practice. for. Ecological. Effects. and. Exposure.
Characterization.of.Chemicals.(EXPECT).project.were.to.collect.and.review.proce-
dures.for.extrapolation.of.ecological.effects.in.the.context.of.ecological.risk.assess-
ment..The.process.of.extrapolation.in.ERA.was.the.subject.of.an.Organization.of.
Economic.Cooperation.and.Development.(OECD).workshop.held.in.1992,.and.our.
efforts.built.on.this.previous.work.(OECD.1992)..The.focus.of.this.book.is.on.extrap-
olation.in.the.context.of.risk.assessment.of.substances.as.environmental.stressors..
Extrapolation.procedures.in.the.risk.assessment.of.biological.and.physical.stressors.
were. specifically. excluded;. however,. this. was. not. because. they. were. regarded. as.
any. less. important.by. the.authors..Biological.and.physical. stressors.can.be.major.
agents.of.change.in.ecosystems,.but.the.science.of.assessing.and.extrapolating.their.
potential.impact.and.its.consequences.is,.in.many.ways,.very.different.from.that.of.
substances.and.is.beyond.the.scope.of.our.activities.and.detailed.knowledge.

We.reviewed.the.scientific.and.technical.basis.for.existing.extrapolation.meth-
odologies.in.ERA,.and.tested.several.of.the.extrapolation.methods.by.field.responses.
from.existing.field.studies.and.studies.in.controlled.static.and.flowing-water.micro-.
and.mesocosm.experiments..The.findings.from.these.model.data.were.used.in.assess-
ing.the.appropriateness.of.the.extrapolation.methods..The.process.that.we.undertook.
had.a.primary.focus.on.criteria-setting.and.risk.assessment.methodologies.on.single.
compounds,.but.the.implications.for.mixture.toxicity.and.contaminated.site.evalua-
tion.were.considered..The.main.focus.was.on.extrapolation.of.effects;.extrapolation.
(modeling).of.exposure.was.not.addressed.with.the.exception.of.the.influence.of.the.
matrix.on.exposure.and.effects..Modeling.and.extrapolation.of.exposures.are.a.com-
plex.process.and.deserve.a.separate.text.

Extrapolation.methods.were.tested.against.critical.scientific.opinion.with.several.
relevant.data.sets.for.key.model.substances.and.mixtures.to.stimulate.critical.assess-
ment.of.the.extrapolation.procedures.at.a.stakeholder.workshop.held.in.Florida..The.
stakeholder.workshop.was.held.with.participation.from.31.experts.in.risk.assessment.
from.the.United.States,.Europe,.and.other.countries..Participants.were.selected.from.
academia,.government.regulatory.bodies,.industry,.risk.managers,.and.decision.mak-
ers,.and.had.diverse.backgrounds.(e.g.,.ecotoxicologists,.ecologists,.environmental.
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fate.experts,.modelers,.and.regulators)..Special.efforts.were.made.to.ensure.partici-
pation.from.countries.in.climatic.regions.other.than.the.temperate.region.

The.workshop.followed.the.familiar.“Pellston”.formula..A.preliminary.review.
was.completed.and.made.available.to.all.participants.prior.to.the.workshop..At.the.
workshop,.workgroups.were.assigned.to.consider.specific.issues.identified.in.plenary.
sessions,.to.gather.feedback.on.the.utility.of.reviewed.methods,.to.suggest.new.or.
modified. ones,. and. to. consider. case. study. substances. in. relation. to. the. proposed.
extrapolation.methods..These.activities.were.used.to.prioritize.questions.and.to.help.
formulate.a. framework.(table.of.contents). for.dealing.with.extrapolation. issues. in.
ERA..We.used.this.framework.and,.with.individual.contributions.from.the.workshop.
participants,.developed.this.book..This.book.incorporates.a.review.and.discussion.
of.the.tools.currently.available.for.extrapolation.of.ecological.effects.and.the.science.
upon.which.these.are.based.
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�.�	 IntroduCtIon	and	Problem	FormulatIon

Extrapolation	 is	 the	use	of	existing	 information	 for	 the	prediction	or	 forecasting	of	
events	in	another	situation	that	is	biologically,	temporally,	or	spatially	different	from	
that	where	the	existing	information	was	gathered.	Extrapolation	is	an	integral	part	of	
the	process	of	setting	environmental	quality	criteria	(EQC)	and	for	conducting	envi-
ronmental	risk	assessments	(ERAs)	for	substances.	Extrapolation	is	used	routinely	in	
many	jurisdictions	and	for	many	purposes,	ranging	from	those	required	in	regulatory	
acts	and	instruments	to	those	conducted	for	managerial	and	economic	decision	mak-
ing.	Risk	assessment	and	criteria-setting	procedures	may	be	ad	hoc	or	formalized,	as	
those	used	in	a	number	of	regulatory	agencies.	Many	of	these	assessment	processes	
follow	prescribed	 frameworks	 such	as	 those	used	 in	North	America,	 the	European	
Union,	and	other	jurisdictions	(US	Environmental	Protection	Agency	[USEPA]	1992,	
1998;	Environment	Canada	1997;	European	Union	1997;	Chapman	2001).

1.1.1	 Criteria	Setting	and	riSk	aSSeSSment

As	extrapolations	 are	most	 commonly	used	 in	 criteria	 setting	 and	 risk	 assessment,	
some	understanding	of	the	process	is	necessary	to	understand	the	role	of	extrapolation.	
Risk	can	be	assessed	in	a	general	or	a	specific	sense,	and	it	can	be	assessed	prospec-
tively	 and	 retrospectively.	General	 risk	 assessments	 are	usually	 region-	or	 country-
wide,	consider	almost	all	possible	combinations	of	exposure	and	sensitivity,	and	are	
commonly	used	to	set	criteria	or	quality	objectives	(Figure	1.1).	They	are	usually	more	
conservative	as	 they	must	consider	all	eventualities	and	combinations	of	 sensitivity	
and	 exposure.	 Specific	 risk	 assessments	 are	 usually	 confined	 to	 a	 particular	 site,	 a	
particular	set	of	circumstances,	or	a	particular	use.	They	need	not	consider	all	possible	
eventualities	and	may	thus	exclude	some	or	many	possibilities	that	would	be	included	
in	a	general	risk	assessment.	Retrospective	and	prospective	risk	assessments	may	be	
general	or	specific.	Retrospective	(diagnostic)	risk	assessments	usually	make	use	of	
known	or	measured	effects	and/or	exposure	data	(Figure	1.1)	and	would	consider	the	
risk	from	existing	or	past	uses	or	releases	to	the	environment.	Prospective	(prognostic)	
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risk	assessment	is	often	carried	out	prior	to	the	marketing,	release,	or	use	of	the	sub-
stance	in	the	environment	and	makes	greater	use	of	models	to	estimate	exposures.

Setting	of	an	EQC	relies	primarily	on	toxicity	and	effect	data	to	set	a	guideline	
or	criterion	for	exposure	concentrations	that	will	be	protective	of	the	environment.	
The	ERA	utilizes	a	combination	of	exposure	and	effects	data	as	a	basis	for	assessing	
the	likelihood	and	severity	of	adverse	effects	(risks)	and	feeds	this	into	the	decision-
making	process	 for	managing	 risks.	The	process	 in	which	 these	data	are	used	 in	
assessing	risk	ranges	from	the	simple	calculation	of	hazard	ratios	to	complex	utiliza-
tion	of	probabilistic	methods	based	on	models	and/or	measured	data	sets.	However,	
all	 these	processes	begin	with	 and	utilize	 an	 implicit	 problem	 formulation	or	 the	
formal	definition	of	the	problem	being	considered.

1.1.2	 Problem	Formulation	For	riSk	aSSeSSment

Problem	 formulation	 is	 an	 integral	 component	 of	 all	 frameworks	 for	 criteria	 set-
ting	and	 risk	 assessment	 and	 is	 critical	 to	 success	 as	 it	 lays	down	 the	 foundation	
upon	which	the	process	depends	(USEPA	1992,	1998;	Environment	Canada	1997;	
European	Union	1997).	This	is	especially	important	in	ERAs	as	they	are	often	com-
plex,	involving	several	levels	of	biological	organization,	ranging	from	the	organism	
to	the	population,	the	community,	and	the	ecosystem,	and	possibly	include	several	
stressors	and/or	responses.	The	process	may	be	informal	in	its	initial	stages	but	will	
become	more	formal	as	one	or	more	iterations	are	conducted	between	risk	managers,	
stakeholders,	and	risk	assessors	(USEPA	1998).

For	 logistical	 reasons,	 it	 is	 frequently	 necessary	 to	 divide	 complex	 tasks	 into	
smaller	components	that	can	be	more	easily	managed.	The	use	of	tiers	or	steps	in	
the	 process	 of	 criteria	 setting	 and	 risk	 assessment	 is	 one	 method	 used	 to	 reduce	
complexity	and	narrow	the	focus	of	the	process	to	the	key	issues,	and	it	has	been	rec-
ommended	frequently	for	use	in	risk	assessments	of	pesticides	(USEPA	1992,	1998;	
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FIgure	�.�	 An	illustration	of	 the	 role	of	extrapolation	 in	 frameworks	 for	ecological	 risk	
assessment	used	either	for	setting	criteria	or	for	assessing	risks	from	existing	exposures.
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Suter	 et	 al.	 1993;	 Society	 of	 Environmental	 Toxicology	 and	 Chemistry	 [SETAC]	
1994;	 European	 Union	 1997;	 Ecological	 Committee	 on	 FIFRA	 Risk	 Assessment	
Methods	[ECOFRAM]	1999;	Campbell	et	al.	1999).	The	initial	use	of	conservative	
assessment	 criteria	 (i.e.,	 err	 on	 the	 side	of	 caution)	 allows	 substances	 that	 do	not	
present	a	risk	to	be	eliminated	from	the	risk	assessment	process	early,	thus	allowing	
the	focus	of	resources	and	expertise	to	be	shifted	to	potentially	more	problematic	
substances	or	situations.	As	one	ascends	through	the	tiers,	the	estimates	of	exposure	
and	effects	become	more	realistic	with	the	acquisition	of	more	accurate	and/or	rep-
resentative	data,	and	uncertainty	in	the	extrapolation	of	effects	is	thus	reduced	or	at	
least	better	characterized.	Likewise,	the	methods	of	extrapolation	may	become	more	
sophisticated	as	one	ascends	through	the	tiers	(Figure	1.2).

There	are	several	rules	that	must	be	applied	to	tiers	for	them	to	function	correctly.	
First,	lower	tiers	must	be	more	conservative	than	higher	tiers.	The	function	of	lower	tiers	
is	to	exclude	substances	from	further	consideration	if	they	truly	do	not	present	a	prob-
lem,	and	some	conservatism	is	needed	to	prevent	the	erroneous	release	of	a	potentially	
harmful	substance	into	the	environment.	Thus,	it	is	a	requirement	of	the	process	that	any	
uncertainty	factor	that	is	applied	in	the	tiers	must	respond	to	the	increase	in	realism	of	
the	data	and	becomes	smaller	at	higher	tiers.	The	second	requirement	of	tiers	is	that	the	
data	available	at	higher	tiers	must	be	more	relevant	or	more	realistic	than	the	data	at	lower	
tiers.	However,	this	does	not	mean	that	the	tiers	of	exposure	and	effects	characterization	
need	to	be	firmly	linked	(e.g.,	Tier-2	exposures	can	only	be	compared	to	Tier-2	effects).	
Diagonal	comparisons	can	be	made	as	long	as	they	are	in	the	direction	of	higher	tiers,	
the	units	of	measurement	are	the	same,	and	the	total	uncertainty	in	the	data	set	and	the	
uncertainty	factors	are	reduced	by	using	more	realistic	 information.	Similarly,	 if	 it	 is	
practical	and	the	data	are	available,	tiers	can	be	skipped,	as	long	as	the	progression	is	
toward	higher	tiers.	An	important	point	is	that,	in	moving	through	the	tiers,	the	units	for	
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FIgure	�.�	 Tiers	in	the	risk	assessment	process,	showing	the	refining	of	the	process	through	
the	acquisition	of	additional	data.
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exposure	remain	consistent.	Thus,	Tier-1	acute	estimated	or	measured	exposures	of,	say,	
96	hours	must	be	carried	forward	to	higher	tiers	with	the	same	time	interval.

There	are	several	methods	for	extrapolation	of	effects	and	responses	to	various	lev-
els	of	organization.	These	methods	may	be	grouped	into	certain	categories,	depending	
on	how	they	are	used	or	the	types	of	data	that	are	used	for	input.	These	are	discussed	
in	more	detail	in	the	following	chapters.	It	is	important	to	recognize	that	these	meth-
ods	are	essentially	tools	to	be	used	as	dictated	by	the	situation.	Thus,	extrapolations	
inherent	in	a	simple	hazard	quotient	(HQ)	may	be	extended	and	refined	though	the	use	
of	probabilistic	methods	and	further	verified	or	calibrated	by	other	tests	such	as	field	
observations,	micro-	and	mesocosm	(cosm)	studies,	or	whole-effluent	testing.

�.�	 termInology	oF	extraPolatIon

Extrapolations	always	have	been	a	key	component	of	criteria	setting	and	risk	assess-
ment,	 either	 formally	 or	 informally.	 Basically,	 extrapolation	 occurs	 when	 data	
derived	in	one	system	or	one	condition	are	used	to	predict	effects	or	responses	in	
another.	Extrapolations	become	 important	 in	both	 the	quantitative	and	qualitative	
relationships	between	effect	measures	and	assessment	endpoints	as	well	as	in	esti-
mating	 exposures	 in	 different	 matrices	 (Figure	1.1).	 All	 risk	 assessments	 require	
some	data,	and	none	are	able	to	test	all	possible	combinations	of	circumstances	that	
may	occur.	For	example,	many	assessments	make	use	of	laboratory-derived	effect	
(toxicity)	 data	 from	 surrogate	 organisms	 to	 postulate	 effects	 in	 organisms	 in	 the	
environment	 that	 cannot	 readily	 be	 tested.	 These	 extrapolations	 are	 made	 across	
species	within	a	genus	or	a	family,	as	well	as	across	a	wide	range	of	taxonomic	and	
functional	 distances.	 Thus	 mice,	 rats,	 rabbits,	 and	 monkeys	 act	 as	 surrogates	 for	
humans,	and	laboratory	test	species	belonging	to	insects,	crustacea,	fish,	and	other	
vertebrates	plus	plants	and	algae	act	as	surrogates	for	untested	organisms	in	the	eco-
system.	Additionally,	extrapolations	may	be	made	between	exposures	in	one	system	
such	as	water	and	another	such	as	sediment,	where	the	physicochemical	properties	
of	the	substance	and	its	environment	may	alter	exposure	and,	by	extension,	effects.	
However,	although	many	extrapolations	are	formalized	or	standardized,	some	are	
not	well	based	in	science,	nor	are	they	all	harmonized	across	jurisdictions.

In	terms	of	extrapolation	of	effects	from	test	organisms	to	the	ecosystem,	there	
are	3	general	methods	used.	The	simplest	involve	the	use	of	generic	methods	derived	
from	best	judgment	or	traditional	experience.	Others	are	based	on	statistical	analy-
sis	of	data	derived	from	empirical	observations	in	the	laboratory	and	field	or	on	a	
mechanistic	understanding	of	mechanisms	of	action.	Historically,	 the	earliest	and	
still	most	common	form	of	extrapolation	is	the	use	of	mathematical	factors	in	pos-
tulating	effects	in	untested	situations.	Most	extrapolations	were	made	in	the	absence	
of	adequate	data,	 and	 in	order	 to	account	 for	unquantified	uncertainty	and/or	 the	
social	value	associated	with	the	affected	organisms,	a	factor	was	commonly	used	to	
add	a	level	of	protection	or	conservatism	to	the	extrapolation.	These	factors	go	by	a	
number	of	names:	application	factor,	assessment	factor,	safety	factor,	or	uncertainty	
factor	(UF),	the	preferred	term	that	will	be	used	throughout	this	book.

Uncertainty	 factors	 have	 been	 commonly	 used	 in	 ERA	 and	 criteria	 setting,	
and	their	use	in	extrapolation	takes	many	forms.	The	simplest	is	illustrated	in	the		
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deterministic	calculation	of	hazard	quotients	(HQ).	Here,	the	environmental	expo-
sure	concentration	is	divided	by	the	concentration	that	causes	a	response	in	a	test	
organism	(effect	concentration)	to	give	a	hazard	ratio	or	an	HQ.	If	the	effect	con-
centration	is	equal	to	the	exposure	concentration,	the	response	in	the	test	organisms	
also	would	be	expected	to	be	observed	in	the	environment	where	the	sample	came	
from.	Because	the	effect	concentration	is	normally	a	point	estimate	derived	from	a	
concentration-response	test,	a	UF	is	used	to	protect	against	responses	at	lower	con-
centrations	in	the	same	organism	as	well	as	the	possibility	of	greater	sensitivity	in	
other	organisms.	These	UFs	range	in	value,	depending	on	the	response	that	is	mea-
sured.	For	example,	the	USEPA	uses	UFs	from	1	to	20	for	extrapolating	the	results	of	
laboratory	tests	on	the	potential	effects	of	pesticides	in	the	environment	(Urban	and	
Cook	1986;	Calabrese	and	Baldwin	1993).	Typical	UFs	applied	to	hazard	quotients	
are	listed	in	Table	1.1	and	illustrated	graphically	in	Figure	1.3.	Similarly,	UFs	are	

table	�.�
Comparison	of	uncertainty	factors	for	assessing	risks	in	aquatic	
environments	by	various	regulatory	bodies

data Canada� oeCd� oeCd� usePa�

eu	technical	
guidance	

document�

Quantitative	structure-activity	
relationships	([Q]SAR)

1000 1000 10006 1000 1000

Acute	data	(1	or	2	species) 1000 1000 1000 1000
Acute	data	(3	taxa)7 100 100 100	to	1000 100 100	or	1000
Acute	probabilistic	(	≥5	species)
	 Chronic	data	(1	taxon) 50	to	100 100
	 Chronic	data	(2	taxa) 10	to	100 50
	 Chronic	data	(3	taxa) 10 10 10 10 10
	 Chronic	probabilistic 1	to	5
Meso-	and	microcosm	data 1 Case	by	case

1	Environment	Canada	(1997),	maximum	factors.
2	 OECD	(1992).
3	 OECD	(2002).
4	 Zeeman	and	Gilford	(1993).
5	 This	refers	to	short-	and	long-term	toxicity	instead	of	acute	and	chronic	toxicity.	The	approach	in	EU	

91/141	is	different.	According	to	Annex	VI3	of	Directive	91/414/EEC,	C	2.5.2.2,	an	uncertainty	factor	
of	100	is	required	on	the	LC50	and/or	EC50	of	 the	most	sensitive	of	 the	 tested	species	(Guidance		
Document	on	Aquatic	Ecotoxicology,	Sanco/3268/2001,	rev.	3;	SANCO	2002).	When	additional	data	
are	available,	there	is	no	clear	guidance	on	the	lowering	of	the	UF;	however,	a	UF	of	10	is	generally	
assumed	when	large	amounts	of	additional	data	are	available.

6	 Chemicals	that	can	be	evaluated	using	(Q)SARs	constrained	to	ensure	that	(Q)SARs	effectively	predict	
toxicity.

7	 The	UF	is	dependent	on	whether	the	substance	is	a	pesticide	or	not.
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used	in	human	health	risk	assessment.	For	example,	UFs	of	10	are	used	to	extrapo-
late	 from	 the	 average	human	 to	 a	 sensitive	human,	 from	animal	data	 to	humans,	
from	a	lowest	effect	concentration	to	a	no-effect	concentration,	from	subchronic	to	
chronic,	 and	 for	 database	 inadequacies	 (World	 Health	 Organization	 International	
Program	 on	 Chemical	 Safety	 1999).	 Where	 more	 than	 one	 UF	 is	 used,	 they	 are	
multiplied	together,	and	in	situations	that	lack	data,	the	total	UF	can	become	very	
large	and	impractical	(105	to	106).	These	UFs	are	not	based	on	formal	analysis	of	the	
data	and	may	not	reflect	the	real	relationships	being	extrapolated,	leading	to	errors	
in	interpretation	where	risk	may	be	underestimated	or	overestimated.	UFs	may	also	
be	applied	to	toxicity	data,	such	as	in	the	use	of	the	UF	to	extrapolate	from	an	effect	
value	to	derive	a	predicted	no-effect	concentration	(PNEC).

When	 more	 data	 have	 been	 generated,	 more	 formal	 approaches	 are	 available	
to	develop	UFs	where	the	data	themselves	are	used	to	derive	the	UF	by	statistical	
methods.	Where	enough	data	have	been	produced	 for	different	 species,	 a	 species	
sensitivity	distribution	(SSD)	can	be	derived	(see	Figure	1.3	and	Chapter	4).	SSDs	
are	 distributions	 of	 toxicity	 values	 based	 on	 the	 results	 of	 laboratory	 tests.	 SSDs	
offer	a	level	of	refinement	over	single-species	hazard	quotients	that	incorporate	the	
range	of	sensitivity	across	entire	groups	of	organisms	or	within	specific	categories	
determined	from	knowledge	of	the	mechanisms	of	action	and	the	toxicokinetics	of	
the	substance.	SSDs	better	facilitate	assessment	of	hazards	and	risks	at	the	commu-
nity	level,	where	redundancy	and	resiliency	can	play	an	important	role	in	community	
homeostasis	(ECOFRAM	1999;	Solomon	and	Takacs	2002;	Posthuma	et	al.	2002b).	
SSD	curves	may	be	constructed	on	 the	basis	of	acute	or	chronic	 toxicity	data,	or	
other	effect	measures.	However,	questions	have	been	raised	about	the	need	to	include	
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FIgure	�.�	 Graphical	illustration	of	the	use	of	uncertainty	factors	(UFs)	in	extrapolation	
from	a	single	deterministic	effect	measure	and	the	estimation	of	UFs	from	a	species-sensitivity		
distribution.	The	y-axis	scale	on	the	left	graphic	is	intentionally	omitted.	
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indigenous	 species	 from	 specific	 ecoregions	 and	 differentiation	 of	 the	 organisms	
into	taxonomic	groups	or	into	groups	that	share	common	receptors	or	biochemical	
mechanisms	(van	den	Brink	et	al.	2002a;	Posthuma	et	al.	2002b;	see	Chapter	6	for	
more	discussion	on	this	topic).

This	 SSD	 is	 a	 representation	 of	 the	 variation	 in	 sensitivity	 between	 different	
organisms.	The	point	estimate	of	the	concentration	below	which	only	a	small	pro-
portion	of	species	would	respond	is	used	to	estimate	a	concentration	below	which	
adverse	ecological	effects	would	not	be	expected,	for	example,	the	HC5	(Aldenberg	
and	Slob	1991,	1993).	The	HC5	concentration	is	a	criterion	or	guideline	that	would	
be	expected	to	be	protective	of	95%	of	the	species.	In	some	cases,	the	lower	confi-
dence	interval	on	the	HC5	may	be	used	for	extrapolation,	thus	incorporating	a	UF	
that	is	statistically	derived	from	the	data	(Maltby	et	al.	2005).	In	both	approaches,	
the	extrapolation	is	data	driven,	but	the	method	obviously	requires	a	large	amount	of	
data	and	the	extrapolations	may	change	as	more	data	are	added	to	the	distribution.	
The	distribution	also	is	very	much	dependent	on	the	choice	of	test	organisms	and	
several	other	parameters	such	as	the	distribution	model	(see	Chapter	4).

In	addition	to	criteria	setting	and	risk	assessments	based	on	single-species	tests	
conducted	in	the	laboratory,	observational	field	studies	and	model	ecosystem	experi-
ments	are	regularly	performed	to	study	the	effects	of	contaminants	at	the	community	
and	ecosystem	levels.	In	this	ecotoxicological	approach,	researchers	are	able	to	test	
for	possible	effects	on	multiple	species	and	at	many	levels	of	biological	organiza-
tion,	an	option	not	 readily	available	 to	human	health	risk	assessors,	except	where	
fortuitous	exposures	in	occupational	and	other	settings	may	be	assessed	through	epi-
demiological	methods.	Although	not	true	field	studies,	these	experiments	in	model	
systems	may	be	very	useful	as	they	provide	tools	for	empirical	extrapolations	based	
on	observations	at	the	population	and	community	levels.	They	have	the	additional	
advantage	of	allowing	the	observation	of	interactions	between	species,	a	process	not	
well	addressed	in	extrapolation	techniques	except	for	ecosystem	food-web	models	
(see	Chapter	4).	Thus,	ratios	of	concentrations	causing	an	effect	in	the	laboratory	and	
in	the	field	can	be	used	to	derive	an	extrapolation	factor,	and	where	uncertainty	can	
be	estimated	from	multiple	studies,	a	UF	can	be	estimated	empirically.	An	example	
of	this	is	the	modeling	approach	used	in	PERPEST	(predicts	the	ecological	risks	of	
pesticides;	van	den	Brink	et	al.	2002c),	discussed	in	more	detail	in	Chapter	7.

�.�	 assessment	endPoInts	and	regulatory	goals

One	of	the	key	steps	in	the	problem	formulation	is	the	statement	of	the	assessment	
endpoints,	or	what	is	to	be	protected.	These	are	the	explicit	expressions	of	the	actual	
valued	ecosystem	components	(organisms,	populations,	or	communities)	or	ecosys-
tem	functions	that	are	to	be	protected.	They	are	the	ultimate	focus	in	risk	assess-
ment	and	act	as	a	link	to	the	risk	management	process,	such	as	policy	goals	(Suter	
et	al.	1993;	USEPA	1992,	1998).	Assessment	endpoints	will	vary	depending	on	the	
protection	goals	 that	are	applied	 to	 the	situation	or	 issue	being	assessed.	Thus,	 if	
the	protection	goal	 is	population	 structure,	 the	assessment	 endpoint	will	 relate	 to	
populations	and	may	be	a	quantitative	measure	of	actual	population	numbers	or	a	
change	in	population	numbers	that	exceeds	a	threshold.	Examples	of	these	are	“The	

73907_C001.indd   8 4/23/08   10:53:25 AM



Extrapolation in the Context of Criteria Setting and Risk Assessment �

population	should	be	200	organisms/L”	or	“The	change	in	population	numbers	must	
not	exceed	10%.”	By	expressing	assessment	endpoints	in	quantifiable	terms	such	as	
these,	 changes	 (e.g.,	 impact	 or	 recovery)	 can	 be	 characterized	 and	 differentiated.	
Unfortunately,	endpoints	for	assessment	and	criteria	setting	are	rarely	expressed	as	
explicitly	as	this.

1.3.1	 eCologiCal	ProteCtion	goalS

Before	considering	protection	goals	and	their	function	in	extrapolation,	it	is	neces-
sary	 to	 consider	 what	 constitutes	 a	 sustainable	 ecosystem.	 Because	 properties	 of	
ecosystems	vary	in	space	and	time,	it	is	important	to	have	quantifiable	and	broadly	
accepted	ideas	of	what	constitutes	an	ecologically	important	effect,	and	what	consti-
tutes	a	sustainable	ecosystem	(Calow	1998a;	Brock	and	Ratte	2002).	In	ecotoxicol-
ogy,	the	concern	is	rarely	for	individual	organisms	but	usually	for	populations	and	
communities	 in	 their	 natural	 environment.	 Exceptions	 are	 individuals	 of	 wildlife	
populations	valued	by	society	or	endangered	species.	Overall,	the	intention	is	that	
populations	and	communities	be	sustained	 in	 the	environment.	 In	 this	context,	 to	
“sustain”	is	to	“hold,	keep	alive”	or,	literally,	“to	be	able	to	last.”	When	considering	
the	concept	of	sustainability,	it	is	important	to	recognize	that	this	involves	protection	
from	change	resulting	from	a	manageable	source	of	risk,	not	just	decreases.	Adverse	
ecosystem	 responses	 are	usually	perceived	negatively	 and	 are	often	 equated	with	
declines,	such	as	a	decrease	in	population	size	or	a	decrease	in	a	function.	However,	
increases	in	populations,	such	as	algal	blooms,	or	in	functional	processes	may	be	just	
as	deleterious	in	the	ecosystem	(Giesy	2001).

To	keep	or	restore	ecosystems	in	a	state	resembling	more	or	less	pristine	condi-
tions	may	be	important	for	certain	environmental	uses	such	as	special,	highly	valued	
habitats	(nature	reserves).	For	ecosystems	in	areas	highly	influenced	by	humans	such	
as	by	agriculture,	 industrial	activities,	and	sewage	treatment	plants,	 this	is	neither	
practical	nor	feasible;	but,	in	many	cases,	we	recognize	the	ecological	importance	
of	these	habitats	besides	their	economic	and	socioeconomic	benefits.	The	interest	of	
criteria	setting	and	ecological	risk	assessment	is	to	provide	the	objectives	and	criteria	
for	sustainable	management	of	these	multifunctional	ecological	systems.	In	this	con-
text,	the	question	of	whether	all	patches	of	ecosystem	should	be	protected	equally	
needs	to	be	addressed.	In	addition,	in	recent	years,	ecology	has	moved	from	a	static	
view	to	a	dynamic	process,	in	which	populations,	communities,	and	ecosystems	are	
considered	in	their	temporal	and	spatial	contexts	within	the	surrounding	landscapes	
and	in	the	context	of	very	long-term	changes	such	as	those	related	to	geochemistry	
and	ongoing	evolutional	processes.

Within	 the	 context	 of	 sustainability	 of	 communities	 and	 ecological	 functions	
and	services,	there	are	3	general	categories	of	undesirable	effects	of	substances	in	
the	environment.	These	relate	to	ecosystem	structure,	function,	and	(landscape)	aes-
thetic	value	to	humans	(Table	1.2).	The	structure	of	an	ecosystem	is	a	combination	
of	which	organisms	are	present	and	how	many	there	are,	whereas	function	relates	
to	 what	 the	 organisms	 do	 in	 the	 ecosystem.	 The	 choice	 of	 protection	 goals	 (and,	
by	extension,	assessment	endpoints)	may	be	based	on	ecological	knowledge	or	on	
human	value	judgments.	For	example,	there	is	a	general	tendency	to	select	functional	
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table	�.�
examples	of	the	basis	for	assessment	endpoints,	measures	of	response,	and	
measurement	techniques

basis	for	assessment	endpoint measure	of	response measurement	technique

Structure Overall	species	richness	and	
densities

Number	of	taxa	and	diversity	indices	
(or	scores	of	multivariate	
techniques)	for	the	total	community	
or	for	taxonomic	or	functional	
groups	within	the	community

Population	densities	of	key	or	
important	ecological	species

Ecological	key(stone)	species	are	
species	that	play	a	major	role	in	
ecosystem	performance,	productivity,	
stability,	and	resilience.	These	species	
may	also	play	an	important	role	in	
ecosystem	function	(see	below)	and	
include	1)	species	that	are	critical	
determinants	in	trophic	cascades,	
such	as	piscivorous	fish	and	large	
herbivores;	and	2)	species	that	are	
“ecological	engineers,”	that	is,	those	
that	have	a	large	influence	on	the	
physical	properties	of	habitats	such	as	
rooted	submerged	macrophytes	and	
beavers

Population	densities	of	indicator	
species	—	species	with	a	high	
“information”	level	for	monitoring	
purposes

Species	protected	by	law,	and	
regionally	rare	or	endangered	species

Ecosystem	functioning	and	
functionality

Biogeochemical	cycles	and	energy	
flow

Environmental	quality	parameters	
such	as	oxygen	depletion,	changes	
in	primary	productivity,	and	
changes	in	the	processing	of	
nutrients	such	as	mineralization	of	
organic	matter	or	fixation	of	
atmospheric	nitrogen

Decreases	in	the	rate	of	replenishment	
of	harvested	resources	such	as	
saltwater	and	freshwater	food	
organisms,	and	timber

Perceived	aesthetic	value	or	
appearance	of	the	ecosystem	and/
or	landscape

Disappearance	of	species	with	a	
popular	appeal

Changes	in	populations	of	species	
such	as	dragonflies,	songbirds,	and	
butterflies

Visual	mortality	of	individual	
vertebrates	or	other	valued	
ecosystem	components

Symptoms	of	eutrophication	such	as	
algal	blooms	in	lakes;	clarity	of	
water

Taste	and	odor	problems	in	drinking	
water
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protection	goals	and	assessment	endpoints	when	the	populations	of	the	potentially	
affected	organisms	may	change	rapidly	for	natural	reasons,	may	recover	from	effects	
rapidly,	or	are	difficult	to	characterize.	Examples	are	bacteria	and	fungi	in	soil	and	
sediment	or	algae	in	aquatic	systems.	In	populations	that	have	lower	recovery	poten-
tial	or	are	easily	characterized	and/or	highly	valued,	there	is	a	tendency	to	use	struc-
tural	protection	goals	such	as	absolute	population	numbers.	Examples	of	these	are	
fish,	birds,	or	whales.	Choices	of	protection	goals	may	also	be	determined	on	the	
basis	 of	 value	 judgments;	 for	 example,	 if	 the	 risky	 activity	 brings	 great	 benefits,	
structural	changes	may	be	tolerated	if	functions	are	unaffected.	These	3	ecological	
response	categories	may	be	further	subdivided	as	shown	in	Table	1.2	(modified	from	
Brock	and	Ratte	2002).

With	respect	to	the	last	category	in	Table	1.2,	it	is	important	to	recognize	that	
aesthetic	values	in	society	can	be	ephemeral	and	are	subject	to	rapid	changes.	Thus,	
what	society	considers	important	today	may	be	unimportant	tomorrow.	In	addition,	
societal	values	are	strongly	linked	to	cultural	traditions	and	differ	from	one	culture	
to	another	and	with	the	level	of	economic	and	social	development.

1.3.2	 riSk	PerCePtion	and	eCologiCal	ProteCtion	goalS

Guidance	on	how	to	deal	with	risks	of	substances	 in	 the	environment	 is	provided	
not	only	in	a	regulatory	context	but	also	by	concepts	based	on	science,	ethics,	and	
aesthetics,	all	of	which	can	be	related	to	the	perception	of	risks	by	humans.	To	illus-
trate	this,	4	completely	different	perceptions	of	the	ecological	risks	of	toxicants	in	
nontarget	habitats	can	be	recognized	(Brock	et	al.	2006).	These	are	the	1)	pollution	
prevention	 principle,	 2)	 ecological	 threshold	 principle,	 3)	 recovery	 principle,	 and		
4)	 functional	 redundancy	 principle.	 The	 ecological	 threshold	 principle	 and	 the	
recovery	principle	are,	respectively,	the	conservative	and	liberal	approaches	of	the	
ecosystem	carrying	capacity	principle	described	by	Brock	(2001).

�.�.�.�	 Pollution	Prevention	Principle

The	 pollution	 prevention	 principle	 presupposes	 that	 all	 environmental	 pressure	 is	
potentially	harmful.	Conservative	approaches	are	necessary	to	protect	the	environ-
ment	because	multiple	stressors	due	to	the	presence	of	low	concentrations	of	more	
than	one	substance	or	unexpected	effects	of	metabolites	(e.g.,	hormone	disruption)	
can	 never	 be	 excluded.	 This	 opinion	 is	 in	 line	 with	 the	 community	 conditioning	
hypothesis	 (Matthews	 et	 al.	 1996),	 which	 states	 that	 ecological	 communities	 tend	
to	preserve	information	about	every	event	in	their	history,	including	stress	by	sub-
stances.	It	is	also	in	line	with	the	rivet	hypothesis	(Ehrlich	and	Ehrlich	1981),	which	
presupposes	that	each	loss	of	a	species	(equivalent	to	a	rivet	in	the	analogy)	affects	
ecosystem	 integrity	 to	a	 small	 extent,	 and,	 if	 too	many	 rivets	 are	 lost,	 the	 system	
collapses.

The	pollution	prevention	principle	considers	the	“what	if”	question	more	impor-
tant	than	the	“so	what”	question.	Consequently,	emission	of	substances	to	nontarget	
sites	should	be	prevented	as	much	as	is	technologically	and	socioeconomically	fea-
sible.	An	option	in	line	with	the	pollution	prevention	principle	is	to	always	set	the	
maximum	permissible	risk	concentration	(MPC)	in	ecosystems	on	the	more	or	less	
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conservative	 first-tier	 approach	 based	 on	 toxicity	 data	 from	 the	 most	 sensitive	 of	
standard	test	organisms	and	application	of	an	uncertainty	factor,	or	on	a	conservative	
confidence	interval	of	a	small	centile,	such	as	the	HC5	(Chapter	4)	derived	from	a	
sufficient	number	of	chronic	toxicity	data	from	single-species	laboratory	tests.

A	further	conservative	approach	in	line	with	the	pollution	prevention	principle	
is	to	apply	an	additional	uncertainty	factor	to	the	MPCs	of	individual	compounds	to	
account	for	the	possible	combined	effects	of	the	many	substances	encountered	in	the	
environment.	For	example,	in	The	Netherlands,	negligible	risk	concentrations	(NCs)	
are	derived	from	the	MPC	by	dividing	it	by	100.	These	NCs	are	considered	as	target	
values	to	be	reached	in	the	near	future	(~10	years;	Sijm	et	al.	2002).

The	pollution	prevention	principle	should	not	be	confused	with	the	precaution-
ary	 principle	 (Graham	 1999;	 Commission	 of	 the	 European	 Communities	 2000;		
Government	 of	 Canada	 2001).	 The	 pollution	 prevention	 principle	 simply	 aims	 to	
prevent	pollution,	whereas	the	precautionary	principle	is	more	subtle	and	is	based	
on	precautionary	action	if	the	uncertainty	of	the	risk	is	too	great	and	the	intensity	is	
potentially	very	large.	In	that	case,	the	measures	taken	should	be	proportionate	and	
temporary,	accompanied	by	efforts	 to	 reduce	 the	uncertainty,	and	reviewed	again	
when	further	information	becomes	available.

�.�.�.�	 ecological	threshold	Principle

The	ecological	threshold	principle	presupposes	that	the	environment	can	absorb	and	
tolerate	a	certain	amount	of	stress.	An	approach	in	line	with	the	ecological	threshold	
principle	is	to	consider	a	certain	concentration	of	a	substance	acceptable	if	the	sensi-
tive	structural	or	functional	endpoints	of	the	community	are	not,	or	are	only	briefly,	
impacted.	A	permissible	concentration	in	line	with	the	ecological	threshold	principle	
can	be	based	on	the	no-observed-effect	concentration	(NOEC,	or	effect	class	1;	see	
Table	1.3)	or	 the	 lowest-observed-effect	concentration	(LOEC,	or	effect	class	2;	see	
Table	1.3)	of	the	most	sensitive	measurement	endpoint	as	assessed	by	an	adequately	
performed	microcosm	or	mesocosm	experiment.	This	threshold	concentration	derived	
from	model	aquatic	ecosystem	experiments	may	also	guarantee	that	no	adverse	indi-
rect	effects	such	as	algal	blooms	due	to	the	direct	toxic	effects	on	grazing	microcrus-
taceans	will	occur.	Effect	classes	that	can	be	used	to	summarize	observed	effects	in	
aquatic	microcosm	or	mesocosm	studies	are	described	in	the	European	Union’s	“Guid-
ance	Document	on	Aquatic	Ecotoxicology”	(European	Commission	2002;	after	Brock	
et	al.	2000a,	2000b).	In	Europe,	these	effect	classes	(Table	1.3)	are	used	to	evaluate	
semifield	tests	submitted	for	the	registration	of	pesticides.

�.�.�.�	 recovery	Principle

The	recovery	principle	also	presupposes	that	the	environment	can	absorb	and	tolerate	
a	certain	amount	of	stress.	The	stressor	should	be	limited	to	an	intensity	or	concen-
tration	less	than	that	at	which	long-term	adverse	impacts	on	ecosystem	structure	and	
functioning	occur.	From	a	scientific	point	of	view,	periodically	occurring	declines	in	
population	densities	can	be	considered	a	normal	phenomenon	in	ecosystems.	In	the	
course	of	evolution,	organisms	have	developed	a	large	variety	of	strategies	to	sur-
vive	and	cope	with	temporally	variable	unfavorable	conditions	such	as	desiccation,	
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flooding,	 temperature	 shocks,	 shading,	 oxygen	 depletion,	 food	 limitations,	 toxins	
in	 food,	as	well	as	anthropogenic	stressors	 (Ellis	1989).	 In	some	cases,	 the	stress	
caused	by	a	substance	may	more	or	less	resemble	that	of	a	natural	stress	factor.	The	
use	of	the	“normal	operating	range”	of	population	densities	and	functional	endpoints	
in	 specific	 ecosystems	 has	 been	 suggested	 as	 a	 baseline	 against	 which	 to	 assess		
pesticide-induced	 changes	 (Domsch	 et	 al.	 1983).	 In	 other	 words,	 effects	 of		

table	�.�
Classes	of	effects	used	to	assess	the	effects	of	substances	on	communities	
in	microcosms	and	mesocosms

Class effect description

1 Effect	could	not	be	
demonstrated

No	(statistically	significant)	effects	observed	as	a	
result	of	the	treatment,	and	observed	differences	
between	the	treatment	and	controls	show	no	clear	
causal	relationship.	Causality	in	this	context	is	
judged	through	the	use	of	guidelines	similar	to	
those	developed	for	identifying	causative	agents	
of	disease		(Koch	1942;	Hill	1965;	IPCS	2002).

2 Slight	effect Effects	reported	in	terms	of	“slight”	or	“transient”	
and/or	other	similar	descriptions.	Short-term	and/
or	quantitatively	restricted	response	of	sensitive	
endpoints.	Effects	only	observed	at	individual	
sample	times.

3 Pronounced	short-term	effect Clear	response	of	sensitive	endpoints,	but	total	
recovery	within	8	weeks	after	the	last	application.	
Effects	reported	as	“temporary	effects	on	several	
sensitive	species,”	“temporary	elimination	of	
sensitive	species,”	“temporary	effects	on	less	
sensitive	species	and/or	endpoints,”	and/or	other	
similar	descriptions.	Effects	observed	at	some	
subsequent	sampling	instances.

4 Pronounced	effect	in	short-term	
study

Clear	effects	(such	as	large	reductions	in	populations	
of	sensitive	species)	observed,	but	the	study	is	too	
short	to	demonstrate	complete	recovery	within	8	
weeks	after	the	(last)	application.

5 Pronounced	long-term	effect Clear	response	of	sensitive	endpoints	and	recovery	
time	of	sensitive	endpoints	are	longer	than	8	weeks	
after	the	last	application.	Effects	reported	as	“long-
term	effects	on	many	sensitive	species	and/or	
endpoints,”	“elimination	of	sensitive	species,”	
“effects	on	less	sensitive	species	and/or	endpoints,”	
and/or	other	similar	descriptions.	Effects	observed	
at	various	subsequent	sample	times.
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substances	that	are	restricted	in	space	and	time	may	be	regarded,	in	certain	habitats,	
as	ecologically	unimportant	when	they	are	of	a	smaller	scale	than	changes	caused	by	
other	natural	or	anthropogenic	stresses.	The	recovery	principle	may	be	made	more	
complicated	because	ecosystems	may	recover	to	different	states	that	are	stable	in	the	
long	term	(Scheffer	et	al.	2003).

In	contrast	to	single-species	laboratory	toxicity	tests,	model	ecosystem	experi-
ments	allow	the	study	of	the	recovery	potential	of	sensitive	populations.	An	approach	
in	 line	 with	 the	 recovery	 principle	 is	 to	 consider	 a	 certain	 impact	 of	 a	 chemical	
acceptable	when	recovery	takes	place	within	a	short	time	frame,	such	as	in	the	effect	
class	3	(Table	1.3).	When	environmental	stress	is	restricted	in	space	and	time,	and	
noncontaminated	habitats	are	nearby,	the	recovery	processes	may	ensure	the	sustain-
ability	of	sensitive	populations.	The	recovery	rate	of	sensitive	populations,	however,	
has	been	shown	to	vary	considerably	between	microcosm	and/or	mesocosm	studies	
(see	van	Wijngaarden	and	Brock	1999;	Brock	et	al.	2000a,	2006).	In	these	studies,	
recovery	depended	on	the	degree	of	isolation	of	the	test	systems	and	the	life-cycle	
characteristics	of	the	populations	present.	In	general,	natural	populations	of	species	
with	a	relatively	short	generation	time,	resistant	life	stages,	and/or	well-developed	
abilities	to	disperse,	such	as	algae,	daphnids,	and	multivoltine	insects,	showed	rapid	
recovery	 from	a	stressor.	The	 recovery	 time	 is	dependent	on	generation	 time	and	
reproductive	strategy,	the	degree	of	change	induced	by	the	toxicant,	and	dispersal	
and/or	immigration.	For	example,	recovery	of	populations	of	Cladocera	in	micro-
cosms	 treated	 with	 permethrin	 was	 dependent	 on	 the	 decrease	 in	 the	 population	
after	treatment,	which	was,	in	turn,	dependent	on	the	concentration	(Kaushik	et	al.	
1985).	In	contrast,	organisms	with	a	more	complex	life	cycle	or	with	a	low	ability	
to	recolonize	isolated	systems,	such	as	the	aquatic	crustacean	Gammarus	and	uni-
voltine	insects,	may	recover	only	slowly	or	not	at	all	(van	den	Brink	et	al.	1996).

�.�.�.�	 Functional	redundancy	Principle

The	functional	redundancy	principle	presupposes	that,	for	sustainable	functioning	of	an	
ecosystem,	a	decrease	in	biodiversity	can	be	tolerated,	as	long	as	key(stone)	species	and	
their	functions	are	not	impacted	(see	Table	1.2).	This	is	because	of	the	redundancy	in	roles	
and	functions	provided	by	the	surviving	species	in	the	community	(Lawton	1994).	Func-
tional	redundancy	is	well	known	in	ecology	and	has	been	demonstrated	experimentally	
such	as	in	the	work	of	Tilman	et	al.	(Tilman	1996;	Tilman	et	al.	1996).

When	adopting	the	functional	redundancy	principle,	the	emphasis	is	on	ecosystem	
processes;	impacts	are	considered	acceptable	when	functional	attributes	are	not	changed,	
despite	possible	effects	on	community	structure.	Functional	endpoints	are	rarely	more	
sensitive	than	structural	ones	(Ellis	1989;	Kersting	1994;	Klepper	et	al.	1999);	however,	an	
exception	is	found	in	the	photosynthesis	inhibitors	such	as	the	triazines	and	urea	classes	
of	herbicides.	Effects	on	functional	endpoints	indicate	the	limit	of	functional	redundancy	
within	the	stressed	community.	Once	ecosystem	processes	have	changed	due	to	contami-
nation,	this	is	usually	an	indication	of	severe	effects	on	structural	endpoints.

The	functional	redundancy	principle	is	most	appropriate	for	intensively	used	envi-
ronments	such	as	those	impacted	by	urbanization,	industrial,	agricultural,	and	forestry	
activities.	When	adopting	the	functional	redundancy	principle,	however,	an	important	
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evaluation	criterion	should	be	the	length	of	time	required	for	reversibility	of	the	effect,	
because	a	completely	irreversible	change	in	land	(or	water)	would	place	the	response	in	
another	category.	The	importance	of	time	to	recovery	has	been	recognized	and	is	used	as	
a	means	of	prioritizing	ecological	risks	for	regulatory	purposes	(Harwell	et	al.	1992).

�.�	 measures	oF	eFFeCt

Although	 there	was	 considerable	discussion	of	 assessment	 endpoints	 above,	mea-
sures	of	effect	are	also	key	data	for	risk	assessment	and	a	starting	point	for	extrapola-
tion.	They	are	exposure	concentrations	or	doses	that	cause	specific	responses,	such	
as	mortality,	reductions	in	growth,	or	reproduction	(USEPA	1998).	They	are	usually	
derived	 in	 laboratory	studies	or	 toxicity	 tests	and	are	more	easily	quantified	 than	
assessment	endpoints;	however,	the	best	effect	measures	are	related	quantitatively	or	
qualitatively	to	the	assessment	endpoint	and	thence	to	the	protection	goal.	Measures	
of	effect	combine	2	factors:	a	response	in	an	organism,	population,	community,	or	
ecosystem,	 and	 an	 exposure	 or	 intensity	 of	 the	 stressor	 that	 causes	 the	 response.	
Commonly	used	effect	measures	are	the	concentration	that	kills	a	proportion	(e.g.,	
50%	or	10%)	of	the	test	organisms	(LC50	or	LC10,	respectively),	the	concentration	
that	causes	an	effect	in	a	proportion	(e.g.,	50%	or	10%)	of	the	test	organisms	(EC50	
or	EC10,	respectively),	or	the	NOEC.	Variations	on	the	latter	include	the	LOEC,	the	
maximum	allowable	toxicant	concentration	(the	geometric	mean	of	the	NOEC	and	
LOEC),	and	the	benchmark	concentration	(a	concentration	causing	a	response	that	is	
not	statistically	significantly	different	from	the	control	response;	USEPA	1995a).	All	
of	these	effect	measures	relate	to	a	specific	exposure	duration,	such	as	96	hours.

�.�	 tyPes	oF	extraPolatIon

A	number	of	types	of	extrapolations	are	routinely	used	in	criteria	setting	and	risk	
assessments.	These	can	be	categorized	on	the	basis	of	the	starting	point	and	desired	
outcomes.	The	process	of	extrapolation	in	ERA	was	addressed	at	an	Organization	for	
Economic	Cooperation	and	Development	(OECD)	workshop	(OECD	1992).	Build-
ing	on	the	efforts	of	the	OECD	workshop,	extrapolations	can	be	broadly	divided	into		
4	types:	range,	matrix	and	media,	spatial–temporal,	and	ecological	data	extrapolations	
(summarized	in	Table	1.4).	These	extrapolation	categories	comprise	the	basis	for	the	
chapters	in	this	book	and	are	summarized	here	to	introduce	them	in	concept.

1.5.1	 range	extraPolation

In	 range	 extrapolations,	 responses	 for	 the	 same	 endpoint	 are	 inferred	 outside	 the	
range	of	 the	data	 from	which	 the	model	was	derived.	These	 are	most	 commonly	
used	to	calculate	low-effect	concentrations	such	as	the	LC10,	LC25,	or	“benchmark	
effect”	doses	or	concentrations	 from	the	dose–response	 line	 (SETAC	1994),	or	 in	
the	case	of	human	health	protection	to	estimate	low-risk	exposures	such	as	the	10–6	
risk	 of	 tumor	 production	 (USEPA	 1995a;	 see	 Figure	1.4).	 In	 the	 context	 of	 acute	
responses,	the	model	used	for	extrapolation	(the	log	dose–probit	effect;	Finney	1971)	
is	well	tested	and	widely	used.	However,	the	possibility	of	stimulatory	or	hormetic	
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table	�.�
summary	of	types	of	extrapolation	used	in	ecological	risk	assessment

type explanation Influenced	by

range	extrapolation

Extrapolation	
beyond	the	
observed	data

Responses	are	inferred	or	
estimated	outside	the	range	of	
the	observed	data	from	which	
the	relationship	was	derived.	An	
example	is	the	estimation	of	
concentrations	causing	effects	
below	those	observed	at	the	
lowest	response	concentration	
used	in	a	bioassay.

What	most	influences	this	is	the	model	chosen	
to	describe	the	relationship	and	the	model	
for	the	extrapolation.	Biological	thresholds	
and	low-exposure	hormesis	may	affect	the	
outcome	of	the	extrapolation.

matrix	and	media	extrapolation

Extrapolation	
between	media

Responses	in	one	medium	are	
inferred	from	those	observed	
in	another,	such	as	between	
fresh-	and	saltwater,	sediments	
of	different	organic	matter	
composition,	and	waters	of	
different	hardness.

Most	commonly	influenced	by	chemical	and	
physical	interactions	between	the	toxicant	
and	components	of	the	medium.	
Complexation	of	metals	or	binding	of	organic	
substances	can	influence	exposure	of	the	
organism.	Can	also	be	mediated	by	
interactions	between	the	matrix	and	the	
physiology	and	biochemistry	of	the	organism,	
such	as	in	competition	for	transport	sites.

extrapolation	of	exposure	regimens

Extrapolation	
between	exposure	
regimes

Responses	to	chronic	exposures	
are	inferred	from	those	
observed	in	acute	exposures,	
pulsed	from	continuous	
exposures,	or	from	one	route	
of	exposure	from	another,	such	
as	oral	versus	matrix	or	dermal	
versus	oral.

Time	of	exposure,	pharmacokinetics,	and	
physiological	and	biochemical	processes	
are	the	primary	determinants	of	differences	
in	body	burden,	target	tissue	concentration,	
and	responses	to	different	exposure	
regimens.	Another	important	issue	is	the	
nature	of	the	endpoint.	This	is	usually	
different	for	acute	and	chronic	testing.	In	
this	extrapolation,	an	assumption	is	made	
that	potency	under	one	condition	of	
exposure	is	proportional	to	that	under	the	
other	condition.

data	extrapolation

Extrapolation	of	
toxicity	from	basic	
physical	and	
chemical	properties	
([Q]SAR)

Prediction	of	toxicity	from	
knowledge	of	the	properties	of	
substances	such	as	the	octanol-
water	partition	coefficient	(KOW)	
that	determine	toxicity	through	
basic	mechanisms	such	as	
narcosis.

The	presence	of	specific	receptor-mediated	
mechanisms	such	as	are	common	in	
pesticides.	Amount	of	data	available	for	
training	sets.
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table	�.�	(ContInued)
summary	of	types	of	extrapolation	used	in	ecological	risk	assessment

type explanation Influenced	by

data	extrapolation

Extrapolation	across	
age	and/or	
developmental	
stage

Responses	in	one	life	stage	are	
inferred	from	those	in	another,	
such	as	from	juvenile	to	adult,	
or	vice	versa,	or	from	one	sex	
to	another.	This	extrapolation	
is	often	subsumed	by	the	use	
of	the	effect	data	for	the	most	
sensitive	life	stage.

Cyclical	activity	such	as	reproduction	and	
molting	may	make	organisms	more	sensitive	
at	certain	times	of	the	year	or	life	cycle	than	at	
others.	This	variation	may	be	restricted	to	
classes	of	substances	such	as	endocrine	
modulators	or	developmental	toxins.	The	
assumption	that	juvenile	stages	are	more	
sensitive	is	not	always	true	because	of	
differences	in	pharmacokinetics	and	the	staged	
development	of	receptors	during	development.

Extrapolation	
between	species

Response	in	one	species	is	
inferred	from	that	in	another.	
This	extrapolation	is	often	
subsumed	through	the	use	of	
effect	data	from	the	most	
sensitive	surrogate	organisms	
used	in	laboratory	studies	to	
those	organisms	that	occur	in	
the	environment.	The	use	of	
species	sensitivity	distributions	
(SSDs)	derived	from	LC50s	
may	be	used	to	extrapolate	to	
LC50s	for	untested	organisms.

Influenced	by	uncertainty	factors	that	vary	
according	to	the	measures	of	effect	and	the	
value	of	the	organisms	being	protected.	The	
use	of	uncertainty	factors	is	generally	
believed	to	be	protective	because	of	
uncertainty	factors	and	the	maximal	
exposures	that	occur	in	most	laboratory	tests	
add	additional	conservation.

Extrapolation	
between	levels	of	
organization

Responses	in	one	system	are	
inferred	from	those	in	other	
systems.	Examples	include	
extrapolation	from	
bioindicators	at	the	cellular	or	
physiological	level	to	
organisms,	from	organisms	to	
populations,	and	from	
populations	to	ecosystems.

Requires	the	use	of	well-calibrated,	specific,	
and	consistent	bioindicators	when	
extrapolating	from	biochemical	or	
physiological	responses	to	the	organism.	
Extrapolation	from	the	organism	to	the	
population	is	usually	by	way	of	models	or	
empirical	data.	These	may	be	affected	by	
uncontrolled	or	unknown	environmental	
factors	or	by	incorrect	parameterization.

Extrapolation	from	
species	to	
communities

Responses	in	communities	are	
inferred	from	responses	in	tests	
conducted	with	several	to	many	
species,	such	as	in	the	use	of	
SSDs	of	effect	measures,	such	as	
no-observed-effect	
concentrations	(NOECs)	to	
extrapolate	from	laboratory	data	
to	communities.

Size	of	the	data	set	and	types	of	organisms	
tested	can	influence	the	representativeness	
of	the	laboratory	data	and	the	model	used	
to	characterize	the	data.	Incorrect	
combinations	of	species	may	confound	
extrapolation	of	stressors	with	specificity	
of	action	such	as	pesticides.

	
(Continued)
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table	�.�	(ContInued)
summary	of	types	of	extrapolation	used	in	ecological	risk	assessment

type explanation Influenced	by

data	extrapolation

Intersubstance	
extrapolations

Responses	to	one	substance	are	
inferred	from	responses	
measured	in	another,	such	as	
extrapolations	from	one	
substance	to	another	of	the	same	
mechanism	of	action	through	the	
use	of	laboratory	data	(potency)	
and/or	field	observation	data.

Available	data	from	field	and/or	laboratory	
studies	must	be	sufficient	to	reduce	
uncertainty.	Most	applicable	to	well-
studied	substances	with	a	similar	toxic	
mode	of	action.

Temporal	
extrapolations

The	temporal	variation	in	
response	of	a	population	or	
community	is	inferred	from	
knowledge	of	differences	in	
sensitivities	and	the	ability	of	
populations	and	communities	
to	adapt	to	or	recover	from	the	
stress.

Differences	in	sensitivity	resulting	from	
seasonal	differences	in	physiology	or	
biology	or	in	different	stages	of	
development	of	the	organism.	Resilience	
of	the	organisms,	populations,	or	function	
toward	stress	and	the	recovery	potential	of	
the	organisms	or	function	in	relation	to	
reproductive	potential	and	life-cycle	
characteristics.

Spatial	
extrapolations

The	effects	of	a	particular	
stressor	are	inferred	to	different	
sizes	and	types	of	systems	in	
one	region	from	knowledge	of	
effects	in	another	region.

Spatial	variability,	temporal	variability,	
biological	variability,	the	presence	of	
gradients,	and	multiple	stressors.	Spatial	
and	temporal	extrapolations	are	at	the	
highest	tier	of	extrapolation	and	build	upon	
the	other	methods	of	extrapolation.
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FIgure	�.�	 Illustration	of	range	extrapolation	from	laboratory	animal	data	(left)	to	poten-
tial	responses	in	humans	(right)	and	the	influence	of	the	extrapolation	model	on	the	choice	of	
the	virtual	safe	dose.
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effects	 (Calabrese	 and	 Baldwin	 2001)	 at	 small	 exposures	 and	 of	 nonlinearity	 or	
thresholds	in	the	response	must	be	considered.

Thresholds	of	biological	response	are	also	important	to	consider,	especially	where	
the	substance	occurs	naturally	and	background	concentrations	are	present	in	the	matrix.	
The	choice	of	the	extrapolation	model	is	also	relevant,	as	is	illustrated	in	human	health	
risk	assessments	(Figure	1.4).	Here	the	most	conservative	mathematical	model	is	the	mul-
tistage	model,	whereas	the	probit	model	gives	the	least	conservative	estimate	of	low-risk	
exposures.	None	of	these	models	consider	threshold	responses.	Thresholds	of	effect	can	be	
observed	in	many	toxicity	studies;	however,	it	could	be	argued	that	they	are	only	apparent	
because	of	lack	of	statistical	power	(e.g.,	number	of	observations)	to	detect	subtle	effects	
(Hanson	et	al.	2003a).	Where	mechanisms	of	action	are	known	and	these	can	be	shown	to	
act	through	processes	that	have	demonstrable	thresholds,	this	has	been	considered	in	the	
extrapolation	process.	An	example	of	this	is	the	carcinogenicity	of	saccharin	in	the	blad-
ders	of	male	rats.	The	mechanism	is	through	the	formation	of	tissue-irritating	saccharin	
crystals	in	the	bladder,	a	phenomenon	that	only	occurs	at	doses	that	are	great	enough	to	
result	in	the	formation	of	precipitates	in	the	bladder.	Hence	there	is	essentially	zero	risk	at	
exposures	below	those	that	result	in	the	formation	of	precipitates,	a	thresholded	process	
itself	(Cohen	et	al.	1995).

An	approach	to	estimating	thresholds	of	effect	for	multiple	endpoints	within	a	spe-
cies	has	been	proposed	in	which	distributions	of	effect	measures	from	different	assay	
endpoints	in	a	species	can	be	used	to	extrapolate	to	a	no-effect	measure	for	all	possible	
endpoints	(Hanson	and	Solomon	2002).	In	practice,	a	distribution	of	effect	measures	is	
constructed	and	extrapolated	to	a	low	probability	(Figure	1.5).	This	value	is	used	as	an	
estimate	of	the	toxicological	benchmark	concentration	(TBC),	below	which	no	effect	
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FIgure	�.�	 Illustration	of	the	method	for	determining	a	toxicological	benchmark	concen-
tration	(TBC).	Note:	A	distribution	of	endpoints	for	a	species	is	used	to	extrapolate	to	a	TBC,	
below	which	the	likelihood	of	unmeasured	responses	being	observed	is	very	small.
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at	 the	 response	 level	used	 (EC50,	EC10,	etc.)	would	be	expected,	 regardless	of	 the	
endpoint.	This	approach	is	similar	to	that	used	in	developing	a	threshold	of	regulation	
for	food	additives	(Rulis	1996;	Rulis	and	Tarantino	1996;	Munro	et	al.	1999)	and	has	
been	applied	to	effect	measures	for	dichloroacetic	acid	to	estimate	a	practical	threshold	
of	response	for	risk	assessment	purposes	(Hanson	et	al.	2003b).	Like	many	extrapola-
tion	methods,	this	approach	could	not	predict	responses	for	a	novel,	unsuspected,	and	
untested	effect.	Also,	many	assay	endpoints	such	as	length	and	weight	are	correlated,	
and	this	may	affect	the	characteristics	of	the	distribution.

1.5.2	 matrix	and	media	extraPolation

Extrapolations	between	different	media	are	based	on	physical	and	chemical	interac-
tions	between	components	of	the	matrix	and	the	toxic	substance	and	form	the	basis	
for	Chapter	2	in	this	book.	These	interactions	may	enhance	or	reduce	the	biologi-
cal	availability	of	the	substance,	thus	affecting	its	apparent	toxicity	because	of	the	
change	in	exposure	(Hamelink	et	al.	1994).	One	example	of	this	type	of	extrapolation	
is	the	relationship	between	the	toxicity	of	substances	in	fresh-	and	saltwater	environ-
ments	(Hall	and	Anderson	1995;	Leung	et	al.	2002;	De	Zwart	2002;	Wheeler	et	al.	
2002a).	 Euryhaline	 species	 are	 usually	 more	 tolerant	 at	 isosmotic	 salinities	 with	
increases	in	toxicity	at	lower	or	higher	salinity	(Hall	and	Anderson	1995).	Whether	
this	response	is	a	double-stressor	issue	or	is	due	to	interactions	that	change	bioavail-
ability	is	not	certain.	This	is	discussed	in	more	detail	in	Chapter	6.	Other	examples	
of	matrix	and	media	extrapolation	are	those	related	to	water	hardness,	the	presence	
of	organic	matter,	and	the	formation	of	insoluble	complexes	of	metals	in	sediments	
and	soils.	Responses	may	be	modified	by	a	number	of	other	abiotic	factors	relating	to	
the	test	conditions.	These	are	all	described	in	more	detail	in	Chapter	2.

1.5.3	 extraPolation	with	mixtureS

Organisms	in	the	environment	are	seldom	exposed	to	single	stressors;	however,	with	
the	exception	of	whole-effluent	testing,	most	regulation	is	based	on	single	substances.	
Extrapolation	of	mixture	 toxicity	 is	 discussed	 in	more	detail	 in	Chapter	5	 and	 is	
made	more	complicated	as	the	temporal	scale	of	exposures	and	sensitivities	of	the	
receptor	organism	may	be	important	in	the	types	and	intensities	of	responses	seen.	
For	example,	exposures	may	be	coincidental,	continuous,	pulsed,	successive,	or	any	
combination	of	these.	If	the	interactive	mechanism	requires	that	the	components	of	
the	mixture	be	present	in	the	body	of	the	organism	(or	matrix	of	the	community)	at	
the	same	time,	the	probability	of	an	interaction	occurring	will	be	reduced.	However,	
where	the	exposure	is	continuous	(the	substances	are	persistent	or	are	continuously	
present	in	the	matrix)	or	the	effect	is	only	slowly	reversible	(e.g.,	the	inhibition	of	
an	 enzyme	 with	 a	 long	 recovery	 half-life),	 the	 probability	 of	 interactions	 will	 be	
increased.	In	the	same	vein,	responses	in	the	receptor	organism	may	vary.	Sensitivity	
may	be	continuous	or	vary	diurnally,	seasonally,	with	the	stage	in	the	life	cycle	or	
developmental	cycle,	and/or	between	sexes.	The	probability	of	interactive	responses	
will	be	smaller	when	exposures	are	to	nonpersistent	substances	than	when	exposure	
is	continuous	or	the	substance	is	persistent.
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Several	models	are	used	for	extrapolation	of	mixture	toxicity	(Chapter	5).	These	
include	 those	 of	 potency	 (concentration)	 additivity	 for	 substances	 with	 the	 same	
mode	of	action	(Lloyd	1961;	Sprague	and	Ramsay	1965;	Sprague	1970;	Sprague	and	
Logan	1979;	Bolt	and	Mumtaz	1996;	Könemann	and	Pieters	1996)	that	have	been	
applied	to	dioxins	in	mammals	(Calamari	and	Marchetti	1973;	Giesy	and	Graney	
1989;	Ahlborg	et	 al.	1994;	Safe	1998,	1990;	Birnbaum	1999),	dioxins	 in	fish	and	
(Parrott	et	al.	1995;	Tillitt	1999),	and	polycyclic	aromatic	hydrocarbons	(PAHs)	for	
environmental	effects	(Schwarz	et	al.	1995),	or	that	possess	carcinogenicity	(Collins		
et	al.	1998).	For	mixtures	of	substances	that	have	a	different	mode	of	action,	response	
or	effect	addition	is	an	option	(Klepper	and	van	de	Meent	1997),	requiring	estimation	
of	the	covariation	of	sensitivities	among	species	for	the	compounds	in	the	mixture.	
Because	no	threshold	exists	for	concentration–addition,	the	concept	can	be	applied	
to	small	environmental	exposure	levels.	This	is	important,	as	ecosystems	most	often	
experience	mixtures	of	chemicals	at	low	concentrations,	excluding	spills	and	other	
major	contamination	events	(see	Chapter	5).

Pharmacologically	 based	 pharmacokinetic	 (PBPK)	 models	 have	 also	 been	
incorporated	into	the	assessment	of	responses	to	mixtures	of	some	substances	where	
interactions	may	occur.	This	was	suggested	for	application	in	assessing	human	health	
risks	of	contaminants	in	drinking	water	(Krishnan	et	al.	1997)	on	the	basis	that	most	
interactions	between	organic	substances	occur	as	a	result	of	induction	or	inhibition	
of	metabolism.	This	has	been	applied	in	predicting	the	maximal	likely	interaction	in	
mixtures	of	chlorinated	and	nonchlorinated	hydrocarbons	(Haddad	et	al.	2000)	and	
aromatic	petroleum	hydrocarbons	(Haddad	et	al.	1999).	Metabolic	and	other	data	are	
required	for	PBPK	models,	and,	as	these	may	only	be	available	for	a	few	organisms	
in	the	environment,	they	are	not	yet	widely	used	for	extrapolation.

Responses	to	simple	mixtures	can	be	tested	in	physical	experiments,	but	this	
is	not	possible	for	complex	mixtures	with	a	large	number	of	components.	Experi-
ments	with	complex	mixtures	are	based	on	factorial	designs	where	responses	 to	
each	of	 the	 substances	 in	 a	mixture	 are	 studied	 at	 a	 range	of	 exposure	 concen-
trations.	Therefore,	 factorial	designs	 involve	many	different	combinations	and	a	
large	number	of	separate	toxicity	tests.	The	feasibility	of	factorial	designs	rapidly	
decreases	as	the	number	of	chemicals	increases,	because	there	is	a	requirement	for	
more	combinations	of	exposures,	 thus	 increasing	 the	assumption	 that	 the	model	
fits	all	the	response	data.	For	example,	a	study	involving	3	chemicals	tested	each	at		
5	levels	results	in	a	53	factorial	design	requiring	125	total	treatment	groups.	This	is	
clearly	impractical	if	each	treatment	group	were	to	be	evaluated	even	once,	let	alone	
replicated.	Box	et	al.	(1978)	introduced	the	fractional	factorial	design	to	overcome	
limitations	with	the	factorial	design	methods.	Fractional	factorial	designs	identify	
most	of	the	interactions	occurring	between	the	compounds	and	determine	which	
compounds	in	the	mixture	cause	the	effects,	yet	maintain	a	manageable	number	of	
test	groups.	Examples	of	fractional	factorial	designs	can	be	found	in	the	literature	
(Box	et	al.	1978;	Groten	et	al.	1996,	1997).	Approaches	that	use	combinations	of	
upper	 centiles	 of	 exposure	 concentrations	 in	 laboratory	 or	 field	 experiments	 as	
physical	models	to	characterize	mixture	extrapolation	may	be	helpful	in	determin-
ing	thresholds	of	response	for	mixtures.
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1.5.4	 extraPolation	oF	exPoSure	regimeS

Extrapolation	used	to	infer	toxicity	from	one	type	of	exposure	regimen	to	another	
is	often	termed	“temporal	extrapolation.”	The	most	common	of	these	extrapolations	
is	 that	from	acute	to	chronic	exposures,	but	 the	issue	of	pulsed	versus	continuous	
exposure	is	also	important	in	assessing	possible	effects	in	real-world	environmental	
settings.	These	extrapolations	may	involve	the	use	of	modified	tests	with	standard	
species	or	whole-model	ecosystems	to	simulate	realistic	exposures	such	as	those	of	
variable	duration	or	those	of	pulsed	exposure	for	compounds	that	rapidly	dissipate	
in	the	environment.	In	many	cases,	these	involve	alterations	in	exposure	route	and	
intensity,	both	of	which	can	have	significant	impacts	on	the	toxic	responses.	Extrapo-
lation	from	acute	responses	to	NOECs	or	chronic	responses	is	particularly	important	
as	chronic	tests	are	more	costly	and	time-consuming	than	acute	tests.	Methods	for	
accurate	and	precise	acute-to-chronic	extrapolations	have	been	developed	and	are	
available	as	computer	programs	such	as	ACE	(Mayer	et	al.	1999,	2001;	De	Zwart	
2002;	Ellersieck	et	al.	2003)	and	are	discussed	in	Chapter	6.

1.5.5	 eCologiCal	data	extraPolationS

In	their	simplest	form,	these	are	extrapolations	between	and	among	different	taxa	
and	 life	 stages.	The	 standard	 single-species	 (standard	protocol)	 tests	 are	physical	
models	 that	can	be	applied	to	other	species	with	the	use	of	uncertainty	factors	or	
assumptions	 based	 on	 the	 test	 organism	 being	 the	 most	 sensitive	 species.	 These	
extrapolations	are	usually	conducted	through	the	use	of	simple	uncertainty	factors.	
Several	levels	of	refinement	are	possible	above	this	initial	level.

�.�.�.�	 Quantitative	structure-activity	relationships	([Q]sars)

More	than	95%	of	all	existing	chemicals	lack	the	most	basic	acute	toxicity	data	for	
representative	ecotoxicological	species.	This	lack	of	knowledge	has	drawn	attention	
to	the	need	to	develop	more	pragmatic	approaches	for	estimating	toxicity	data	from	
chemical	and	physical	parameters	of	substances.	Estimation	of	toxicity	on	the	basis	of	
(quantitative)	structure-activity	relationships	([Q]SARs)	for	a	number	of	representa-
tive	species	has	been	suggested	as	an	initial	alternative	to	bioassays,	especially	if	the	
mode	or	modes	of	action	of	the	compounds	are	known	(van	Leeuwen	et	al.	1991).

Baseline	toxicity	(narcosis)	is	the	basis	for	most	(Q)SARs	because	it	is	the	mini-
mal	 toxicity	of	any	given	substance	 (Lipnick	1993).	The	basic	cellular	structures,	
functions,	and	membranes	are	highly	conserved	and	similar	 in	all	biological	 sys-
tems.	Therefore,	substances	that	target	these	systems	in	the	cell	are	likely	to	display	
similar	potency	in	all	living	systems.	Narcosis	is	believed	to	be	a	result	of	a	nonspe-
cific	disturbance	of	membrane	integrity	and	function	as	a	result	of	the	partitioning	
of	xenobiotics	into	biological	membranes.	In	narcosis,	variation	in	expressed	toxicity	
is	controlled	primarily	by	partitioning	behavior	(i.e.,	the	toxicokinetic	processes	that	
control	the	rate	of	accumulation	and	concentration	in	the	membrane).	For	example,	
in	toxicity	tests	with	fish,	this	hydrophobic	influence	can	produce	LC50	estimates	
that	vary	by	as	much	as	6	orders	of	magnitude,	whereas	the	molar	concentration	in	
affected	organisms	is	the	same	(McCarty	et	al.	1992).
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Most	of	 the	ecotoxicological	 (Q)SAR	models	are	based	on	 the	 identification	of	
substructures	of	the	molecule,	the	degree	to	which	they	contribute	to	the	physical	prop-
erties	of	the	molecule,	and	how	they	may	contribute	to	the	observed	activity.	Depend-
ing	on	the	sophistication,	the	model	will	initially	attempt	to	identify	possible	linear	
relationships	between	the	octanol–water	partition	coefficient	(KOW)	and	observed	tox-
icity,	when	the	toxicity	of	an	active	compound	can	be	explained	by	its	 lipophilicity	
(narcosis	effect).	(Q)SAR	models	for	narcosis	toxicity	based	on	KOW	are	available	for	
many	endpoints	and	species,	have	been	applied	to	preliminary	screening	of	substances	
for	which	no	data	are	available,	and	are	discussed	in	more	detail	in	Chapter	3.

�.�.�.�	 extrapolation	across	age	and	developmental	stage

Most	organisms	 show	differences	 in	 response	 to	 substances	 as	 they	pass	 through	
varying	stages	of	sensitivity.	Commonly,	younger	organisms	are	more	sensitive	than	
older	 organisms	 because	 they	 have	 a	 greater	 surface	 area–volume	 ratio,	 allowing	
the	substance	to	bioconcentrate	or	equilibrate	more	rapidly;	they	may	have	reduced	
detoxification	potential;	or	they	are	in	the	process	of	growth	and	development,	where	
chemical	signaling	is	important.	However,	this	is	not	always	the	case.	Amphibians	
are	often	more	sensitive	 to	chemical	stressors	 later	 in	development.	Extrapolation	
across	age	and	stage	is	discussed	in	more	detail	in	Chapter	6.

�.�.�.�	 extrapolation	between	levels	of	biological	organization

Extrapolating	between	biological	scales,	such	as	from	physiological	and	biochemical	
responses	in	single	organisms	(bioindicators;	Huggett	et	al.	1992)	to	responses	at	the	
scale	of	populations	and	communities,	involves	consideration	of	both	temporal	and	
spatial	issues.	This	is	a	source	of	uncertainty	as	well	as	misinterpretation,	such	as	
when	a	physiological	or	biochemical	adaptation	to	low	exposures	is	confused	with	
adverse	effects.	Some	bioindicators	such	as	mixed-function	oxidase	(MFO)	activity	
may	be	good	indicators	of	exposure	but	not	necessarily	good	predictors	of	adverse	
effects	(Munkittrick	et	al.	1992).	A	short-term	biomarker	based	on	the	relationship	
between	oxygen	consumption	and	energy	stored	in	glycogen,	protein,	and	lipid	—	
cellular	 energy	 allocation	 (CEA)	 —	 has	 been	 shown	 to	 correlate	 well	 with	 long-
term	 endpoints	 such	 as	 the	 21-day	 lowest-observed-adverse-effect	 concentrations	
(LOAEC)	and	population-level	 effects	 in	Daphnia magna	 (De	Coen	and	 Janssen	
2003).	Other	biomarkers,	such	as	inhibition	of	acetylcholinesterase	(AChE),	can	be	
useful	diagnostic	indicators	of	both	exposure	and	effects	(death)	in,	for	example,	fish,	
where	brain	AChE	activity	is	a	sensitive	biomarker	and	the	correlation	between	brain	
AChE	activity	and	mortality	is	considered	to	be	a	valuable	diagnostic	tool	(Murty	
1986).	AChE	has	similar	usefulness	as	a	biomarker	in	birds	(Mineau	1991).	The	use	
of	bioindicators	in	extrapolation	is	discussed	in	more	detail	in	Chapter	4.

The	extrapolation	of	laboratory	single-species	responses	to	the	population	level	
is	 another	 ecologically	 relevant	 extrapolation	 that	 is	 routinely	 conducted	 without	
extensive	confirmation	of	its	appropriateness.	Actual	population	studies	in	the	envi-
ronment	and	their	interpretation	through	life	tables	and	other	approaches	are	alterna-
tives,	but	these	are	resource-	and	time-intensive	and	not	feasible	for	all	organisms.	
However,	 population	 models	 also	 may	 be	 useful	 in	 this	 context.	 Organisms	 have	
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evolved	several	types	of	life	histories	and	may	be	“r”	(producing	large	numbers	of	
young	with	little	parental	care)	or	“k”	(fewer	young	and	more	parental	care)	repro-
ductive	 strategists	 (Stearns	 1992).	 As	 a	 result,	 one	 species	 or	 class	 of	 organisms	
may	be	more	or	less	able	to	recover	rapidly	from	population	reductions,	and	these	
recoveries	may	be	dependent	on	the	life-cycle	stage	affected.	Knowledge	of	these	
can	be	used	to	identify	species-	and	stage-specific	sensitivity	to	extinction,	such	as	
has	been	done	in	frogs	(Biek	et	al.	2002).	Use	of	population	models	in	extrapolation	
is	discussed	in	more	detail	in	Chapter	4.

Current	procedures	of	higher	tier	risk	assessment	are	often	based	on	the	extrapo-
lation	of	responses	observed	in	relatively	simple	and	short-term	(weeks)	cosm	tests	to	
structurally	more	complex	ecosystems	in	the	field.	The	predictive	value	of	studies	in	
small	cosms	(microcosms),	however,	depends	on	factors	such	as	fate	and	exposure	of	
the	stressor	and	the	sensitivity	and	recovery	potential	of	the	populations	present.	The	
role	of	cosm	studies	in	extrapolation	is	discussed	in	more	detail	in	Chapter	4.

�.�.�.�	 extrapolation	from	one	substance	to	another	
with	a	similar	mode	of	action

It	is	appropriate	to	assume	that	chemicals	with	a	similar	toxic	mode	of	action	have	a	
more	or	less	similar	impact	on	the	same	type	of	ecosystem,	at	least	when	evaluating	
similar	exposure	regimes	on	the	basis	of	toxic	units.	Evidence	for	this	is	provided	by	
review	papers	that	evaluated	the	impact	of,	for	example,	photosynthesis-inhibiting	
	herbicides	and	organophosphorus	insecticides	in	semifield	tests	(Brock	et	al.	2000a,	
2000b).	When	this	assumption	is	generally	true,	the	existing	data	sets	of	higher	tier	
tests	with	chemicals	may	be	used	to	assess	 the	potential	ecological	risks	of	unas-
sessed	chemicals,	at	least	when	a	basic	ecotoxicological	data	set	of	the	substance	is	
available	(e.g.,	toxicity	tests	with	standard	species).	In	a	statistical	analysis	of	single-
species	aquatic	toxicity	data,	De	Zwart	(2002)	also	identified	regularities	that	enable	
the	 prediction	 of	 ecotoxicological	 effects	 for	 substances	 with	 common	 modes	 of	
action.	For	pesticides,	the	expert-based	model	PERPEST	has	been	developed	(van	
den	Brink	et	al.	2002c).	PERPEST	is	an	effect	model	that	predicts	the	effects	of	a	
certain	pesticide	on	various	community	endpoints	from	empirical	data.	The	model	is	
based	on	literature	review	(Brock	et	al.	2000a,	2000b)	of	freshwater	model	ecosys-
tem	studies	with	insecticides	and	herbicides	performed	to	assess	the	NOECecosystem	
or	NOECcommunity	 for	 individual	 compounds	 and	 to	 evaluate	 the	 ecological	 conse-
quences	of	exceeding	these	standards	(see	Section	1.4.2.2	and	Chapter	4	for	more	
details	of	the	effect	categories	used	to	derive	these	NOECs).	Based	on	the	relevant	
properties	of	the	compound,	concentration,	and	type	of	ecosystem	to	be	evaluated,	
PERPEST	searches	for	analogous	situations	in	the	database	and	calculates	a	predic-
tion	using	weighted	averaging	of	the	effects	reported	in	the	most	relevant	literature	
references.	PERPEST	results	in	a	prediction	showing	the	probability	of	effects	on	the	
various	groups	(van	den	Brink	et	al.	2002c).

1.5.6	 temPoral	and	SPatial	extraPolationS

Both	temporal	and	spatial	extrapolations	are	important	in	ecotoxicology	when	it	is	nec-
essary	to	consider	variation	in	sensitivity	of	individuals	during	stages	of	development,		
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or	periods	of	greater	sensitivity	during	specific	life-cycle	stages,	such	as	reproduc-
tion	(Tillitt	et	al.	1998;	International	Programme	on	Chemical	Safety	[IPCS]	2002).	
Synchronous	activities	like	reproduction	or	metamorphosis,	such	as	in	frogs	and	the	
larval	and	pupal	stages	of	aquatic	insects,	present	particular	problems	in	temporal	
extrapolation	as	organisms	pass	through	varying	stages	of	sensitivity.	For	stressors	
that	act	on	metamorphosis	and	reproduction	and	“are	pulsed	or	present	only	sporadi-
cally”	in	the	environment,	extrapolation	is	difficult	without	specific	data	on	timing	
of	the	sensitive	stage	and	the	exposures.	Similar	needs	apply	to	the	seasonal	and	suc-
cessional	variation	in	the	sensitivity	of	communities	to	stressors,	particularly	in	tem-
perate	regions	where	seasonal	fluctuations	in	climate	are	large	and	where	dormant	
stages	of	organisms	may	be	more	resistant	to	stressors	occurring	in	winter.

Adaptation	to	chemical	stress	may	occur	by	2	major	mechanisms.	Within	genera-
tions,	organisms	may	adapt	to	stressors	through	the	induction	of	repair	mechanisms	
or	processes	 that	 result	 in	 the	detoxification	of	 the	stressor	or	 its	 sequestration	 into	
less	harmful	products.	This	is	variously	characterized	as	resiliency	or	induced	toler-
ance.	Examples	in	animals	include	the	induction	of		mixed	function	oxidase	(MFO)	
enzymes	responsible	for	detoxification	of	organic	substances	(Munkittrick	et	al.	1992;	
Hodson	et	al.	1997)	as	well	as	the	induction	of	metallothionine	proteins	in	plants	and	
animals	in	response	to	exposure	to	metals	(Hickey	et	al.	1995a).	Adaptation	between	
generations	may	result	in	the	selection	of	more	tolerant	individuals.	This	phenomenon	
has	significant	implications	for	the	use	of	pesticides	where	many	species	of	plants	and	
animals	have	evolved	resistance	to	these	substances	to	the	point	that	they	can	no	longer	
be	controlled.	These	forms	of	adaptation	are	discussed	in	more	detail	in	Chapter	6.

Recovery	 from	 the	 effects	 of	 chemical	 stressors	 is	 a	 common	 occurrence	
because,	over	time,	substances	dissipate	from	the	exposed	environment.	In	cases	of	
slow	dissipation,	 recovery	may	 take	considerable	 time;	 thus,	 recovery	depends	on	
the	nature	of	the	stressor	as	well	as	the	sources	of	colonizing	organisms	and	habitat-
conditioning	species	(Ellis	1989).	In	some	cases,	recovery	may	not	be	to	the	previous	
condition	but	to	a	different	norm	or	stable	state	(Scheffer	et	al.	2003).	For	biological	
stressors	such	as	introduced	or	“alien”	species	(excluded	from	this	book,	but	of	great	
ecological	significance),	recovery	to	the	original	state	of	the	ecosystem	is	less	likely	
to	occur	than	recovery	to	a	new	norm	(Andersen	et	al.	2004).	The	implications	of	
recovery	in	the	extrapolation	of	ecological	effects	of	stressors	are	discussed	in	more	
detail	in	Chapter	6.

Spatial	 extrapolations	 are	 particularly	 important	 in	 multiregional	 and	 global	
issues	 in	 ecotoxicology.	 Increasingly,	 harmonization	 of	 national	 regulatory	 stan-
dards	 is	occurring	 in	 the	European	Union	 (EU);	 the	North	American	Free	Trade	
Agreement	 (NAFTA);	 the	 Australian	 and	 New	 Zealand	 Environment	 Conservation	
Council	(ANZECC);	the	Agriculture	and	Resource	Management	Council	of	Australia		
and	 New	 Zealand	 (ARMCANZ);	 and	 international	 agencies	 such	 as	 the	 World	
Health	Organization	 (WHO),	 the	Food	and	Agricultural	Organization	 (FAO),	 the	
OECD,	and	 the	European	Water	Framework	Directive.	With	 this	globalization,	 it	
has	become	increasingly	important	to	extrapolate	toxicity	data	across	large	spatial	
distances,	most	importantly	from	one	climatic	zone	to	others.	As	will	be	discussed	in	
Chapter	7,	once	the	matrix	effects	are	considered,	such	extrapolations	are	relatively	
uncomplicated.	Extrapolations	from	one	ecosystem	to	another	across	landscapes	or	
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from	one	watershed	to	another	are	more	complex	because	of	spatial	and	temporal	
heterogeneity	in	the	distribution	of	both	the	stressor	and	the	more	susceptible	organ-
isms.	These	extrapolations	are	also	influenced	by	the	presence	of	other	stressors,	be	
these	 toxicological	 (mixtures;	 see	Chapter	5),	 biological,	 or	 the	 result	 of	physical	
changes	to	habitat	that	result	in	habitat	fragmentation.

�.�	 regulatory	baCkground

The	regulatory	background	to	extrapolation	follows	a	hierarchy	that	is	dependent	on	
the	amount	of	data	available.	In	general,	extrapolations	in	low-data	situations	make	
use	of	simple	uncertainty	factors	that	are	believed	to	be	conservative.	As	the	amount	
of	data	increases,	uncertainty	factors	may	be	reduced	or	replaced	by	data-derived	
statistical	measures	of	uncertainty.	This	hierarchy	is	illustrated	in	the	approaches	to	
extrapolation	for	different	substances	and	situations.

1.6.1	 Criteria	Setting	and	PrediCtive	riSk	aSSeSSment

�.�.�.�	 generic	Chemicals

A	large	number	of	organic	and	inorganic	substances	are	used	in	commerce	in	all	indus-
trialized	countries.	In	general,	we	know	very	little	of	their	ecotoxicology	and	even	their	
human	health	significance	outside	the	workplace.	This	has	been	recognized	in	a	num-
ber	of	regulatory	instruments	such	as	the	Toxic	Substances	Control	Act	(TSCA)	in	the	
United	States,	the	Canadian	Environmental	Protection	Act	(CEPA),	and	the	REACH	
program	in	Europe	(see	Chapter	3).	There	is	currently	significant	effort	to	assemble	
basic	Tier-1	risk	assessment	data	for	many	of	these	substances.	In	Canada,	this	activity	
falls	under	CEPA,	and	the	screening	process	to	characterize	some	23		000	substances	
for	the	Priority	Substances	List	(PSL)	has	recently	been	completed.	Because	the	effect	
data	for	generic	chemicals	are	generally	derived	from	limited	data	sets	or	from	(Q)SAR	
models,	extrapolation	is	usually	from	HQs	using	UFs	(Table	1.1).	Substances	that	trig-
ger	concerns	in	this	Tier-1	screening	are	subjected	to	a	more	detailed	risk	assessment,	
which	may	require	more	data	to	be	supplied.

�.�.�.�	 Pesticides

Pesticides	were	the	first	substances	to	be	subjected	to	environmental	risk	assessment	
for	regulatory	purposes.	Their	use	and	availability	require	that	they	must	be	regis-
tered	under	regulatory	instruments	such	as	the	Federal	Insecticide,	Fungicide,	and	
Rodenticide	Control	Act	(FIFRA)	in	the	United	States;	the	Pest	Control	Products	Act	
(PCP	Act)	in	Canada;	Council	Directive	91/414	in	Europe;	and	similar	instruments	
in	many	other	jurisdictions.	Registration	requires	that	pesticides	are	subjected	to	risk	
assessment,	which	requires	minimal	data	sets	for	environmental	properties.	These	
data	include	toxicity	to	nontarget	aquatic	and	terrestrial	organisms	as	well	as	infor-
mation	on	fate	characteristics	and	environmental	concentrations.	Extrapolations	are	
used	for	both	toxicity	data	and	environmental	fate	data.	Risk	assessments	for	pesti-
cides	are	tiered	and	different	types	of	extrapolations	are	used.	Tier-1	normally	uses	
hazard	quotients	for	the	most	sensitive	species,	with	UFs	to	extrapolate	to	nontarget	
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species	in	the	environment.	More	refined	levels	of	risk	assessment	may	make	use	of	
smaller	UFs	where	more	data	are	available	(Table	1.1)	or	use	probabilistic	methods	
for	extrapolation	of	effects	data	(ECOFRAM	1999;	Hart	2001).

Extrapolations	to	predict	environmental	concentrations	are	also	used	in	pesticide	
risk	 assessment.	 There	 are	 several	 processes	 where	 extrapolation	 models	 are	 used,	
which	may	 involve	 simple	or	very	 complex	 calculations.	These	 are	 spray	drift	 and	
estimations	of	concentrations	in	water,	soil,	and	food	items.	For	spray	drift,	computer	
models	 such	 as	AgDrift	 (Teske	 and	Scott	 2000)	 are	used	 in	 the	United	States	 and	
other	jurisdictions,	but	tables	based	on	empirical	measurements	such	as	the	BBA	drift	
tables	 (Ganzelmeier	 et	 al.	 1995;	 Commission	 of	 the	 European	 Communities	 2000)	
are	also	used.	The	drift	tables	are	probabilistically	derived	and	make	use	of	the	95th	
centile	from	measured	data	to	extrapolate	to	a	reasonable	worst-case	deposition	value.	
Concentrations	in	water	may	be	estimated	from	simple	extrapolations	related	to	depo-
sition	and	depth	of	 the	water,	although	 the	assumptions	of	depth	vary	from	2	m	in	
the	United	States	(SETAC	1994)	through	30	cm	in	Europe	(Riley	1993)	to	15	cm	in	
a	Canadian	forest	pool	or	wetland.	More	realistic	scenarios	have	recently	been	devel-
oped	for	extrapolating	to	various	pesticide	use	patterns	for	pesticides.	For	example,	
in	the	EU,	several	scenarios	have	been	developed	to	estimate	exposures	to	pesticides	
from	drift	and	runoff	(FOCUS	2001;	Linders	et	al.	2002).	Models	that	estimate	inputs	
by	integrating	drift,	runoff,	and	leaching,	such	as	the	GENEEC	model,	may	provide	
single	deterministic	concentrations	for	use	in	lower	tier	assessments	(Parker	1999),	or	
models	such	as	the	MUSCRAT	model	provide	large	probabilistic	data	sets	that	allow	
extrapolations	based	on	many	years	of	rainfall,	environmental,	and	physicochemical	
data	(ECOFRAM	1999).

1.6.2	 retroSPeCtive	Site-SPeCiFiC	riSk	aSSeSSment

Site-specific	risk	assessments	are	directed	to	a	specific	question	at	a	specific	location	
and,	in	general,	make	less	use	of	extrapolation	of	effects	but	may	use	media	extrapo-
lations	 to	address	 some	of	 the	 site-specific	abiotic	 factors.	 In	 terms	of	exposures,	
measurements	are	usuelly	available	for	these	situations	and	the	types	of	organisms	
present	are	often	well	known,	thus	reducing	the	need	to	extrapolate	to	responses	in	
unknown	species.	In	addition,	biomarkers	of	exposures	and/or	effects	may	be	used	
to	reduce	the	need	for	extrapolations	over	great	taxonomic	distances.	Examples	of	
site-specific	assessments	include	studies	on	large	reservoirs	(Jones	et	al.	1999;	Cook	
et	al.	1999;	Suter	et	al.	1999b),	the	use	of	environmental	effects	monitoring	(EEM)	
in	assessing	the	effects	of	pulp	mill	effluents	on	fish	in	receiving	waters	(Mayer	et	al.	
1988;	Munkittrick	et	al.	1994,	1998;	Parrott	et	al.	1999),	and	the	assessment	of	con-
taminated	soils	(Schouten	et	al.	2003)	and	sediments	(Chapman	1986,	1996,	2007;	
Grapentine	et	al.	2002;	Chapman	et	al.	2002).

�.�	 deFInItIons	and	CharaCterIzatIon	oF	unCertaInty

Uncertainty	is	inherent	in	all	sciences	and	in	all	measurements	(Popper	1979).	With-
out	uncertainty,	extrapolation	would	be	unnecessary.	Differences	in	types	and	levels	
of	uncertainty	have	a	significant	influence	on	extrapolation	and	on	all	risk	decisions	
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that	may	result	from	extrapolation.	Uncertainty	has	3	sources:	uncertainty	from	lack	
of	knowledge,	systematic	uncertainty,	and	stochastic	uncertainty.	These	sources	of	
uncertainty	apply	to	all	types	of	scientific	models,	whether	they	are	empirical,	math-
ematical,	or	conceptual.	The	aim	of	this	section	is	to	provide	a	common	framework	
for	understanding	the	types	of	uncertainties	discussed	in	the	other	chapters	of	this	
book.

1.7.1	 knowledge	unCertainty

Uncertainty	from	imperfect	knowledge	or	ignorance	of	things	that	could	be	known	
can	be	important	in	extrapolation,	especially	as	new	substances	or	processes	become	
widely	 used	 and	 adopted.	 Examples	 of	 this	 are	 the	 lack	 of	 prior	 knowledge	 that	
DDT	would	biomagnify	in	the	food	chain,	endocrine	disruption	as	a	mechanism	for	
ecological	responses,	and	how	to	consistently	extrapolate	from	an	LC50	to	a	popula-
tion-level	effect.	Uncertainty	from	lack	of	knowledge	can	never	be	addressed	to	the	
complete	satisfaction	of	everyone.	This	is	the	major	reason	for	strong	interest	in	the	
precautionary	principle.	However,	 the	more	data	 that	are	available,	 the	 less	 likely	
that	errors	from	lack	of	knowledge	will	occur.	Knowledge	uncertainty	is	 thus	the	
major	driver	for	the	collection	of	more	data;	however,	this	data	collection	is	for	more	
diverse	knowledge,	not	 that	associated	with	replication	to	characterize	variability.	
This	is	acknowledged	in	the	requirement	of	a	minimal	data	set	for	many	regulatory	
risk	assessments,	such	as	in	the	derivation	of	water	quality	criteria	(USEPA	1995b)	
and	the	reduction	in	uncertainty	factors	applied	to	a	hazard	quotient	when	more	tox-
icity	data	are	provided	(Table	1.1).

From	 a	 practical	 point	 of	 view,	 knowledge	 uncertainty	 in	 extrapolation	 is		
addressed	 in	 several	 ways.	 The	 collection	 of	 more	 data	 is	 the	 most	 common	
approach,	but	this	can	lead	to	a	never-ending	and	obsessive	search	for	all	of	the	
information,	resulting	in	the	waste	of	resources	and	the	commission	of	type	3	errors	—	
when	the	wrong	question	is	asked	but	is	answered	very	well	(Raiffa	1982).	Pragmatic	
approaches	to	reduce	knowledge	uncertainty	in	extrapolation	and	risk	assessment	have	
been	used.	These	usually	rely	on	using	deductive	reasoning	along	a	number	of	path-
ways,	such	as	the	guidelines	for	causality	developed	for	the	identification	of	causes	of	
disease	by	Robert	Koch	and	Austin	Bradford	Hill	and,	more	recently,	for	the	identifi-
cation	of	endocrine-disrupting	substances	(Koch	1942;	Hill	1965;	Bro-Rasmussen	and	
Lokke	1984;	Fox	1991;	Suter	et	al.	1993;	Ankley	et	al.	1997;	IPCS	2002)	and	the	use	
of	multiple	lines	of	evidence	in	extrapolating	from	laboratory	and	experimental	data	
to	the	ecosystem	in	ERA	(Hall	and	Giddings	2000;	Grapentine	et	al.	2002;	Schouten	
et	al.	2003).	Thus,	information	on	mechanisms	of	action	and	observations	from	other	
locations	or	from	analogous	stressors	may	be	used	deductively	to	support	extrapola-
tions	for	the	purposes	of	risk	assessment.

It	is	commonly	believed	that	knowledge	uncertainty	leads	to	underestimation	of	
risks.	This	may	not	be	the	case.	For	example,	lack	of	knowledge	of	compensatory	
mechanisms	such	as	the	induction	of	tolerance	in	an	organism,	density	dependence	
of	populations	of	a	species,	and	redundancy	of	function	in	ecosystems	will	all	tend	
to	mitigate	the	severity	of	impact	of	a	stressor.	Similarly,	co-occurring	stressors	may	
act	additively,	synergistically,	or	antagonistically.
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1.7.2	 SyStematiC	unCertainty

Systematic	errors	in	the	risk	assessment	process	are	those	that	may	occur	through	both	
model	and	methodological	errors	 (Harremoes	2002).	These	errors	 include	systematic	
bias;	the	use	of	an	incorrect	formula	or	algorithm;	and	computational	mistakes	such	as	
incorrect	position	of	the	decimal,	consistent	data	entry	errors,	or	error	occurring	through	
incorrect	instrumental	calibration.	Provided	that	systematic	errors	can	be	identified,	they	
can	be	addressed	through	experimental	design,	quality	control,	and	quality	assurance,	or,	
in	the	case	of	analytical	errors,	by	use	of	a	correction	factor.	Errors	of	this	type	result	from	
incorrect	sampling	where	nonrepresentative	samples	are	taken;	errors	in	analysis,	such	as	
a	lack	of	correction	for	recovery	of	the	analytical	method;	or	dependence	of	errors	on	con-
centration,	such	as	in	enzyme-linked	immunosorbent	assay	(ELISA)	procedures	(Scribner	
et	al.	1994).	Bias	in	the	selection	of	species	or	in	assessing	endpoints	of	toxicity	tests	can	
cause	systematic	errors	(Solomon	et	al.	1996).	In	the	calculation	of	NOEC	and	LOEC,	too	
widely	spaced	concentrations	may	result	in	incorrect	extrapolation	to	thresholds	of	effect	
such	as	the	maximum	allowable	toxicant	concentration	(MATC).	In	the	use	of	species	
sensitivity	distributions	(SSDs),	a	bias	in	the	selection	of	organisms	for	inclusion	in	the	
toxicity	distribution	may	result	 in	systematic	errors.	For	example,	 in	 the	distributional	
analysis	of	atrazine	susceptibility	data	(Solomon	et	al.	1996;	Giddings	et	al.	2005),	it	is	
apparent	that	the	susceptibility	of	some	groups	of	organisms	is	different	from	that	of	oth-
ers.	If	the	toxicity	of	atrazine	to	fish	were	extrapolated	in	the	absence	of	other	data,	toxicity	
to	more	susceptible	organisms	such	as	plants	would	not	be	correctly	predicted.

1.7.3	 StoChaStiC	unCertainty

Stochastic	errors	are	nonsystematic	errors	that	result	from	the	random	nature	of	the	
system	being	assessed	and	are	commonly	referred	to	as	“variability.”	Ecological	and	
environmental	data	are	realizations	of	stochastic	and	chaotic	processes,	as	the	envi-
ronment	from	which	data	are	collected	is	ever	changing.	Properties	of	ecological	or	
environmental	systems	may	subsequently	be	found	that	were	not	detected	when	the	
system	was	first	observed	or	modeled.	Changes	in	the	forcing	functions	of	the	system,	
such	as	those	resulting	from	variations	in	climate,	salinity,	oxygen,	and	so	on,	may	
result	in	new	variables	having	an	important	influence.	These	factors	combine	to	ensure	
that	the	implicit	assumption	of	stasis	necessary	for	predictive	models	of	extrapolation,	
whether	based	on	empirical	observation	or	on	mathematical	models,	 can	never	be	
completely	realized	for	ecological	processes	(Shelly	et	al.	2000).	These	types	of	errors	
can	be	described	and	quantified	but	cannot	be	avoided	or	corrected	for.

1.7.4	 PreCiSion	and	aCCuraCy

There	are	differences	in	the	understanding	and	interpretation	of	precision	and	accu-
racy	between	measured	values	and	in	models.

�.�.�.�	 Precision	and	accuracy	of	measurements

Precision	is	the	closeness	of	repeated	estimates,	observations,	or	measurements	to	
each	other.	Accuracy	is	 the	combination	of	small	systematic	and	stochastic	errors	
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and	reflects	the	closeness	of	a	measured	or	observed	value	to	the	true	value	(Jessen	
1978).	Great	precision	may	 imply,	misleadingly,	 that	 the	 results	 are	also	accurate	
and,	in	the	absence	of	knowledge	of	accuracy,	may	give	a	false	sense	of	certainty	in	
an	extrapolation	and	result	in	an	incorrect	risk	decision.	Precision	may	be	increased	
through	a	larger	number	of	observations	and	the	use	of	the	mean	or	median	as	the	
estimate	of	the	parameter	or	observation.	However,	narrow	confidence	intervals	on	
the	estimate	of	the	mean	may	incorrectly	imply	greater	accuracy,	especially	if	the	
uncertainty	results	from	systematic	errors	of	measurement	rather	than	variance	in	
the	 measured	 variable.	 For	 this	 reason,	 protocols	 for	 sampling	 of	 environmental	
concentrations	 include	blank	samples	 that	are	analyzed	 to	assess	 the	potential	 for	
contamination	and	field-spiked	samples	and	internal	standards	that	are	used	to	char-
acterize	systematic	errors	through	loss	of	analyte	during	transport,	storage,	sample	
preparation,	and	analysis.	In	some	cases,	the	number	of	blanks	and	field	spikes	may	
exceed	the	number	of	samples	for	environmental	measurement.

�.�.�.�	 Precision	and	accuracy	of	models

Models	 may	 be	 both	 mathematical	 and	 empirical.	 Mathematical	 models	 such	 as	
exposure	 analysis	 modeling	 systems	 (EXAMS;	 Burns	 1997),	 toxic	 substances	 in	
surface	waters	(TOXSWA;	Adriaanse	1996),	or	pesticide	root	zone	model	(PRZM;	
Mullins	et	al.	1993)	are	well	recognized,	but	all	laboratory	or	field	experiments	are	
also	 models	 —	 empirical	 representations	 of	 reality.	 All	 models	 are	 more	 or	 less	
accurate	conceptual	portrayals	of	reality,	but	some	are	very	useful	and	necessary	to	
decision	making,	especially	if	we	understand	their	limitations	and	how	to	interpret	
them.	A	model	is	only	as	good	as	its	parts	or	inputs,	and	it	can	only	describe	what	we	
model	it	to	do;	if	the	data	used	in	the	model	are	15%	wrong,	the	optimal	model	output	
will,	at	best,	also	be	15%	wrong.	Usually,	the	results	derived	from	a	model	need	to	
be	extrapolated	to	answer	the	regulatory	question	that	prompted	the	model	(Boesten	
2000).	This	requires	an	understanding	of	the	uncertainty	in	the	model,	which,	in	turn,	
increases	as	the	complexity	of	the	model	increases.

There	is	a	need	to	differentiate	and	characterize	types	of	uncertainties	associ-
ated	with	ecological	models	and	extrapolation	of	results	outside	the	limited	domain	
of	the	model	for	regulatory	purposes.	The	first	distinction	is	the	difference	between	
model	precision	and	model	accuracy	of	the	output.	Precision	is	a	quantitative	feature	
we	can	assess	or	 analyze	by	various	 statistical	 tests	 and	methods.	An	example	 is	
given	in	probabilistic	risk	assessment	and	the	use	of	SSDs	to	integrate	all	available	
information	into	a	risk	assessment	to	provide	a	more	flexible	decision-making	tool	
rather	 than	 relying	 on	 single	 deterministic	 numbers	 in	 HQs	 with	 added	 arbitrary	
uncertainty	factors.	Accuracy	in	mathematical	models	is	dependent	on	the	correct-
ness	of	the	algorithm	and	the	mathematical	processing	of	the	data.	For	example,	use	
of	an	 incorrect	conversion	 factor	can	propagate	a	systematic	error	 throughout	 the	
model,	and	all	the	output	will	be	consistently	wrong.	This	is	particularly	a	concern	
when	using	Monte	Carlo	models,	where	the	amounts	of	output	data	are	large	and	may	
result	in	the	perception	of	great	accuracy	as	well	as	precision.	This	source	of	error	
in	models	is	recognized	and	is	one	of	the	reasons	why	source	codes	for	models	must	
be	 available	 for	quality	 assurance.	Modelers	often	 compare	 the	 results	of	models		
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to	measurements	 as	 a	method	of	 assessing	accuracy.	However,	 the	measurements	
themselves	may	be	systematically	wrong,	or	the	wrong	data	are	selected	for	the	veri-
fication	or	calibration	of	models	(van	den	Brink	et	al.	2002a).	Worse	still,	modelers	
may	use	calibration	factors	to	adjust	output	to	match	one	measure	of	reality	without	
considering	all	the	other	unmeasured	realities.

1.7.5	 analySiS	oF	unCertainty

Quantitative	 model	 assessment	 techniques	 can	 be	 broken	 down	 into	 “uncertainty	
analysis,”	defined	as	the	process	by	which	parameter	uncertainty	in	measurements	
or	a	model	is	described	and	quantified,	and	“sensitivity	analysis,”	by	which	the	con-
sequences	of	uncertainty	are	explored.	Both	accuracy	and	precision	can	be	increased	
through	the	use	of	quality	assurance	and	quality	control	(QA/QC;	USEPA	2000a,	
2003).	Depending	on	the	context,	the	most	widely	used	methods	of	characterizing	
uncertainty	 by	 decision	 makers	 are	 statistical	 significance,	 validated	 mechanistic	
causality,	and	scientific	peer	review.	These	criteria	include	knowledge,	systematic,	
and	stochastic	uncertainty.	Although	there	is	no	absolute	standard	for	model	assess-
ment,	 a	 standard	 must	 be	 set	 relative	 to	 the	 objectives	 of	 a	 particular	 regulatory	
requirement,	as	has	been	discussed	by	scientists	involved	with	modeling	aspects	of	
exposure	and	effects	assessments	(Shelly	et	al.	2000).	The	USEPA	uses	5	general	
categories	for	data	quality	assessment	to	evaluate	the	quality	and	relevance	of	infor-
mation	from	external	sources	for	use	in	regulatory	decisions	(USEPA	2000a,	2003):

Soundness:	The	extent	 to	which	 the	procedures,	measures,	methods,	or	
models	employed	to	generate	the	information	are	reasonable	for	and	con-
sistent	with	the	intended	application	and	are	scientifically	or	technically	
appropriate
Applicability	 and	utility:	The	 extent	 to	which	 the	 information	 is	 appli-
cable	and	appropriate	for	the	intended	USEPA’s	use
Clarity	and	completeness:	The	degree	of	clarity	and	completeness	with	
which	 the	 data,	 assumptions,	 methods,	 quality	 controls,	 and	 analyses	
employed	to	generate	the	information	are	documented
Uncertainty	and	variability:	The	extent	to	which	the	variability	and	uncer-
tainty	 in	 the	 information	 or	 in	 the	 procedures,	 measures,	 methods,	 or	
models	are	evaluated	and	characterized
Evaluation	and	review:	The	extent	of	independent	application,	replication,	
evaluation,	validation,	and	peer	review	of	the	information	or	of	the	proce-
dures,	measures,	methods,	or	models

�.�	 ConClusIons

This	chapter	has	outlined	the	general	principles	of	the	use	of	extrapolation	in	cri-
teria	 setting	 and	 risk	 assessment.	 Extrapolation	 is	 used	 in	 the	 setting	 of	 criteria,	
where	only	effects	are	considered,	as	well	as	in	risk	assessments,	where	both	effects	
and	 exposures	 are	 considered.	 In	 formulating	 approaches	 to	 criteria	 setting	 and	
risk	assessment,	 tiers	 are	often	used	 to	 simplify	 the	process.	 In	keeping	with	 the	

•

•

•

•

•
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greater	 availability	of	data	 in	higher	 tiers,	methods	of	 extrapolation	may	become	
more	refined.	Thus,	different	extrapolation	methods	may	be	used	at	different	tiers	as	
well	as	in	relation	to	the	protection	goals	desired.	Extrapolation	techniques	include	
range	 extrapolation,	 matrix	 and	 media	 extrapolation,	 spatial–temporal	 extrapola-
tion,	and	ecological	data	extrapolation,	and	each	of	these	areas	is	discussed	in	the	
chapters	 that	follow.	The	methods	used	in	extrapolations	are	closely	linked	to	 the	
consideration	of	uncertainty	in	criteria	setting	and	risk	assessment.	Uncertainty	may	
be	knowledge	driven,	systematic,	or	stochastic	and	is	relevant	to	both	modeled	and	
measured	effects	and	exposures.	Uncertainty	may	be	considered	in	extrapolations	
through	the	use	of	uncertainty	factors	that	are	applied	to	single	values	in	lower	tiers	
or	to	more	complex,	higher	tiers	that	make	use	of	species-sensitivity	distributions	or	
cosm	studies.	The	uncertainty	factors	may	be	based	on	historical	precedent,	based	
on	empirical	observations,	or	derived	from	statistical	analysis	of	the	data	used	in	the	
extrapolation	process.
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2.1	 intRoDUCtion	AnD	PRoBLeM	FoRMULAtion

Extrapolations	between	different	media	are	common	in	risk	assessment.	Such	extrap-
olations	are	based	on	physical	and	chemical	interactions	between	components	of	the	
matrix	 and	 the	 toxic	 substance	 that	 may	 enhance	 or	 reduce	 the	 biological	 avail-
ability	of	the	substance,	thus	affecting	its	apparent	toxicity	because	of	the	change	
in	exposure.	In	 this	chapter,	 the	word	“medium”	is	reserved	to	indicate	 the	major	
environmental	compartments:	air,	water,	sediment,	and	soil.	The	word	“matrix”	is	
associated	with	the	physicochemical	properties	of	the	media.	The	problems	associ-
ated	with	extrapolating	between	one	medium	or	type	of	matrix	to	another	are	intri-
cate	and	are	generally	due	to	the	varying	chemical,	physical,	biological,	and	spatial	
characteristics	associated	with	the	different	media.

The	types	of	media	extrapolations	routinely	required	and	used	in	risk	assessments	
include	air–water,	air–soil,	water–sediment,	and	groundwater–soil.	Matrix	extrapola-
tions	include	saltwater–freshwater,	hard	water–soft	water,	river–lake–stream–pond,	
and	soil	type	adjustments.	There	are,	in	fact,	a	large	number	of	different	extrapola-
tions	possible,	each	with	its	own	unique	problems	to	be	taken	into	account.

Evaluation	of	the	risk	of	a	particular	chemical	requires	information	on	fate	and	
exposure	and	on	biological	sensitivity	(Table	2.1).	The	extrapolation	issues	dealing	
with	matrix	and	media	can	thus	be	divided	into	exposure	issues	and	effects	issues.	
The	exposure	to	and	fate	of	any	toxicant	are	governed	by	the	interaction	between	the	
matrix	components	and	the	toxic	chemical.	The	influences	of	chemical	and	matrix	
properties	are	highly	interwoven.	Therefore	it	is	often	difficult	to	discern	between	
exposure	issues	due	to	toxicant	properties	and	exposure	issues	due	to	matrix	proper-
ties.	Differences	in	effects	between	media	and	matrices	may	be	related	to	differences	
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in	the	inherent	sensitivity	of	the	exposed	biota	originating	from	communities	with	a	
different	species	composition,	and/or	to	differences	in	the	route	of	uptake	and	excre-
tion	of	the	chemical.

Among	other	determinants,	the	fate	of	a	chemical	is	strongly	related	to	its	ability	
to	be	transported	through	various	media	to	exert	its	toxic	action	elsewhere.	Trans-
port	is	not	considered	as	part	of	this	chapter.	For	details	on	transport-related	matrix	
interactions,	the	reader	is	referred	to	Klecka	et	al.	(2000).

2.1.1	 Types	of	Media	and	MaTrices

There	are	3	basic	media	 types:	water,	air,	and	soil.	Sediments	 represent	a	special	
type	of	media.	Within	 these	3	basic	categories,	 there	are	a	number	of	similar	yet	
complex	matrices,	and	these	need	to	be	considered	independently.

tABLe	2.1
Key	variables	that	need	to	be	considered	when	extrapolating	among		
and	within	media

Category Variable Fate exposure sensitivity

Chemical	properties Fugacity √ √
Solubility √ √
Polarity √ √ √
Reactivity √ √

Medium	and	matrix	properties Temperature √ √
Light √ √
Redox √ √
pH √ √ √
Ions	and	hardness √ √
Particulates	(size/nature) √ √
Organic	carbon √ √
Colloids √ √
Exchange	capacity √ √
Complexation √ √

Species	properties Taxonomic	status √
Trophic	status √
Habitat	preference √ √
Behavior √ √
Body	size √ √
Life-cycle	type √
Timing	of	exposure	in	
relation	to	life	cycle

√ √

Presence	of	other	stressors √
Exposure	route √ √

Note:	Columns	3	to	5	indicate	major	influences	of	the	variable	on	the	fate	of	the	chemical,	the	exposure	
of	the	biota,	and	biological	sensitivity,	respectively.
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2.1.1.1	 Water

Surface	water	can	be	defined	as	any	river,	lake,	stream,	pond,	marsh,	or	wetland;	as	ice	
and	snow;	and	as	 transitional,	coastal,	and	marine	water	naturally	open	 to	 the	atmo-
sphere.	Major	matrix	properties,	distinguishing	water	types	from	each	other,	are	hard	
and	soft	water,	and	saline	and	freshwater.	Groundwater	is	typically	defined	as	water	that	
can	be	found	in	the	saturated	zone	of	the	soil.	Groundwater	slowly	moves	from	places	
with	high	elevation	and	pressure	to	places	with	low	elevation	and	pressure,	such	as	rivers	
and	lakes.	Partitioning	interactions	of	the	groundwater	with	the	solid	soil	matrix	is	an	
important	factor	influencing	the	fate	of	toxicants.	Physicochemical	properties	of	water	
that	may	affect	toxicity	of	chemicals	in	all	water	types	are	listed	in	Table	2.2.

2.1.1.2	 Atmosphere

The	 atmosphere	 consists	 of	 78.09%	 nitrogen,	 20.94%	 oxygen,	 0.93%	 rare	 gases,	
0.03%	carbon	dioxide,	0.1%	trace	elements,	as	well	as	dust,	water	vapor,	and	anthro-
pogenically	emitted	substances	 (Crosby	1998).	The	vapor	pressure	of	a	 substance	
and	 its	 fugacity	 are	 primary	 determinants	 of	 residence	 time	 in	 the	 air.	 Airborne	
chemicals	can	 travel	 long	distances.	During	airborne	 transportation,	 they	may	be	
subject	to	photodegradation.	At	low	temperatures	(polar	regions),	persistent	organic	
pollutants	(POPs)	may	be	transferred	to	water	masses	or	snow	and	ice.

2.1.1.3	 soil

There	are	a	number	of	different	types	of	soils,	each	varying	in	the	percentage	of	sand	
(2.0	to	0.05	mm),	silt	(0.05	to	0.002	mm),	clay	(<	0.002	mm),	organic	matter	of	different	

tABLe	2.2
Water	matrix	factors	that	may	modify	the	toxicity	of	substances		
to	aquatic	organisms

Property explanation

Suspended	particulate	matter Adsorption	to	particulate	matter	will	make	chemicals	less	
biologically	active.

Water	temperature Dictates	volatilization	rate	of	chemical;	affects	the	chemical	activity	
of	contaminants	and	the	physiological	processes	of	organisms.

Water	velocity Dictates	transport	and	dilution	of	chemical.
Water	viscosity Affects	water	movement	and	solute	diffusion.
Dissolved	oxygen Reduction	of	oxygen	increases	susceptibility	to	toxicants	by	a	factor	

of	2	in	aquatic	organisms	(Sprague	1984).
pH Affects	the	form,	reactivity,	solubility,	and	toxicity	of	some	

contaminants.
Salinity Salts	may	bind	with	chemicals,	allowing	them	to	become	biologically	

inactive	or	precipitate	out.
Light	penetration Light	may	speed	up	the	degradation	of	some	chemicals	or	create	

harmful	metabolites	that	are	more	toxic	than	the	original	form.
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types,	 water	 content,	 earth	 alkaline	 metals,	 and	 other	 inorganic	 substances.	 Soil	
structure	depends	strongly	on	the	abiotic	characteristics	mentioned	above.	Further,	
the	composition	and	structure	of	 the	soil	 influence	the	species	composition	of	 the	
soil	biota,	and	vice	versa.	Although	 large	particles	are	generally	 inactive,	smaller	
particles	may	be	chemically	active,	complicating	the	extrapolation	among	soil	types.	
Soil	 colloids	 (finely	divided	particles	of	one	 substance	 suspended	 in	another)	 can	
acquire	electrical	and	surface	properties	that	influence	adsorption	of	gases,	ions,	and	
organics.	The	matrix	properties	of	different	soils	are	the	factors	that	make	extrapola-
tion	between	soils	difficult.	Soil	properties	that	may	affect	the	toxicity	of	a	chemical	
are	listed	in	Table	2.3.

2.1.1.4	 sediment

Sediments	can	be	defined	as	deposits	of	solid	material	laid	down	in	water	bodies.	
Minerals	usually	dominate	sediments,	but	sediments	also	contain	organic	substances,	
including	 humic	 substances	of	 different	 compositions.	Sediments	 may	be	 consid-
ered	the	ultimate	sink	for	hydrophobic	chemicals.	Although	sediments	have	many	
of	the	same	properties	as	soils,	the	high	water	content	and	anaerobic	conditions	that	
typically	occur	within	centimeters	of	the	sediment–water	interface	distinguish	this	
matrix	into	its	own	unique	category.

tABLe	2.3
soil	matrix	factors	that	may	modify	the	toxicity	of	substances		
to	soil	organisms

Property explanation

Bulk	density Indicates	the	pore	space	available	for	water	and	roots;	
influenced	by	soil	composition	(mineral	content,	
mineral	type,	and	organic	matter)	and	soil	texture

Mineral	type Affects	adsorption	of	the	chemical
Grain	size	distribution Affects	the	surface	area	where	adsorption	can	take	place
Water	content Influences	partitioning	and	availability	of	chemicals
Permeability Affects	ability	of	a	soil	to	transmit	water	or	air
Structure Dictates	the	porosity	of	the	soil
pH Affects	the	form,	reactivity,	solubility,	availability,	and	

toxicity	of	some	contaminants
Metal	content Affects	the	toxicity	of	some	substances	(mainly	heavy	

metals)	with	binding	or	antagonistic	mechanisms,	for	
example,	by	alkaline-earth	metals	and	aluminum

Organic	matter	content,	type,	and	%	carbon Influences	soil	sorption	properties	for	heavy	metals	and	
organic	chemicals

Temperature Affects	the	chemical	activity	of	contaminants	and	the	
physiological	processes	of	organisms

Soil	porosity Influences	percolation
Inorganic	ions Can	bind	to	chemicals,	rendering	them	inactive	and	

affecting	transportation
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2.1.2	 sources	of	polluTion	and	rouTes	of	enTry	and	exposure

Anthropogenic	 chemicals	 may	 first	 enter	 the	 environment	 by	 aquaculture,	 agri-
culture,	 illegal	 and	 legal	 manufacturing	 processes,	 human	 use	 and	 disposal,		
septic	or	municipal	sewage,	and	animal	husbandry.	Once	in	the	environment,	their	
fate	depends	upon	the	type	and	physicochemical	properties	of	the	media	and	of	the	
substance	itself.

2.1.2.1	 Atmosphere

Volatile	chemicals	reach	the	atmosphere	via	direct	emission	to	the	air	or	by	volatiliza-
tion	from	water,	soil,	surfaces,	and	plant	and	animal	respiration.	Once	in	the	air,	diffu-
sion,	advection,	and	precipitation	or	deposition	are	the	major	sources	of	movement.

2.1.2.2	 surface	Water

Major	routes	of	entry	of	chemicals	into	surface	waters	include	precipitation,	drift,	
runoff,	 industrial	and	sewage	outfalls,	groundwater,	and	human	disposal.	Once	in	
the	surface	waters,	the	chemicals	may	be	transported	via	advection	(bulk	movement	
by	currents),	molecular	diffusion	(due	to	random	thermal	movement	of	molecules),	
turbulent	 diffusion	 (mixing),	 and	 dispersion.	 Chemicals	 may	 also	 be	 transported	
while	adsorbed	to	suspended	particulate	matter.

2.1.2.3	 Groundwater

Chemicals	may	enter	groundwater	as	landfill	leachates	or	from	deep-well	injection	of	
hazardous	wastes,	leaching	from	soil	and	water,	or	septic	tanks.	Diffusion	and	advec-
tion	are	the	typical	mechanisms	of	chemical	transport	in	groundwater.	Groundwater	
may	be	taken	up	via	human	use	or	empty	onto	the	surface	waters	via	a	natural	spring.

2.1.2.4	 soil	and	sediment

Soils	may	be	exposed	 to	 toxicants	by	direct	 input	of	chemicals	at	dumpsites,	due	
to	the	application	of	pesticides	or	accidental	spillage,	and	transfer	from	elsewhere.	
Whether	originally	emitted	to	air	or	water,	many	of	the	persistent	toxicants	exhibit	
their	toxicity	in	the	stationary	media,	sediment,	and	soil.

2.2	 MeDiA-	AnD	MAtRiX-ReLAteD	eXPosURe

The	overall	aim	of	this	type	of	extrapolation	is	to	predict	exposure	and/or	effects	from	
one	medium	or	matrix	to	another.	Although	physicochemical	(fate	and	exposure)	and	
biological	 (sensitivity)	 extrapolations	 can	 be	 addressed	 separately,	 it	 will	 become	
clear	in	the	following	that	there	are	many	links	between	these	elements	of	risk	that	
can	 complicate	 the	 extrapolation	 process.	 The	 elements	 of	 the	 extrapolation	 pro-
cess	and	the	interactions	between	physicochemical	and	biological	features	that	are	
involved	are	schematically	depicted	in	Figure	2.1.

The	development	of	extrapolation	methods	for	all	possible	steps	strongly	relies	on	
both	theory	and	the	quality	and	number	of	available	data.	Studies	can	be	conducted	
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with	a	focus	on	developing	general	theories	applicable	to	all	situations,	but	may	only	
be	valid	for	the	selected	combination	of	factors	studied.	Thus,	for	example,	a	fresh-
water	to	saltwater	extrapolation	of	sensitivity	derived	for	compound	A	may	not	be	
applicable	for	compound	B.

2.2.1	 exTrapolaTion	relaTed	To	physicocheMical	
properTies	of	Media	and	ToxicanTs

2.2.1.1	 toxic	Metals

Environmental	quality	objectives	for	toxic	substances	are	derived	on	the	basis	of	risk	
considerations,	where	“risk”	usually	has	the	meaning	of	the	likelihood	and/or	extent	
of	an	adverse	effect.	It	 is	 the	purpose	of	ecological	risk	assessment	 to	distinguish	
between	 contaminated	 waters,	 soils,	 or	 sediments	 in	which	 contaminants	 may	 or	
may	not	produce	effects.	In	the	case	of	metals,	total	concentrations	in	waters,	soils,	
and	sediments	commonly	span	several	orders	of	magnitude.	Organisms,	however,	do	
not	respond	to	total	concentrations,	and	hence	quality	criteria	that	are	based	on	total	
concentrations	are	unlikely	to	be	predictive	of	adverse	biological	effects.	The	total	
amount	of	a	substance	may	not	be	toxicologically	meaningful,	as	it	may	partly	be	un-
available	for	uptake	by	organisms.	This	would	not	be	important	if	availability	were	
constant	in	all	situations.	This,	however,	is	not	the	case	and	it	is	the	variation	in	cru-
cial	matrix	and	medium	properties	that	results	in	substantially	different	availability		
for	 the	 uptake	 of	 compounds	 by	 organisms.	 Taking	 this	 variation	 into	 account,		

Toxicant

Matrix or Medium

Biota

Uptake

Sorption

Sensitivity

Chemical properties

Biological properties

Effect

FiGURe	2.1	 Schematic	 overview	 of	 the	 properties	 and	 processes	 that	 govern	 matrix	 and	
media	extrapolations.
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applying	appropriate	extrapolation	techniques	will	improve	the	accuracy	with	which	
(no)	effects	can	be	predicted.

2.2.1.1.1 Surface Waters
Various	authors	have	stressed	that	the	“total	metal	or	dissolved	metal	concentration”	
approach	is	inadequate	as	it	does	not	reflect	the	true	exposure	to	and	effects	on	aquatic	
organisms	 (Morel	1983;	Luoma	1983;	Pagenkopf	1983;	Playle	 et	 al.	 1992,	1993a,	
1993b).	The	importance	of	explicitly	considering	bioavailability	in	the	development	
of	water	and	sediment	quality	criteria	for	metals	has	been	demonstrated	(Di	Toro	et	
al.	1991;	Ankley	et	al.	1996;	Allen	and	Hansen	1996)	and	is	gaining	increased	rec-
ognition	by	the	scientific	community	and	some	(US)	regulatory	authorities	(Renner	
1997;	 Bergman	 and	 Dorward	 King	 1997).	 Laboratory	 toxicity	 studies	 completed	
during	recent	years	have	enhanced	 the	current	understanding	of	 the	physiological	
basis	 of	 how	 metals	 exert	 toxicity	 on	 aquatic	 organisms	 (Pagenkopf	 1983;	 Playle		
et	al.	1992,	1993a,	1993b;	Janes	and	Playle	1995).	Parallel	investigations	of	metal	spe-
ciation	have	elucidated	the	chemistry	of	metals	in	aquatic	systems,	including	the	for-
mation	of	organic	and	inorganic	metal	complexes	and	sorption	to	particulate	organic	
matter	and	to	biotic	ligands	(Paquin	et	al.	2003).	These	studies	have,	in	combination,	
led	to	an	improved	understanding	of	how	site-specific	water	chemistry	affects	bio-
availability,	how	the	route	of	uptake	influences	exposure,	how	metals	interact	with	
aquatic	organisms	 to	 exert	 toxic	 effects	 at	 the	organism’s	 site	of	 action,	 and	how	
toxic	effect	levels	can	be	predicted.	The	translation	of	the	above-mentioned	studies	
into	toxicity-related	bioavailability	models	and	especially	the	biotic	ligand	models	
(BLMs)	is	gaining	interest	in	the	scientific	and	regulatory	community	for	evaluating	
metal	bioavailability	and	toxicity	in	a	cost-effective	and	technically	defensible	man-
ner	(Di	Toro	et	al.	1997;	Bodar	et	al.	2005).

2.2.1.1.2 Soils
In	 the	case	of	soils,	 there	has	been	surprisingly	little	consideration	of	factors	 that	
modulate	 the	 bioavailability	 of	 metals.	 In	 this	 respect	 it	 is	 necessary	 to	 develop	
methods	 that	 contain	 qualitative	 and	 quantitative	 descriptions	 of	 differences	 in	
bioavailability	 between	 soils	 typically	 used	 for	 laboratory	 testing	 and	 field	 soils,	
between	contaminated	and	noncontaminated	(natural	background)	soils,	and	among	
contaminated	field	soils.

Bioavailability	needs	to	be	dealt	with	as	a	dynamic	process,	comprising	at	least	
2	 distinct	 phases:	 a	 physico-chemically	 driven	 desorption	 process,	 and	 a	 physi-
ologically	driven	uptake	process	requiring	the	identification	of	specific	biological	
species	as	objects	of	study.	Soil	organisms	potentially	have	different	uptake	routes.	
It	is	thought	that	most	organisms	that	live	in	the	soil	(e.g.,	including	plants)	are	pri-
marily	exposed	via	pore	water,	and	that	organisms	that	live	on	the	soil	are	mainly	
exposed	indirectly	via	their	food.	Differences	in	exposure	route	are	likely	to	differ	
between	species	that	possess	a	soft	and	permeable	skin	(sometimes	including	gills	
or	 roots)	 and	 those	 that	 possess	 a	 hard,	 physically	 protective,	 but	 impermeable	
integument.	This	distinction	is	of	quantitative	importance,	because	in	the	case	of	
uptake	via	ingestion,	gut	conditions	determine	the	transfer	of	chemicals	rather	than	
external	conditions.	There	is	evidence	for	predominant	pore	water	uptake	of	organic	
substances	 by	 soft-bodied	 animals,	 but	 due	 to	 their	 complex	 physicochemical		
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behavior,	 such	 evidence	 is	 presently	 only	 circumstantial	 for	 metals.	 Free	 metal	
ions	in	pore	water	are	often	considered	to	be	the	toxic	fraction	that	can	actually	
be	 taken	 up	 by	 organisms.	 Clearly,	 both	 abiotic	 (pertaining	 to	 soil	 characteris-
tics)	and	biotic	(species-dependent)	aspects	determine	“bioavailability.”	Recently,	
first	 attempts	 were	 made	 to	 establish	 BLM	 for	 terrestrial	 organisms,	 including	
earthworms	(Steenbergen	et	al.	2005),	plants,	invertebrates,	and	microorganisms	
(Thakali	et	al.	2006a,	2006b).

Metal	concentrations	and	metal	activities	in	the	pore	water	are	dependent	upon	
both	the	metal	concentration	in	the	solid	phase	and	the	composition	of	both	the	solid	
and	the	liquid	phase.	In	matrix	extrapolation,	and	with	emphasis	on	the	pore	water	
exposure	route,	 it	 is	 therefore	of	great	practical	 importance	 to	have	a	quantitative	
understanding	of	the	distribution	of	heavy	metals	over	the	solid	phase	and	the	pore	
water.	A	relatively	simple	approach	for	calculating	the	distribution	of	heavy	metals	
in	soils	is	the	equilibrium-partitioning	(EP)	concept	(Shea	1988;	van	der	Kooij	et	al.	
1991).	The	EP	concept	assumes	that	chemical	concentrations	among	environmental	
compartments	are	at	equilibrium	and	that	the	partitioning	of	metals	among	environ-
mental	compartments	can	be	predicted	based	on	partition	coefficients.	The	partition	
coefficient,	Kp,	used	to	calculate	the	distribution	of	heavy	metals	over	solid	phase	
and	pore	water	is	defined	as

	

K =
Metal

Metalp
solid phase

pore water

[ ]

[ ]
/(L kg)

	

(2.1)

Kp	is	not	a	constant	and	may	vary	by	several	orders	of	magnitude.	It	is	affected	
by	element	properties	and	both	solid	phase	and	pore	water	characteristics.	Knowl-
edge	of	the	relationship	between	soil	characteristics	and	Kp	values	enables	the	cal-
culation	of	the	distribution	of	heavy	metals	over	the	solid	phase	and	pore	water	for	
different	soils.	When	coupled	to	an	uptake	model	for	metals	by	biota	that	are	directly	
or	indirectly	exposed	via	the	pore	water,	the	relationships	for	predicting	Kp	values	
may	be	used	to	predict	metal	uptake	for	these	organisms	on	the	basis	of	the	metal	
concentration	in	the	solid	phase	and	some	selected	soil	properties.	The	latter	should,	
like	the	total	concentrations,	be	easily	determinable.

2.2.1.1.3 Sediments
An	approach	similar	 to	 that	 in	soils	can	be	applied	to	metal-contaminated	sedi-
ments,	where	sulfides,	measured	as	acid-volatile	sulfides	(AVS),	have	been	demon-
strated	as	being	the	predominant	factor	controlling	metal	mobility	and	toxicity	in	
anaerobic	sediments.	The	difference	or	ratio	between	SEM	(simultaneous	extracted	
metals)	 and	 AVS	 (SEM–AVS)	 is	 used	 to	 predict	 toxicity.	 In	 cases	 where	 SEM	
does	not	exceed	the	AVS,	this	approach	has	been	shown	to	consistently	predict	the	
absence	of	toxicity	(Allen	et	al.	1993;	Ankley	et	al.	1996;	DiToro,	Hansen	et	al.	
2001b).	When	SEM	exceeds	the	AVS,	toxicity	is	predicted,	but	the	appearance	and	
extent	of	toxicity	may	be	determined	by	other	binding	phases	(e.g.,	organic	carbon)	
in	 the	pore	water.	Luoma	and	Fisher	 (1997)	 stated	 that	 the	association	of	metal	
bioavailability	with	AVS	in	sediments	is	not,	however,	straightforward	in	all	cases	
and	should	be	treated	with	caution.
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2.2.1.2	 organic	Compounds

Sorption,	or	intermedia	transport,	is	of	importance	in	systems	that	contain	more	than	
1	phase.	Chemicals	will	migrate	from	one	phase	to	another	if	the	phases	are	not	in	
thermodynamic	equilibrium	(i.e.,	do	not	have	the	same	fugacity).	Octanol	is	often	
considered	as	a	surrogate	for	various	condensed	lipophilic	materials	present	in	natu-
ral	phases	such	as	nonliving	natural	organic	matter	in	soils,	sediments,	or	aerosols	
and	certain	lipid-like	constituents	of	plants,	animals,	and	microorganisms.	Although	
the	fraction	of	such	organic	phases	on	a	global	scale	is	quite	low,	they	are	major	sinks	
for	hydrophobic	contaminants	(Di	Toro	et	al.	1991).

Experimentally	it	has	been	observed	that	the	ratio	of	concentrations	in	2	phases	
is	constant	if	the	concentrations	of	the	chemical	in	both	phases	are	sufficiently	low	
(thermodynamic	equilibrium).	In	this	case,	at	equilibrium	conditions	the	reversible	
distribution	between	phases	can	be	described	by	a	constant,	which	is	known	as	the	
distribution	coefficient:

	 Kab	=	Ca/Cb	 (2.2)

where	Kab	is	the	distribution	coefficient,	and	Ca	and	Cb	are	the	concentrations	of	the	
toxicant	in	phases	a	and	b,	respectively.

For	air–water	systems,	this	equation	is	known	as	Henry’s	law.	For	solids–water	
systems,	the	equilibrium	constant	is	known	as	the	partition	coefficient	(KP)	or	distri-
bution	constant	(Kd).	Partition	coefficients	are	available	for	many	organic	chemicals	
from	 laboratory	and	field	measurements.	As	organic	carbon	 (OC)	present	 in	water	
(dissolved	organic	carbon,	or	DOC),	sediment,	or	soil	is	the	main	sink	for	hydrophobic	
organic	contaminants,	the	partition	coefficients	for	these	compounds	are	often	adjusted	
(normalized)	with	respect	to	the	organic	carbon	content	of	these	compartments:

	 KP	=	KOC	×	fOC	=	CS/CW	 (2.3)

where	KOC	is	the	organic	carbon-normalized	partition	coefficient	(L/kg),	fOC	is	the	
fraction	of	organic	carbon	in	the	sediment	or	soil,	and	CS	and	CW	are	the	concentra-
tions	of	chemical	in	the	solid	phase	and	the	water	phase,	respectively.	KOC	for	neutral	
organic	 chemicals	 is	 often	 estimated	 from	 the	 octanol–water	 partition	 coefficient	
(KOW),	using	simple	regression	equations:

	 Log	KP	=	log	(KOC × fOC)	=	a	log	KOW	+	b	+	log	fOC	 (2.4)

It	 may	 be	 deduced	 from	 KP = KOC × fOC that	 partition	 coefficients	 of	 hydro-
phobic	organic	compounds	in	general	are	dependent	upon	the	chemical	of	interest		
(compound-specific	properties	affect	the	value	of	KOC)	and	the	matrix	properties	of	
the	medium	in	which	it	resides.	In	addition	to	the	fraction	of	organic	carbon	present	
in	 the	 sorption	 phase,	 additional	 environmental	 factors	 affect	 partitioning.	 These	
factors	include	temperature,	particle	size	distribution,	the	surface	area	of	the	sorbent,	
pH,	ionic	strength,	the	presence	of	suspended	material	or	colloidal	material,	and	the	
presence	of	 surfactants.	 In	 addition,	 clay	minerals	may	act	 as	 additional	 sorption	
phases	for	organic	compounds.	Nevertheless,	organic	carbon-normalized	partition	
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coefficients	for	a	specific	chemical	are	fairly	constant	among	different	soils	or	sedi-
ments,	provided	that	the	additional	environmental	factors	impacting	partitioning	are	
kept	reasonably	constant.

Uptake	by	plants	and	animals	is	in	general	the	consequence	of	a	plethora	of	com-
peting	processes,	both	in	the	aqueous	and	in	the	solid	phase,	as	well	as	at	the	inter-
face	between	the	biota	and	the	pore	water.	As	explained	by	Jager	(2003),	the	leading	
theory	on	uptake	of	chemicals	by	soil-	and	sediment-dwelling	organisms	is	the	EP	
theory,	formulated	and	broadly	adopted	around	1990.	Basically,	this	approach	states	
that	organisms	do	not	take	up	chemicals	from	soils	or	sediments	directly,	but	only	
from	the	freely	dissolved	phase	in	the	pore	water.	A	chemical	will	tend	to	distribute	
itself	between	the	soil,	water,	and	organism	phases	until	it	is	in	thermodynamic	equi-
librium.	This	implies	that	the	chemical	residues	in	organisms	can	be	predicted	when	
the	sorption	coefficient	of	the	chemical	(partitioning	between	solids	and	water)	and	
the	bioconcentration	factor	(partitioning	between	water	and	organism)	are	known.	
This	is	schematically	depicted	in	Figure	2.2.

Equilibrium	partitioning	has	become	an	integral	part	of	chemical	risk	assess-
ment	for	soil	and	sediment	to	predict	toxicity	(by	extrapolation	from	aquatic	data)	
as	 well	 as	 body	 residues	 (by	 extrapolation	 from	 total	 concentrations)	 in	 soil-	 or		
sediment-dwelling	organisms.	Currently,	the	term	“EP”	is	often	used	in	a	broader	
sense,	 relaxing	 the	 precondition	 of	 equilibrium	 and	 denoting	 the	 fact	 that	 (time-	
varying)	concentrations	in	organisms	can	be	predicted	from	the	(time-varying)	con-
centrations	in	pore	water.

Despite	its	popularity	in	risk	assessment	practice,	limitations	of	EP	have	been	
observed.	The	most	striking	deviations	are	discussed	below:

Sequestration	or	“aging”	is	the	process	by	which	chemicals	tend	to	become	
less	 available	 with	 time	 (for	 uptake	 by	 organisms	 as	 well	 as	 by	 “soft”	
chemical	 extraction	 techniques).	 The	 most	 likely	 mechanism	 for	 this	
behavior	is	that	the	chemical	is	moving	deeper	into	the	organic	matrix	with	
increasing	contact	time.	Sequestration	has	been	presented	as	a	deviation		
from	EP,	but	in	fact	it	strongly	supports	the	EP	concept.	Granted,	the	use	

•

Organism

Water

uptake and elimination

sorption and wdesorptionSoil

Organism

Water

Soil

FiGURe	2.2	 Schematic	 overview	 of	 the	 process	 underlying	 the	 equilibrium-partitioning	
(EP)	concept.	Source:	Redrawn	from	data	of	Jager	(2003).
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of	equations	where	sorption	is	estimated	from	hydrophobicity	will	fail	to	
predict	the	effects	of	sequestration,	but	EP	(in	the	broad	sense)	appears	to	
be	quite	robust	as	long	as	good	estimates	or	measurements	of	pore	water	
concentrations	are	available	for	the	specific	situation	of	interest.
Another	deviation	from	EP	that	is	extensively	discussed	is	feeding.	Chem-
icals	are	taken	up	not	only	by	organisms	from	(pore)	water	through	the	
skin,	but	also	from	the	gut.	It	is	a	generally	held	view	that	the	existence	
of	multiple	routes	of	entry	into	an	organism	leads	to	deviations	from	EP	
predictions,	 especially	 for	 very	 hydrophobic	 chemicals.	 It	 is	 predicted	
(Jager	2003)	that	feeding	becomes	an	important	uptake	route	for	earth-
worms	when	log	Kow	exceeds	5.	For	sediment	organisms,	there	is	evidence	
that	feeding	is	important	for	very	hydrophobic	chemicals	and	may	lead	to	
deviations	from	EP	up	to	a	factor	of	5.	However,	there	are	few	studies	that	
succeed	in	experimentally	separating	both	uptake	routes,	and	often	conclu-
sions	on	uptake	routes	are	drawn	without	confirming	that	equilibrium	was	
established,	and	without	knowing	 the	actual	pore	water	concentrations.	
Furthermore,	it	is	unlikely	that	chemicals	are	transferred	directly	from	a	
solid	phase	to	an	organism	without	intervention	of	a	solution	phase.
Biotransformation	may	also	lead	to	deviations	from	EP,	but	this	process	is	
not	well	studied.	Biotransformation	is	the	uptake	and	metabolism	of	toxi-
cants	 that	 usually	 results	 in	 more	 water-soluble	 metabolites.	 Especially	
when	the	exchange	with	the	pore	water	is	slow,	even	low	levels	of	transfor-
mation	may	affect	the	internal	exposure	to	the	parent	compound.

Despite	the	limitations,	EP	is	still	the	reference	theory	for	discussing	the	accumula-
tion	of	organic	chemicals	in	soil	organisms	and	for	extrapolation	between	media	and	
matrices.	The	use	of	EP	requires	that	body	residues	and	effects	observed	in	biota	first	
have	to	be	related	to	pore	water	concentrations.

2.2.2	 Media-	and	MaTrix-relaTed	differences	
in	degradaTion	of	cheMicals

Time-related	 spontaneous	 remediation	 of	 toxic	 risk	 by	 degradation	 or	 transloca-
tion	 of	 chemicals	 is	 also	 influenced	 by	 medium	 and	 matrix	 properties.	 However,	
the	reader	is	referred	to	Chapters	5,	6,	and	7	for	extrapolation	methods	dealing	with	
temporal	or	spatial	topics.

2.3	 	MeDiA-	AnD	MAtRiX-ReLAteD	eFFeCts

2.3.1	 exTrapolaTion	relaTed	To	organisM	Behavior

2.3.1.1	 trophic	status

Extrapolating	toxicant	effects	among	media	may	differ	according	to	the	trophic	sta-
tus	 of	 the	 species	 under	 consideration.	 Whether	 a	 species	 is	 a	 primary	 producer,	
primary	 consumer,	 or	 secondary	 consumer	 will	 influence	 which	 environmental	
compartments	and	media,	and	hence	which	routes	of	uptake,	need	to	be	considered.	

•

•
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Thus	trophic	status	should	have	a	relatively	large	influence	on	exposure	but	less	of	
an	influence	on	toxicity	per	se.	Few	chemicals	act	specifically	at	individual	trophic	
levels,	unless	the	trophic	levels	are	characterized	by	specifically	sensitive	taxonomic	
groups	or	receptors	such	as,	for	example,	fish.	One	of	the	few	definite	exceptions	to	
this	rule	is	the	action	of	photosynthesis-inhibiting	herbicides	that	are	inherently	much	
more	toxic	to	autotrophic	organisms	than	to	heterotrophs.	Other	possible	exceptions	
are	bioaccumulating	or	biomagnifying	chemicals,	which	tend	to	have	greater	effects	
at	higher	trophic	levels,	and	plants	that	are	less	sensitive	to	insecticides.	However,	
such	 effects	 can	 be	 attributed	 to	 higher	 body	 burdens	 (i.e.,	 exposure)	 rather	 than	
trophic-level	specific	differences	in	sensitivity.

2.3.1.2	 Habitat	Preferences

Habitat	preferences	and	thus	medium	and	matrix	considerations	may	play	an	impor-
tant	role	in	determining	the	susceptibility	of	species	to	toxicants.	These	can	be	at	the	
macro	scale.	For	example,	certain	species	may	prefer	waters	or	soils	of	differing	min-
eral,	organic,	or	oxygen	content.	In	aquatic	systems,	for	example,	benthic	organisms	
are	often	more	abundant,	and	communities	more	diverse,	in	fine-grained	sediments	
due	 to	higher	organic	content.	For	 the	 same	 reason	 (higher	organic	content),	fine-
grained	 sediments	 also	often	have	higher	 concentrations	of	organic	contaminants.	
Differences	may	also	occur	in	microhabitat	preference.	For	example,	different	species	
of	benthic	organisms	may	be	found	at	different	depths	in	the	sediment,	and	may	be	
oriented	with	their	heads	facing	down	or	up.	A	variety	of	abiotic	factors	that	are	likely	
to	vary	among	habitats	can	influence	exposure	to	and	toxicity	of	chemicals.	In	addi-
tion,	there	may	be	correlations	between	habitat	preference	and	taxon	susceptibility.

2.3.1.3	 Feeding	Behavior

Feeding	 behavior	 is	 one	 of	 the	 most	 important	 variables	 that	 should	 be	 taken	 into	
account	when	extrapolating	among	media.	Feeding	behavior	is	known	to	affect	the	rates	
of	contaminant	uptake	from	a	given	medium	(e.g.,	organisms	with	faster	feeding	rates	
are	likely	to	have	higher	rates	of	contaminant	uptake)	and	determines	which	media	need	
to	be	included	in	exposure	calculations	and	how.	For	example,	equilibrium-partitioning	
models	used	 to	predict	 exposure	 from	contaminant	concentrations	 in	bulk	 sediment	
typically	assume	that	the	partitioning	of	a	chemical	between	sediment	organic	carbon	
and	pore	water	is	at	equilibrium	and	therefore	that	ingestion	as	a	route	of	exposure	is	not	
significant	(Di	Toro	et	al.	1991).	However,	it	has	become	clear	that	EP	models	underes-
timate	the	uptake	of	sediment-associated	contaminants	via	ingestion,	at	least	for	some	
groups	of	sediment-dwelling	organisms	(Landrum	et	al.	1996;	Selck	et	al.	1998;	Selck	
and	Forbes	2003;	Timmerman	and	Andersen	2003).	Such	animals	may	accumulate	a	
substantial	proportion	of	their	body	burden	from	sediment-bound	contaminants	during	
gut	passage,	which	would	not	be	predicted	by	EP	models.	Very	few	studies	have	tried	
to	relate	uptake	route	(e.g.,	dissolved	contaminants	 taken	up	over	external	body	sur-
faces	versus	particle-bound	contaminants	taken	up	over	the	gut	surface)	to	toxicity	(e.g.,	
Vijver	et	al.	2003).	There	is	limited	evidence	to	suggest	that	contaminants	taken	up	over	
the	gut	may	be	less	toxic	(Selck	et	al.	1998;	Selck	and	Forbes	2003);	however,	techni-
cal	constraints	involved	in	separating	effects	of	starvation	from	effects	of	uptake	route	
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prevent	firm	conclusions	from	being	drawn.	Clearly	the	relationship	between	exposure	
route	and	subsequent	toxicity	is	of	key	importance	in	the	development	of	media	extrapo-
lation	models	and	is	one	that	deserves	more	thorough	study.

2.3.1.4	 Avoidance

Perhaps	the	most	difficult	aspect	of	organism	behavior	to	include	in	media	extrapola-
tion	procedures	is	that	relating	to	avoidance.	Different	species	exhibit	a	diverse	array	
of	avoidance	behaviors,	which	they	may	display	in	response	to	natural	biotic	or	abiotic	
factors	in	their	environment	and	in	response	to	chemical	exposure.	Some	of	the	most	
common	include	avoidance	responses	of	fish	to	heavy	metals	and	other	contaminants	
(Sandheinrich	2003),	aversion	of	contaminant-treated	diets	by	birds	(Hooper	2003),	and	
drift	in	stream	invertebrates	(Sibley	et	al.	1991;	Davies	and	Cook	1993).	Such	avoid-
ance	behaviors	would	act	to	reduce	exposure,	but	are	generally	ignored	in	extrapolation	
approaches.	Changes	in	behavior	could	potentially	have	importance	in	media	extrapo-
lation	 in	 that	 they	could	alter	 the	relative	 importance	of	different	uptake	routes.	For	
example,	if	a	contaminant	is	partitioned	between	diet	and	water,	and	an	exposed	species	
is	able	to	detect	and	avoid	the	contaminated	food,	the	relative	importance	of	water	as	an	
exposure	route	could	be	increased	even	though	total	exposure	may	decrease.

2.3.2	 exTrapolaTion	relaTed	To	inTrinsic	sensiTiviTy

2.3.2.1	 Freshwater	versus	Marine	toxicity

Most	of	the	ecotoxicological	data	available	in	the	open	literature	are	derived	from	
aquatic,	freshwater	species.	For	example,	the	European	Centre	of	Ecotoxicology	and	
Toxicology	of	Chemicals	(ECETOC)	Aquatic	Toxicity	(EAT)	database,	one	of	the	
most	extensive	ecotoxicological	databases,	contains	a	 total	of	2200	entries	cover-
ing	368	chemicals	and	137	aquatic	 species	 (ECETOC	1993).	Of	 the	entries,	76%	
are	 freshwater	 species,	 and	 the	 remaining	 24%	 are	 marine	 species.	 Comparisons	
between	 freshwater	 and	 marine	 fish	 and	 invertebrates	 (Hutchinson	 et	 al.	 1998a)	
using	this	database	indicated	that	the	sensitivities	of	freshwater	and	saltwater	species	
were	within	a	factor	of	10	for	91%	of	EC50	values	for	fish	but	only	33%	for	inverte-
brates.	An	update	of	the	database	(EAT-3)	that	contains	5400	values	(about	24%	of	
which	are	for	marine	species)	suggests	that	approximately	one-third	of	the	marine	
fish,	invertebrate,	and	algal	species	are	more	sensitive	(by	a	factor	of	2	or	greater)	
than	their	freshwater	counterparts	(ECETOC	2001).	Overall,	 the	data	available	to	
date	do	not	indicate	systematic	or	consistent	differences	in	the	sensitivity	of	marine	
versus	freshwater	taxa.	However,	very	little	is	known	about	the	sensitivities	of	taxa	
found	exclusively	or	primarily	in	marine	environments	(i.e.,	Ctenophora,	Mesozoa,		
Echinodermata,	Nemertina,	and	Porifera).	There	is	some	concern	that	the	compari-
sons	made	to	date	may	be	biased	(ECETOC	2001).

2.3.2.2	 Differences	in	Body	size

Differences	 in	 body	 size	 within	 species	 can	 have	 an	 important	 influence	 on	 effects	
extrapolation	 as	 a	 result	 of	 changes	 in	 surface	 area–volume	 relationships	 with	 size	
and	hence	weight	(Hendriks	et	al.	2001;	Hendriks	and	Heikens	2001).	Such	allometric		
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relationships	place	constraints	on	uptake	(of	chemicals	as	well	as	food,	oxygen,	etc.)	
and	excretion	processes,	metabolic	rates,	and	most	other	physiological	rate	processes	
(Calow	and	Townsend	1981).	Differences	in	body	size	may	become	an	issue	in	media	
extrapolation	to	the	extent	that	media	properties	influence	organism	growth	rates	and	
body	size.	For	example,	the	adult	body	size	of	marine	species	may	be	somewhat	lower	
in	estuarine	populations	than	in	fully	marine	populations,	and	such	differences	in	body	
size	could	in	principle	exacerbate	or	ameliorate	other	effects	of	salt	content	on	chemical	
exposure	or	toxicity.	Soil	infauna	species,	living	in	the	interstitial	space	between	the	soil	
grains,	are	generally	smaller	in	size	than	species	living	in	a	less	confined	habitat.

2.3.3	 exTrapolaTion	relaTed	To	Modifiers	of	ToxiciTy

Modifiers	of	 toxicity	are	generally	not	specific	for	particular	media	and	matrices.	
In	 applying	media	 and	matrix	 extrapolation	 techniques,	 however,	 these	modifiers	
should	be	considered	as	boundary	conditions	for	the	validity	of	the	applied	models.	
Examples	are	discussed	below.

2.3.3.1	 temperature	as	a	Modifier	of	toxicity

Temperature	is	one	of	the	most	important	variables	that	determines	the	distribution	
and	abundance	of	species	(Cossins	and	Bowler	1987)	and	imposes	critical	limits	on	
fitness.	As	a	result	of	increasing	metabolic	rate,	increasing	temperature	can	increase	
the	 uptake	 and	 toxicity	 of	 contaminants	 by	 poikilothermic	 species,	 but	 may	 also	
increase	rates	of	detoxification	and	excretion	of	 toxicants	(e.g.,	pyrethroid	insecti-
cides;	National	Research	Council	of	Canada	[NRCC]	1987).	Temperature	extremes	
in	themselves	are	stressful	to	organisms,	causing	induction	of	various	stress	proteins,	
which	may	be	associated	with	fitness	costs	(Hoffmann	et	al.	2003).

2.3.3.2	 Low	oxygen	as	a	Modifier	of	toxicity

Decreased	oxygen	concentrations	(hypoxia	and	anoxia)	can	alter	the	fate	of	chemi-
cals	and	hence	influence	exposure.	However,	reduced	environmental	oxygen	levels	
can	act	as	an	additional	source	of	stress,	particularly	for	aquatic	species.	Some	spe-
cies	may	decrease	their	aerobic	respiration	rates	as	environmental	oxygen	concentra-
tions	decline,	and	may	or	may	not	increase	anaerobic	respiration	rates	in	turn	(e.g.,	
Linke-Gamenick	et	al.	2000).	From	a	medium	and	matrix	point	of	view,	oxygen	lev-
els	in	organic-rich,	shallow	aquatic	systems	can	show	substantial	diurnal	variations	
as	a	result	of	changes	in	rates	of	photosynthesis	and	respiration	of	primary	produc-
ers.	Organisms	living	closest	to	the	bottom	will	likely	experience	greater	temporal	
variations	in	oxygen	than	organisms	living	closest	to	the	water	surface.	Because	at	
least	 some	 toxicants	 may	 be	 expected	 to	 increase	 oxygen	 demand	 (Newman	 and	
Unger	2003),	without	the	capacity	to	move	(i.e.,	diurnal	migration),	organisms	could	
experience	enhanced	toxicity	at	reduced	oxygen	levels.

2.3.3.3	 Resource	Limitation	as	a	Modifier	of	toxicity

Although	populations	of	organisms	employed	 in	 toxicity	 tests	 (especially	 chronic	
tests)	are	generally	maintained	under	conditions	of	adequate	food	and	other	limiting	
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resources,	field	populations	will	often	exist	under	conditions	of	density-dependent	
resource	limitation.	Competition	for	food,	space,	light,	or	other	key	variables	keeps	
populations	from	growing	exponentially.	Although	population	size	may	temporar-
ily	exceed	carrying	capacity,	over	 the	 long	 term,	average	population	growth	rates	
will	not	exceed	zero.	Studies	that	have	compared	the	combined	effects	of	toxicants	
and	density-dependent	factors	(largely	food	availability)	on	population	dynamics	are	
somewhat	equivocal.	Partly,	this	appears	to	be	a	result	of	experimental	design	con-
straints	(Forbes	et	al.	2001b).	At	this	point,	the	weight	of	evidence	indicates	that	toxi-
cant	effects	on	population	growth	rate	are	less	in	density-limited	populations	than	in	
exponentially	growing	populations	(Sibly	et	al.	2000;	Forbes	et	al.	2003).	However,	
there	are	a	number	of	complicating	issues	related	to	the	form	of	the	density	depen-
dence	(Grant	1998;	Barata	et	al.	2002a),	the	relative	strengths	of	the	density	versus	
toxicant	effects	(Linke-Gamenick	et	al.	1999),	and	effects	on	other	population-level	
endpoints	such	as	carrying	capacity	(Forbes	et	al.	2003).

2.3.3.4	 Presence	of	other	toxicants

The	presence	of	other	chemicals	 in	 the	exposure	medium	(or	 in	other	media)	can	
influence	the	response	of	organisms	to	single	contaminants	in	the	mixture.	Chemicals	
may	interact	additively,	synergistically,	or	antagonistically,	and	there	are	a	number	of	
approaches	available	to	model	such	interactions	(Van	Leeuwen	and	Hermens	1995;	
and	see	Chapter	5	on	mixture	toxicity).	Klerks	(1999a)	has	argued	that	it	is	less	likely	
for	exposed	organisms	to	adapt	to	complex	mixtures	than	to	single	chemicals.

2.4	 eXtRAPoLAtion	tooLs	AVAiLABLe

Table	2.4	gives	an	overview	of	available	media	and	matrix	extrapolation	tools	and	mod-
els	that	will	be	discussed	in	the	following	sections.	In	the	layout	of	the	table,	a	distinc-
tion	is	made	between	methods	that	are	mainly	related	to	exposure	and	bioavailability,	
methods	that	are	mainly	related	to	biological	phenomena	and	properties	that	modulate	
effects,	and	methods	that	deal	with	a	combination	of	both.	Where	possible,	it	is	indi-
cated	whether	the	method	is	restricted	to	a	certain	medium	(water	or	soil)	and	whether	
the	method	is	based	on	knowledge	of	underlying	processes	(mechanistic)	or	on	statisti-
cal	 relationships	established	 in	dedicated	experiments	 (empirical).	Furthermore,	 the	
methods	have	been	grouped	according	to	the	types	of	toxicants	involved	(inorganic	or	
organic	or	pesticide).	The	last	3	columns	in	the	table	give	an	indication	of	the	input	
required	for	toxicant,	media	and	matrix,	and	species	properties,	respectively.

2.4.1	 exTrapolaTion	Tools	relaTed	To	exposure	
and	BioavailaBiliTy	of	MeTals

2.4.1.1	 toxic	Metal	speciation	Models	for	Water

In	aquatic	ecosystems,	complexation	to	organic	and	inorganic	ligands	and	competi-
tion	between	toxic	metals	and	Ca	or	Mg	ions	for	biological	adsorption	sites	reduce	
the	actual	amount	of	metal	available	for	uptake	by	organisms.	Chemical	equilibrium	
models	applicable	to	natural	systems	include	RANDOM	(Murray	and	Linder	1983;	
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tABLe	2.4
tools	and	models	for	media–media	and	matrix	extrapolation

Model	or	tool
toxicant	
			type

		toxicant	
properties Matrix	properties organism	properties

Methods	mainly	related	to	exposure	and	bioavailability

Metal	speciation
Mechanistic
Retrospective
Water

Metal Identity	of	metal pH,	ionic	strength,	
ligands,	sorption	
(clay),	and	
interactions	(e.g.,	
pH–clay)

NA

Metal	
	 speciation
Empirical
Retrospective
Soil	or	sediment

Metal Identity	of	metal pH,	ionic	strength,	
ligands,	sorption	
(clay),	and	
interactions	(e.g.,	
pH–clay)

NA

Biotic	ligand
Mechanistic
Retrospective
Water
Species	specific

Metal Identity	of	metal pH,	ionic	strength,	
ligands,	sorption	
(clay),	and	
interactions	(e.g.,	
pH–clay)

Identity	of	species	and	
identity	of	bioligands

BCF-1
EP-organic	1
Mechanistic
1-compartment
Retrospective
Water

Organic KOW,	Ka NA Lipid	content

BCF-2
EP-organic	1
Mechanistic
Multicompartment
Retrospective
Water

Organic KOW,	Ka DOC	
Suspended	OM

Lipid	content

BCF-3
EP-organic	3
Mechanistic
Multicompartment
Retrospective
Soil	or	sediment

Organic KOW,	Ka OM Lipid	content

McKay,	
multicompartment	

	 models
Mechanistic
Prospective
Diverse	media

Organic KOW,	Ka,	Kwa,	Kdeg Vol,	T NA

	
(Continued)
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Bryan	 et	 al.	 1997;	 Woolard	 and	 Linder	 1999),	 MINTEQA2	 (Allison	 et	 al.	 1991),	
PHREEQE	(Parkhurst	et	al.	1990),	CHESS	(Santore	and	Driscoll	1995),	and	WHAM	
(Tipping	and	Hurley	1992;	Tipping	1994;	Tipping	1998).	The	solution	to	all	chemical	
equilibrium	problems	depends	on	simultaneously	satisfying	all	the	mass	balance	and	
mass	action	equations	for	the	defined	system.	For	metal	speciation	in	aqueous	sys-
tems,	this	includes	inorganic	complexation	to	ligands	such	as	hydroxide	or	fluoride	
and	mineral	surfaces	as	well	as	organic	complexation	to	binding	sites	within	natural	
organic	matter	(NOM).

As	an	example,	the	mechanistic	computer	program	MINTEQA2	(Allison	et	al.	
1991)	is	an	equilibrium	speciation	model	that	can	be	used	to	calculate	the	equilib-
rium	composition	of	dilute	aqueous	solutions	in	the	laboratory	or	in	natural	aque-
ous	systems.	The	model	is	useful	for	calculating	the	equilibrium	mass	distribution	
among	dissolved	species,	adsorbed	species,	and	multiple	solid	phases	under	a	variety	
of	conditions	including	a	gas	phase	with	constant	partial	pressures.	A	comprehensive	
database	is	included	that	is	adequate	for	solving	a	broad	range	of	problems	without	
the	need	for	additional	user-supplied	equilibrium	constants.	The	model	employs	a	
predefined	set	of	components	 that	 includes	free	ions	such	as	Na+	and	neutral	and	
charged	complexes	(e.g.,	H4SiO4	and	Cr(OH)2+).	The	database	of	reactions	is	written	
in	terms	of	these	components	as	reactants.

Matrix	extrapolation	undertaken	by	this	model	means	that	the	model	calculates	
the	free	metal	ion	concentration	as	the	toxic	species,	given	a	total	metal	concentra-
tion	and	site-specific	conditions	in	terms	of	water	hardness,	DOC,	salinity,	and	so	
on.	As	an	example,	according	to	the	MINTEQ	model,	a	type	of	water	with	a	hard-
ness	of	10	mg/L	CaCO3,	a	DOC	content	of	10	mg/L,	a	 total	Zn	concentration	of		
10	mg/L,	and	a	variable	pH	gives	a	distribution	of	Zn	species	as	given	in	Table	2.5.	

tABLe	2.4	(ContinUeD)
tools	and	models	for	media–media	and	matrix	extrapolation

Model	or	tool
toxicant
			type

		toxicant	
properties Matrix	properties organism	properties

Methods	mainly	related	to	biological	properties’	modulating	effects

Species	sensitivity	
	 distributions
Mainly	water
Empirical

All TMoA
EC50
NOEC

NA Taxon	identity	
Taxonomic	level

Mixed	methods	(both	exposure	and	sensitivity	related)

Ecological	models
Mixed	empirical	
and	mechanistic

Very	diverse	media
Site	and	situation	
specific

All KOW,	Ka	
degradation	rate	
(DT50)

Diverse	properties Lipid	content,	
behavior	(feeding),	
body	size,	and	
metabolism
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It	is	obvious	that	the	bioavailable	Zn2+	fraction	is	strongly	pH	related.	At	all	but	the	
highest	pH,	a	considerable	part	of	the	total	zinc	concentration	is	complexed	by	DOC	
and	thus	rendered	biologically	inactive.	At	higher	pH,	an	increasing	fraction	of	total	
Zn	is	made	less	available	by	hydroxide	formation.

2.4.1.2	 toxic	Metal	speciation	Models	for	soil	and	sediment

2.4.1.2.1 Soil
There	 is	no	mechanistic	equilibrium-partitioning	model	for	 toxic	metals	available	
for	the	soil	and	sediment	compartments.	However,	the	free	metal	ion	concentration	
in	pore	water	that	is	considered	relevant	for	uptake	in	biota	(water	exposure	route)	
may	experimentally	or	empirically	be	related	to	the	total	metal	content	of	the	soil,	
according	to	equation	2.1	(above).

To	obtain	insight	in	metal	partitioning	in	field	soils,	and	to	enable	derivation	of	
(pragmatic)	methods	for	calculating	Kp	values,	experimental	data	on	in	situ	partition-
ing	of	6	metals	(Cd,	Cr,	Cu,	Ni,	Pb,	and	Zn)	were	collected	in	Dutch	field	soils	(de	
Groot	et	al.	1998).	The	total	metal	concentrations	in	the	soil	were	determined	after	
aqua	regia	digestion.	The	free	metal	ion	concentrations	in	pore	water	were	calculated	
from	the	total	pore	water	concentrations	measured	by	applying	the	MINTEQ	model	
with	the	input	of	measured	pore	water	characteristics:	pH,	DOC,	Ca,	Mg,	Na,	K,	Fe,	
Mn,	Al,	Cl,	NO3,	SO4,	and	PO4.	In	addition,	soil	properties	assumed	to	affect	metal	
partitioning	were	quantified:	soil	pH	(CaCl2	extraction),	sequential	loss-on-ignition	
percentages	of	soil	(LOI1	=	temperature	up	to	550	°C,	equals	percentage	of	organic	
matter	[OM];	followed	by	LOI2	=	temperature	up	to	1000	°C,	equals	percentage	of	
carbonates),	soil	cation	exchange	capacity	(CEC),	weight	percentages	of	clay	particles	

tABLe	2.5
illustration	of	the	distribution	of	chemical	species	in	an	example	output		
of	the	MinteQ	speciation	program

pH 6 7 8 9 10

species %	of	total	
[Zn]

%	of	total	
[Zn]

%	of	total	
[Zn]

%	of	total	
[Zn]

%	of	total	
[Zn]

Zn+2 85.355 82.459 73.196 23.533 0.422
Zn	DOC 14.128 15.916 15.312 9.412 0.359
ZnOH+ 0 0.766 6.815 22.176 3.994
Zn(OH)2	(aq) 0 0.012 1.059 34.614 62.451
Zn(OH)3

– 0 0 0 1.786 32.168
Zn(OH)4

–2 0 0 0 0 0.137
Zn(CO3)2

–2 0 0 0 0.021 0
ZnCO3	(aq) 0 0.384 3.223 8.356 0.465
ZnHCO3

+ 0.505 0.463 0.388 0.1 0

Note:	Input:	hardness	=	10	mg/L	CaCO3;	DOC	=	10	mg/L;	Total	Zn	=	10	mg/L;	and	pH	between	6	and	10.
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(lutum	fraction	<	2	μm),	fine	silt	particles	(between	2	and	38	μm),	and	the	amount	of	
aluminum	oxide	and	iron	oxide	(mmol/kg).	Multiple	linear	regression	was	applied	
to	 the	set	of	soil	properties	(including	DOC	[mg/L]	 in	pore	water),	and	Kp	values	
were	thus	derived.	As	carbonate	acts	as	an	additional	sorption	phase	in	soils	with	pH		
values	>	 7.5,	 a	 distinction	 was	 made	 between	 soils	 with	 and	 without	 detectable	
amounts	of	carbonate	present.

The	extrapolation	from	total	soil	concentration	to	bioavailable	pore	water	concen-
tration	of	heavy	metals	makes	use	of	the	model	illustrated	in	equation	2.1	(above).

If	no	information	is	available	on	the	carbonate	content	of	the	soil,	or	if	carbonate	
is	present	in	detectable	quantities,	the	model	is	applied	with	the	regression	coeffi-
cients	given	in	Table	2.6.

If	the	carbonate	content	in	the	soil	is	not	detectable,	the	model	is	applied	with	the	
regression	coefficients	given	in	Table	2.7.

De	Groot	et	al.	(1998)	also	gave	regression	parameters	for	calculating	the	total	
metal	concentration	 in	pore	water	from	the	 total	concentration	 in	 the	soil.	 If	site-
specific	physicochemical	pore	water	characteristics	are	also	available,	the	predicted	
total	metal	concentration	in	pore	water	can	be	extrapolated	to	the	bioavailable	ion	
concentration	in	pore	water	by	site-specific	application	of	the	MINTEQ	model.

2.4.1.2.2 Sediment
The	most	widely	used	approach	to	model	metal	bioavailability	in	sediments	is	based	
on	 the	 tendency	 of	 many	 toxic	 metals	 (Cd,	 Cu,	 Pb,	 Ni,	 and	 Zn)	 to	 form	 highly	
insoluble	metal	sulfides	in	the	presence	of	acid-volatile	sulfide.	Metals	are	predicted	

tABLe	2.6
Multivariate	regression	formulasa

Metal Regression	equation	obtained statistics

Cu Log	Kp	=	-1.27	+	0.72	*	pH(CaCl2)	+	0.92	*	
log	LOI1%	–	0.24	*	log	Silt%

R2	adj	=	0.86,	n	=	46,	F	=	93.7,	P	<	0.001

Cr Log	Kp	=	1.89	+	0.28	*	pH(CaCl2)	+	0.40	*	
log	Fe-ox

R2	adj	=	0.72,	n	=	46,	F	=	59.9,	P	<	0.001

Ni Log	Kp	=	0.38	+	0.43	*	pH(CaCl2)	+	0.50	*	
log	Clay%

R2	adj	=	0.87,	n	=	44,	F	=	138.3,	P	<	0.001

Cd Log	Kp	=	-1.48	+	0.55	*	pH(CaCl2)	+	0.58	*	
log	LOI1%	+	0.40	*	log	Al-ox

R2	adj	=	0.87,	n	=	45,	F	=	103.0,	P	<	0.001

Pb Log	Kp	=	0.07	+	0.70	*	pH(CaCl2)	+	0.56	*	
log	Silt%

R2	adj	=	0.84,	n	=	45,	F	=	113.6,	P	<	0.001

Zn Log	Kp	=	-1.04	+	0.55	*	pH(CaCl2)	+	0.60	*	
log	Clay%	+	0.21	*	log	Al-ox

R2	adj	=	0.87,	n	=	46,	F	=	102.9,	P	<	0.001

a	These	formulae	describe	the	quantitative	relationship	between	log-transformed	partition	coefficients	of	
Cu,	Cr,	Ni,	Cd,	Pb,	and	Zn	(defined	as	the	ratio	of	the	total	metal	concentration	in	the	solid	phase	
[aqua	regia	digestion]	and	the	free	metal	ion	concentration	in	the	pore	water)	and	soil	and	pore	water	
characteristics.
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to	be	unavailable	(and	sediments	nontoxic)	if	the	molar	sum	of	the	concentrations	of	
metals	is	less	than	the	molar	concentration	of	AVS	(Ankley	et	al.	1996).

2.4.1.3	 Biotic	Ligand	Model

The	biotic	ligand	model	is	gaining	interest	in	the	scientific	and	regulatory	communi-
ties	for	predicting	and	evaluating	metal	bioavailability	and	toxicity	of	metals,	because	
it	takes	into	account	both	metal	speciation	and	interactions	at	receptor	and	transport	
sites	at	the	organism–water	interface	(de	Schamphelaere	and	Janssen	2002).	Allen	
(1999)	linked	existing	water	chemistry	models	such	as	the	CHESS	model	(Santore	
and	Driscoll	1995)	and	the	WHAM	model	(Tipping	1994)	to	ecotoxicological	end-
points	(e.g.,	Playle	et	al.	1993a,	1993b).	The	resulting	BLM	(Figure	2.3)	incorporates	
chemical	 interactions	 between	 dissolved	 organic	 ligands	 (humic	 acids	 and	 fulvic	
acids)	and	inorganic	ligands	(Ca++	and	Mg++),	between	toxic	metal	ions	and	dissolved	
organic	ligands	(humic	acids	and	fulvic	acids)	and	inorganic	ligands	(OH–,	SO4

––,	
CO3

–,	Cl–,	 and	HCO3
–),	 as	well	 as	between	cations	 (Ca++,	H+,	Na+,	 and	Cu++)	 and	

biological	binding	sites	(biotic	ligands).	This	BLM	is	based	on	a	conceptual	model	
similar	to	the	gill	site	interaction	model	(GSIM)	originally	proposed	by	Pagenkopf	
(1983)	and	the	free	ion	activity	model	(FIAM)	as	described	by	Campbell	(1995).	The	
model	 therefore	supports	 the	hypothesis	not	only	 that	 toxicity	 is	related	 to	 total	or	
dissolved	metal	concentration,	but	also	that	metal	complexation	and	interaction	at	the	
site	of	action	need	to	be	considered.	The	BLM	has	been	calibrated	toward	acute	eco-
toxicity	endpoints	(LC50	and	EC50)	for	fish	and	invertebrates	and	is	under	revision	

tABLe	2.7
Multivariate	regression	formulasb

Metal Regression	equation	obtained statistics

Cu log	Kp	=	-1.03	+	0.64	*	pH(CaCl2)	+	0.20	*	
log	Clay%	+	0.35	*	log	Al-ox

R2	adj	=	0.92,	n	=	28,	F	=	98.5,	P	<	0.001

Cr log	Kp	=	2.46	+	1.03	*	log	CEC	+	0.26	*	
pH(CaCl2)	-	0.85	*	log	LOI1%

R2	adj	=	0.77,	n	=	28,	F	=	31.3,	P	<	0.001

Ni log	Kp	=	0.48	+	0.42	*	pH(CaCl2)	+	0.43	*	
log	Clay%

R2	adj	=	0.88,	n	=	25,	F	=	91.8,	P	<	0.001

Cd log	Kp	=	-0.68	+	0.43	*	pH(CaCl2)	+	0.28	*	
log	Fe-ox	+	0.54	*	log	Al-ox	-	0.64	*	log	
DOC

R2	adj	=	0.89,	n	=	26,	F	=	50.5,	P	<	0.001

Pb log	Kp	=	0.43	+	0.55	*	log	CEC	+	0.61	*	
pH(CaCl2)

R2	adj	=	0.83,	n	=	28,	F	=	68.2,	P	<	0.001

Zn log	Kp	=	0.94	+	0.36	*	pH(CaCl2)	+	1.14	*	
log	LOI2%

R2	adj	=	0.836,	n	=	28,	F	=	69.7,	P	<	0.001

b	These	formulae	describe	the	quantitative	relationship	between	log-transformed	partition	coefficients	of	
Cu,	Cr,	Ni,	Cd,	Pb,	and	Zn	(defined	as	the	ratio	of	the	total	metal	concentration	in	the	solid	phase	[aqua	
regia	digestion]	and	the	free	metal	ion	concentration	in	the	pore	water)	and	soil	and	pore	water	charac-
teristics	for	soils	that	do	not	contain	any	detectable	carbonate.
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by	the	USEPA	for	integration	into	the	US	regulatory	framework.	To	further	validate	
this	approach	in	Europe,	an	extensive	research	project	has	been	set	up	to	evaluate	
the	applicability	of	the	BLM	not	only	for	acute	but	also	for	chronic	exposures	(de	
Schamphelaere	and	Janssen	2002).	Acute	and	chronic	models	were	established	and	
validated	 1)	 in	 European	 surface	 waters	 of	 varying	 physicochemical	 characteris-
tics	(Bossuyt	et	al.	2004),	2)	during	a	multispecies	mesocosm	test	setup	(Schaëfers	
2002),	 and	 3)	 using	native	organisms	 collected	 in	European	 waters	 (Bossuyt	 and	
Janssen	2004).

A	detailed	description	of	the	biological,	chemical,	mathematical,	and	computa-
tional	aspects	of	the	BLM	can	be	found	in	Di	Toro,	Allen	et	al.	(2001a),	Santore	et	al.	
(2001),	De	Schamphelaere	and	Janssen	(2002),	and	Gorsuch	et	al.	(2002).

2.4.1.3.1 BLM Model Application
A	BLM	for	estimating	 the	effects	of	metal	exposure	 in	fish	and	Daphnia	 is	pub-
licly	available	from	the	Internet	(HydroQual	2005).	Thermodynamic	information	to	
describe	metal	accumulation	at	the	biotic	ligand	is	based	on	the	work	of	Playle	and	
others	(Playle	et	al.	1993a,	1993b;	Janes	and	Playle	1995).	Site	concentrations	and	
binding	constants	for	gill	interactions	with	metals,	hydrogen	ions,	and	cations	such	
as	calcium,	magnesium,	and	sodium	provide	a	functional	description	of	metal	accu-
mulation,	whereas	critical	biotic	ligand	concentrations	are	based	on	a	dose–response	
relationship	of	mortality	to	accumulation	at	the	gill	(MacRae	1994).	BLM	predic-
tions	for	copper	and	silver	toxicities	to	freshwater	fish	have	been	compared	to	results	
from	bioassay	 studies	 (Janes	and	Playle	1995;	Erickson	et	 al.	1996).	For	 example,	

WHAM V GSIM

H+

ZnOH+

ZnCO3

DOC

pH
Alkalinity

Zn2+

Ca2+

Mg2+

Na+

Biotic ligand

Toxic action or 
transport sites

DOC

FiGURe	2.3	 Schematic	representation	of	a	BLM	for	zinc	and	fish	(de	Schamphelaere	and	Jans-
sen	2002).	GSIM	is	the	Gill	Surface	Interaction	Model	(Pagenkopf	1983).	WHAM	V	is	the	fifth	
version	of	a	chemical	equilibrium	model	for	water,	sediment,	and	soil	of	ion	binding	by	humic	sub-
stance	(Tipping	1994).	Source:	Redrawn	from	data	from	de	Schamphelaere	and	Janssen	(2002),		
Pagenkopf	(1983),	and	Tipping	(1994).

73907_C002.indd   54 4/23/08   11:04:27 AM



Matrix and Media Extrapolation 55

Erickson	et	al.	(1996)	showed	that	a	wide	range	in	96-hour	LC50	values	resulted	from	
adjustments	to	the	pH,	DOC,	alkalinity,	and	hardness	conditions	of	the	test	waters.	
The	BLM	was	used	 to	predict	 the	effects	of	copper	exposure	 to	 fathead	minnow.	
Input	data	to	the	BLM	included	measured	water	chemistry	(pH,	DOC,	Ca,	Mg,	Na,	
K,	Cl,	SO4,	and	CO3	concentrations).	The	BLM	predicts	the	total	copper	LC50	val-
ues,	based	on	the	amount	of	copper	necessary	for	accumulating	lethal	biotic	ligand	
concentrations	as	presented	in	Table	2.8.	The	predicted	LC50	can	be	compared	to	
the	measured	total	concentrations	in	the	field.

2.4.1.4	 equilibrium-Partitioning	Models	for	organic	Chemicals	in	Water

2.4.1.4.1 One-Compartment Model
According	to	Bacci	(1994),	bioconcentration	is	the	accumulation	of	freely	dissolved	
contaminants	 in	water	by	aquatic	organisms	 through	nondietary	 routes.	 In	water-
only	 exposures,	 the	 primary	 route	 of	 uptake	 of	 dissolved	 contaminants	 in	 fish	 is	
across	 the	 gill	 epithelium,	 but	 depending	 on	 the	 compound,	 species,	 and	 animal	
body	size,	a	substantial	part	of	the	body	burden	(25%	to	40%)	may	penetrate	across	
the	epidermis	(Landrum	et	al.	1996).	In	many	cases,	the	toxicokinetic	behavior	of	
organic	 contaminants	 in	 aquatic	 organisms	 can	 be	 approximated	 by	 a	 first-order,		

tABLe	2.8
example	input	and	output	of	the	BLM	model	for	copper	toxicity	in	fish

input	values Valid	range

Variable Unit Value Min Max

Temperature °C 29 0.01 50

pH unit 8.45 5 9
Dissolved	organic	carbon mg/L 5.6 0.01 20
Humic	acid	% % 10 0.01 100
Total	Ca mol/L 0.0020 0.01 100
Total	Mg mol/L 0.0007 0.01 100
Total	Na mol/L 0.0033 0.01 100
Total	K mol/L 0.0002 0.01 100
Total	SO4 mol/L 0.0015 0.01 100
Total	Cl mol/L 0.0028 0.01 100
Total	CO3 mol/L 0.0038 0.01 100

output	Values Unit Value Unit Value

LC50	total	Cu mol/L 3.87E-05 mg/L 2456

Free	Cu mol/L 1.10E-07 mg/L 7.00

Active	Cu mol/L 6.28E-08 mg/L 3.99

Organic	Cu mol/L 2.62E-06
Total	organic	Cu mol/L 1.17E-05
Gill-Cu2+ nmol/g	wet	weight 4.65
Gill-CuOH+ nmol/g	wet	weight 2.68
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1-compartment	model.	The	degree	of	bioconcentration	at	steady	state,	represented	
by	the	bioconcentration	factor	(BCF),	depends	on	both	the	rate	of	absorption	and	the	
rate	of	elimination:

	 BCF	=	k1	/	k2	=	Cb	/	Cw	 (2.4)

where	k1	is	the	uptake	rate	(e.g.,	ml/h),	k2	is	the	elimination	rate	constant	for	the	
compound	(e.g.,	ml/h),	Cb	is	the	concentration	in	the	organism	at	steady	state,	and	
Cw	 is	 the	concentration	 in	water	at	steady	state.	Using	 the	freely	dissolved	water	
concentration	and	assuming	no	biotransformation,	this	BCF	represents	the	relative	
solubility	of	the	compound	in	water	versus	the	organism’s	tissue.	Biotransformation	
processes	and	active	elimination	can	reduce	 the	BCF.	The	steady-state	condition	
represents	the	maximal	accumulation	that	can	be	attained	for	a	given	set	of	expo-
sure	conditions	(Landrum	et	al.	1996).	However,	conditions	may	change	so	rapidly	
that	steady	state	may	not	be	attained	except	under	controlled	conditions,	a	problem	
that	makes	actual	bioconcentration	difficult	to	predict.	The	mechanism	of	biocon-
centration	 from	 water	 is	 comparable	 to	 the	 uptake	 mechanisms	 of	 contaminants	
from	pore	water.

Partition	coefficients	are	used	to	describe	the	distribution	of	nonpolar	organic	
compounds	 between	 water	 and	 organisms.	 It	 can	 be	 viewed	 as	 a	 partitioning	
process	 between	 the	 aqueous	 phase	 and	 the	 bulk	 organic	 matter	 present	 in	 biota	
(Schwarzenbach	et	al.	1993).	The	premise	behind	the	use	of	equilibrium	models	is	
that	accumulation	of	compounds	is	dominated	by	their	relative	solubility	in	water	
and	the	solid	phases,	respectively.	Equilibrium	models,	therefore,	rely	on	the	follow-
ing	assumptions	(Landrum	et	al.	1996):

The	compounds	are	not	actively	biotransformed	or	degraded.
There	are	no	active	(energy-requiring)	processes	dominating	the	distribution.
The	conditions	are	sufficiently	stable	for	a	quasi-equilibrium	to	occur.
Environmental	factors,	such	as	temperature,	do	not	change	sufficiently	to	
alter	the	equilibrium	conditions.
Organism	and/or	organic	matter	composition	is	not	sufficiently	variable	
to	alter	the	distribution.

A	commonly	used	partition	coefficient	 is	 the	1-octanol–water	partition	coeffi-
cient,	KOW,	which	is	the	ratio	of	a	chemical’s	concentration	in	1-octanol	to	its	con-
centration	in	water	at	equilibrium	in	a	closed	system	composed	of	octanol	and	water	
(Bacci	1994).	The	1-octanol	is	chosen	to	mimic	biological	lipids.	For	organic	chemi-
cals,	log	KOW	ranges	from	–3	to	7.	When	log	KOW	exceeds	3,	substances	are	consid-
ered	 hydrophobic	 (Elzerman	 and	 Coates	 1987).	 The	 KOW	 partition	 coefficient	 has	
been	extensively	used	as	an	estimate	of	the	BCF.	Under	the	assumptions	of	Landrum	
et	al.	(1996),	 together	with	an	estimated	lipid	content	of	about	5%	in	biota	and	an	
assumed	equal	affinity	of	the	compound	for	both	body	fat	and	octanol,	the	BCF	can	
be	calculated	by	the	use	of	BCF	=	0.048	*	KOW	(Paasivirta	1991).	This	equation	can	
vary	depending	on	the	species	used.	The	relationship	between	log	KOW	and	BCF	can	
be	viewed	by	scatterplot	analysis	(Figure	2.4).	These	plots	show	a	clear	relationship	for	

•
•
•
•

•
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many	compounds	and	over	a	broad	range	of	log	KOW	values,	but	there	are	also	several	
discrepancies.	In	general,	 there	is	a	good	linear	relation	between	log	BCF	and	log	
KOW	for	low	or	moderately	hydrophobic	compounds	(log	KOW	3	to	6),	but	this	relation	
breaks	down	for	strongly	hydrophobic	compounds	(log	KOW	>	6;	Hawker	and	Connell	
1986;	Landrum	et	al.	1996).	Hawker	and	Connell	(1986)	argued	that	the	lack	of	linear	
relationship	for	these	strongly	hydrophobic	compounds	depends	on	the	fact	that	the	
time	needed	to	reach	equilibrium	is	generally	longer	than	the	exposure	time.

The	maximal	observed	value	for	log	BCF	is	acquired	for	compounds	having	a	log	
KOW	between	5	and	6	(Landrum	et	al.	1996;	Landrum	1989).	Recently,	even	a	nega-
tive	linear	relationship	between	the	biota-sediment	accumulation	factor	(BSAF)	and	
log	KOW	was	demonstrated	for	very	hydrophobic	polychlorinated	biphenyls	(PCBs;	log	
KOW	>	6.7;	Maruya	and	Lee	1998).	This	negative	relationship	is	thought	to	be	due	to	the	
difficulty	of	the	relatively	large	molecules	in	penetrating	membranes	because	of	diffu-
sion	and	blood	flow	rate	limitations.	In	addition,	it	has	become	evident	that	1-octanol	is	
not	an	ideal	solvent	for	larger	molecules	(Landrum	and	Fisher	1998).	The	equilibration	
model	has	been	criticized	for	its	fundamental	assumptions	of	negligible	metabolism,	
lack	of	steric	hindrance,	and	failure	to	consider	blood	flow	in	controlling	uptake,	dis-
tribution,	 and	 elimination.	The	key	 factor	 determining	uptake	of	 some	compounds	
appears	to	be	molecular	size	rather	than	molecular	weight,	whereas	steric	hindrance	
might	be	of	importance	for	the	transfer	between	water	and	organism	(Barron	1990;	
Landrum	et	al.	1996).	One	of	 the	 freely	available	models	 to	estimate	KOW	values	 is	
KOWWIN™	from	the	USEPA.	KOWWIN	has	been	incorporated	into	the	EPI	Suite™,	
which	is	available	on	the	Internet	(USEPA	2007).	See	Chapter	3	for	more	details.

For	the	matrix	extrapolation	process	for	nonpolar	organic	compounds	in	most	
surface	 waters,	 the	 applicability	 of	 a	 first-order,	 single-compartment	 equilibrium	
model	means	that	the	total	aquatic	concentration	of	the	toxicant	may	be	considered	

0 1 2 3 4 5 6 7

Log KOW

8

Lo
g 

B
C

F
 (

w
et

 w
ei

gh
t)

 

0

1

2

3

4

FiGURe	2.4	 Plots	of	log	BCF	versus	log	KOW	values,	showing	the	lack	of	linear	relationship	
for	very	hydrophobic	compounds.	Source:	Modified	from	De	Wolf	et	al.	(1992)	and	Barron	
(1990).
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as	entirely	available	to	the	exposed	organisms,	independent	of	differences	in	matrix	
properties.	If	the	dissolved	organic	carbon	content	in	the	water	is	low	(<	30	mg/L)	and	
the	organic	toxicant	under	consideration	is	moderately	hydrophobic	(KOW	<	3	to	4),		
the	observed	toxicity	in	laboratory	toxicity	tests	can	be	applied	without	further	cor-
rection	for	bioavailability	(see	Table	2.9).

2.4.1.4.2 Toxicant Ionization
Ionization	presents	a	complicating	factor	in	the	estimation	of	bioavailability	of	more	
polar,	dissociating	chemicals,	like	phenols,	amines,	amides,	and	a	variety	of	mod-
ern	pesticides.	Dissociation	or	ionization	is	strongly	pH	dependent.	Generally,	the	
nondissociated	 toxicant	has	a	much	higher	hydrophobicity	 than	 the	 ionized	 form.	
Therefore,	the	overall	partitioning	is	also	strongly	influenced	by	pH.	The	negative	
log	of	the	acid	ionization	constant	(pKa)	is	defined	as	the	ability	of	an	ionizable	group	
of	an	organic	compound	to	donate	a	proton	(H+)	in	an	aqueous	media.	The	computed	
quantity	is	a	measure	of	its	apparent	pKa,	or	macroscopic	dissociation	constant,	at	
equilibrium,	normally	taken	at	25	°C.	The	pKa	value	of	an	organic	compound	arises	
from	the	ionization	of	either	an	acid	or	a	base,	at	a	specific	center	in	the	structure.	
The	dissociation	(apparent)	constants	for	acid	and	base	are	commonly	expressed	as
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where	the	corresponding	equilibria	are

	

HA H O H O A

HB H O H O B

2 3

2 3

+ → +

+ → +

+ -

+ +

( )

( )

acid

base

The	pKa	of	an	acid	(or	protonated	base)	is	simply	expressed	as

	 pKa	=	–	log	(Ka)

and	that	for	[	H+	]	as

	 pH	=	–	log	([	H+])

Together,	in	conjunction	with	the	equilibrium	expressions	above,	these	result	in	the	
useful	Henderson–Hasselbach	equation:

	 pH	–	pKa	=	log([A–]	/	[HA]	)	=	log([B–]	/	[HB+])	 (2.6)

This	 equation	 indicates	 that	 at	 a	 given	 pH	 value,	 the	 basic	 form	 predominates	 if	
pKa	<	 pH,	 or	 the	 reverse	 if	 pKa	>	 pH.	 This	 form	 of	 the	 equation	 is	 useful	 when	
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interpreting	the	pH–toxicity	relationship.	The	toxicity	of	a	polar	compound	is	given	
at	a	particular	pH,	corresponding	to	a	particular	ratio	of	compound	dissociation.	If	
the	environmental	pH	deviates	from	the	pH	at	which	the	toxicity	is	determined,	a	
pH	correction	is	necessary	 to	predict	 the	appropriate	partitioning	of	 the	chemical	
between	the	biota	and	the	matrix.	As	a	rule	of	thumb,	the	ionic	form	of	the	chemical	
has	a	bioaccumulating	capacity	(KOW)	and	thus	a	toxicity	that	is	a	factor	of	10	lower	
than	the	nondissociated	parent	compound	(USEPA	2000b).	With	the	aid	of	the	dis-
sociation	formulas,	a	toxicity	correction	can	be	calculated:

Toxicity	(EC50	or	NOEC)	at	any	pH	is	inversely	proportional	to	BCF	(a	
high	toxicity	corresponds	to	a	low	EC50)	and	thus	to	KOW	pH,	according	to	
BCF	=	0.048	×	KOW	(Paasivirta	1991):

	 KOW	pH	=	KOW	nondissociated	*	(0.9	*	nondissociated	fraction	+	0.1)	 (2.7)

pHtoxicity	test	=	x:	The	nondissociated	fraction	in	the	toxicity	test	( fnd,test)	is
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pHenvironment	=	y:	The	nondissociated	fraction	in	the	environment	( fnd	env)	is
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(2.10)

A	model	for	estimating	the	dissociation	constant	pKa	from	chemical	struc-
ture	can	be	found	on	the	Internet	(ChemSilico	2005).

As	 an	 example,	 2,4-dichlorophenol	 (2,4-DCP)	 is	 an	 acidic	 compound	 with	 a	
pKa	of	7.68	and	a	KOW	nd	of	3.06	(Mackay	et	al.	1997).	Consultation	of	the	USEPA	
Ecotox	database	reveals	a	chronic	reproduction	toxicity	NOEC	value	for	Daphnia 

•
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magna	of	210	μg/L	at	a	pH	of	7	(Record	No.	847).	With	the	aid	of	the	extrapolation	
technique	presented	above,	the	pH	dependent	toxicity	is	calculated	and	presented	in	
Figure	2.5.

2.4.1.4.3 Two-Compartment or Multicompartment Models
To	estimate	the	bioavailability	of	highly	hydrophobic	chemicals	in	waters	with	a	high	
DOC	content	or	a	high	content	of	suspended	organic	matter,	equilibrium-partitioning		
models	with	more	than	only	the	biological	compartment	must	be	used.	The	reason	
for	this	is	that	the	organic	matrix	of	the	medium	competes	with	the	organisms’	lipids	
for	the	relative	solubility	of	the	contaminant.	By	the	nature	of	the	DOC	analysis	and	
the	analysis	of	suspended	particulate	organic	carbon	(POC)	in	water	—	chemical	or	
thermal	oxidation,	followed	by	detection	of	CO2	evolution	—	the	partitioning	has	to	
be	related	to	KOC	instead	of	KOW.	For	the	type	of	DOC	in	surface	waters,	KOC,	DOC	=	
KOW	*	0.62	(or	log	KOC	=	log	KOW	–	0.21;	Karickhoff	and	Brown	1979;	Kenaga	and	
Goring	 1980).	 For	 calculating	 the	 sorption	 to	 POC,	 the	 model	 PCKOCWINTM	 is	
available	from	the	USEPA.	KOC,	POC	estimations	are	based	on	the	Sabljic	molecular	
connectivity	method	with	 improved	correction	 factors.	KOC,	POC	 is	 the	 ratio	of	 the	
amount	of	chemical	adsorbed	per	unit	mass	of	organic	carbon	in	soils,	sediments,	or	
sludge	to	the	concentration	of	the	chemical	in	solution	at	equilibrium.	PCKOCWINTM	
has	 been	 incorporated	 into	 the	 EPI	 Suite™,	 which	 is	 available	 on	 the	 Internet	
(USEPA	2007).

The	fraction	of	the	total	dissolved	organic	toxicant	that	is	available	for	uptake	by	
biota	is	considered	to	be	freely	dissolved	in	water.	This	fraction	equals

	

f
K f K ffree = + × + ×

1
1 OC,DOC OC,DOC OC,POC OC,POC 	

(2.11)

where	fOC,	DOC	and	fOC,	POC	are	the	w/w	fractions	of	the	organic	carbon	contained	in	dis-
solved	and	particulate	matter,	respectively	(5	mg/L	=	0.000005).	The	organic	carbon	
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FiGURe	2.5	 Extrapolated	pH	dependence	of	Daphnia	sensitivity	to	2,4-dichlorophenol.
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content	in	surface	waters	ranges	from	near	zero	mg/L	in	alpine	lakes	to	a	maximum	
of	30	to	35	mg/L	in	murky	“brown”	or	“black”	water	types,	containing	a	visibly	large	
amount	of	humic	substances.	Table	2.9	gives	 the	available	dissolved	organic	 toxi-
cant	fractions	for	different	types	of	water	as	influenced	by	DOC	and	KOC.	From	this	
table,	it	can	be	concluded	that	only	in	the	case	of	very	hydrophobic	toxicants	should	
sorption	to	DOC	be	taken	into	account.	The	bioavailable	fraction	can	be	used	as	an	
availability	 correction	 factor	 in	matrix	 extrapolation	 for	 surface	water,	 given	 that	
both	the	total	dissolved	toxicant	concentration	and	the	DOC	or	POC	concentrations	
are	quantified,	either	by	measurement	or	by	estimation.

2.4.1.4.4 Toxicant Ionization
For	dissociating	ionizable	toxicants,	the	overall	KOC	(of	the	nondissociated	plus	the	
ionized	fraction)	can	again	(see	Section	2.4.1.4.1	on	the	single-compartment	organic	
equilibrium	 model)	 be	 calculated	 by	 KOC	=	 KOC	nondissociated	×	 (0.9	×	 nondissociated	
fraction	+	0.1)	(USEPA	2000b),	where	the	nondissociated	fraction	is	calculated	from	
the	pH	in	the	water	and	the	pKa	of	the	toxicant.	If	the	toxicity	of	the	freely	dissolved	
toxicant	is	estimated	by	comparison	with	experimental	toxicity	data,	the	pH	shift	in	
toxicity	also	has	to	be	taken	into	account.

2.4.1.4.5 AQUATOX Model
The	model	AQUATOX	(Park	1999)	is	a	general	ecological	risk	assessment	model	
that	represents	the	combined	environmental	fate	and	effects	of	conventional	pollut-
ants,	such	as	nutrients	and	sediments,	and	 toxic	chemicals	 in	aquatic	ecosystems.	
Unlike	the	steady-state	models	mentioned	above,	AQUATOX	is	a	dynamic	model	
that	includes	the	progress	of	subprocesses	in	time,	based	on	process	rate	informa-
tion.	It	may	consider	several	trophic	levels,	including	attached	and	planktonic	algae	
and	 submerged	 aquatic	 vegetation,	 invertebrates	 and	 forage,	 bottom-feeding,	 and	
game	fish;	it	also	represents	associated	organic	toxicants.	It	can	be	implemented	as	
a	simple	model	(indeed,	it	has	been	used	to	simulate	an	abiotic	system)	or	as	a	truly	
complex	food-web	model.	The	model	has	been	implemented	for	streams,	small	rivers,	
ponds,	lakes,	and	reservoirs	(Park	1999).	The	model	is	intended	to	be	used	to	evalu-
ate	the	likelihood	of	past,	present,	and	future	adverse	effects	from	various	stressors	
including	potentially	toxic	organic	chemicals,	nutrients,	organic	wastes,	sediments,	
and	temperature.	The	stressors	may	be	considered	individually	or	together.	The	fate	
portion	of	the	model,	which	is	applicable	especially	to	organic	toxicants,	includes	
partitioning	among	organisms,	suspended	and	sedimented	detritus,	suspended	and	
sedimented	 inorganic	 sediments,	 and	 water;	 volatilization;	 hydrolysis;	 photolysis;	
ionization;	 and	 microbial	 degradation.	 In	 its	 simplest	 use,	 the	 AQUATOX	 model	
can	be	applied	to	calculate	matrix-related	fate	and	effects	extrapolations	in	the	risk	
evaluation	process.	For	its	more	elaborate	applications	(e.g.,	toxicity-related	aquatic	
food-web	modeling),	 the	reader	is	referred	to	the	sections	on	ecological	modeling	
(Sections	4.5.4	and	7.3.2	in	Chapters	4	and	7,	respectively).

In	the	following	example,	the	AQUATOX	model	is	run	in	its	simplest	form	(with-
out	biota)	for	a	pond	that	is	1	m	deep,	with	surface	area	400	m2,	a	DOC	of	10	mg/L,	
and	1.2	kg/m2	organic	matter	in	the	sediment	layer.	On	day	one,	a	total	amount	of		
50	μg/L	of	 the	 insecticide	chlorpyrifos	 is	added	to	 the	water	phase	of	 this	 imagi-
nary	water	body.	The	model	results	are	presented	in	Figures	2.6	and	2.7.	From	these	
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graphs	it	is	clear	that	the	equilibrium	condition	is	never	reached	due	to	degradation	
of	 the	 toxicant.	Furthermore,	 it	 illustrates	 that	 even	 the	primary	 sorption	process	
from	water	to	DOC	takes	a	few	days.	Naturally,	hydrophobic	toxicants	also	tend	to	
adhere	to	organic	substrates	in	the	sediments	of	the	water	body.	This	phenomenon	
will	be	treated	in	Section	2.4.1.5.

2.4.1.5	 equilibrium-Partitioning	Models	for	organic	
Chemicals	in	soil	and	sediment

In	soil	and	sediment,	a	number	of	physical,	chemical,	and	biological	factors	affect	
the	bioavailability	of	organic	 contaminants.	Because	many	of	 these	determinants	
may	 simultaneously	 demonstrate	 site-specific	 variation,	 and	 because	 all	 of	 them	
influence	 toxicant	 uptake	 in	 their	 own	 right,	 the	 exposure	 and	 bioavailability	 of	
organic	contaminants	in	sediment	are	difficult	to	predict.	The	variability	in	predic-
tion	of	contaminant	accumulation,	using	log	KOW,	is	markedly	higher	for	exposure	
via	solid	media	than	for	aqueous	exposure	(Landrum	and	Fisher	1998).	The	reason	
for	this	is	that	the	organic	matrix	of	the	solid	medium	competes	more	strongly	than	
water-dissolved	organics	with	the	organisms’	lipids	for	the	relative	solubility	of	the	
contaminant.	To	overcome	this	uncertainty	in	prediction,	a	2-compartment	model	
using	 biota–sediment	 accumulation	 factors	 (BSAFs)	 has	 been	 developed.	 In	 this	
model,	the	lipid-normalized	contaminant	concentration	in	the	organism	is	divided	
by	the	carbon-normalized	concentration	in	the	sediment,	resulting	in	a	BSAF	that	is	
independent	of	the	compound’s	log	KOW.	The	independence	of	the	KOW	of	the	toxi-
cant	is	only	valid	assuming	that	body	fat	and	soil	or	sediment	organic	matter	have	
equal	affinity	for	the	toxicant.	In	their	review,	Landrum	and	Fisher	(1998)	reported	
studies	that	have	quantified	BSAFs	among	organisms	and	sediments,	in	which	the	
variance	can	exceed	a	hundredfold	between	the	lowest	and	highest	values	even	for	
the	 same	contaminant.	Spacie	 (1994)	 showed	 that	 the	 equilibration	 time	between	
contaminant	and	sediment	particles	increases	with	increasing	log	KOW	and	particle	
size,	and	may	take	considerable	time	under	some	conditions.	Therefore,	there	might	
be	a	lack	of	true	equilibrium	or	steady	state	in	any	experiment,	which	complicates	
the	interpretation	of	the	obtained	accumulation	factors.	Furthermore,	bioavailability	
is	not	necessarily	identical	for	contaminants	of	similar	hydrophobicity	throughout	
the	 sediment	 (Landrum	 and	 Fisher	 1998).	 One	 explanation	 for	 this	 could	 be	 dif-
ferences	in	the	distribution	of	contaminants	among	the	different	types	of	particles	
in	the	sediment	(Harkey	et	al.	1994).	Several	researchers	have	shown	that	organic	
contaminants	preferentially	sorb	to	small	and	organic-rich	particles.	For	example,	
Weston	et	al.	(2000)	found	that	benzo[a]pyrene	(BaP)	concentrations	in	fine-grained	
material	(<	63	µm)	were	5	to	8	times	higher	than	in	bulk	sediment.	Similarly,	Kuk-
konen	and	Landrum	(1996)	demonstrated	that	about	60%	to	70%	of	the	mass	of	BaP	
and	hexachlorobiphenyl	(HCBP)	was	associated	with	sediment	particles	in	the	31	to	
63	µm	range.	The	results	show	that	the	estimation	of	bioavailability	and	bioaccumu-
lation	of	contaminants	from	sediments	is	highly	complex.	The	relationship	between	
concentration	of	contaminants	in	sediment	and	bioaccumulation	is	not	linear	even	
when	normalized	for	organic	carbon	and	lipid,	and	additional	factors	are	probably	
required	to	make	better	predictions.
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For	 calculating	 the	 bioavailable	 fraction	 of	 an	 organic	 contaminant	 in	 soil,	
essentially	the	same	methods	apply	as	for	 the	water	compartment.	The	difference	
between	the	water	and	the	soil	or	sediment	compartments	is	mainly	caused	by	the	
possibly	of	much	higher	fraction	of	toxicant-adsorbing	refractory	organic	material	in	
soil	or	sediment	and	by	the	limited	pore	water	and	groundwater	volume.	For	peaty	
soils	 the	 organic	 fraction	 may	 be	 as	 high	 as	 80%	 w/w,	 so	 that	 the	 major	 part	 of	
hydrophobic	chemicals	will	be	adhered	to	the	soil	particles.	Because	the	transfer	of	
the	toxicant,	even	in	soil,	is	still	considered	to	be	water	mediated,	the	toxicity	in	the	
soil	or	sediment	matrix	will	generally	be	much	 lower	 than	 the	 toxicity	 in	surface	
water.	By	the	nature	of	the	type	of	analysis	generally	applied	to	generate	information	
on	the	organic	content	of	soil	or	sediment	( fOM,	fraction	weight	loss	on	ignition	at	
a	temperature	of	around	1000°C),	the	organic	sorption	coefficient	(KOM)	has	to	be	
related	to	“organic	matter”	instead	of	“organic	carbon.”	Based	on	the	average	type	of	
organic	soil	material,	the	ratio	of	 K KOM OC 	can	be	fixed	to	0.526.	For	all	toxicants, 
KOC	can	be	calculated	using	the	model	PCKOCWIM	(USEPA	2007).	The	bioavail-
able	fraction	of	the	organic	toxicant,	freely	dissolved	in	pore	water,	can	be	calculated	
using	the	method	already	specified	for	the	water	compartment:

	

f
K ffree

OM OM

=
+ ×

1
1 	

(2.12)

The	 equation	 is	 generalized	 to	 include	 polar	 compounds	 by	 applying	 the	 follow-
ing	formula:	KOM	=	KOM	nondissociated	×	(0.9	×	nondissociated	fraction	+	0.1)	(USEPA	
2000b),	where	 the	nondissociated	 fraction	 is	again	calculated	 from	 the	pH	 in	 the	
pore	water	and	the	pKa	of	the	toxicant	(see	Section	2.4.1.1)

2.4.1.6	 Mackay-type	Multicompartment	Model:	simpleBox

SimpleBox	was	created	as	a	research	tool	in	environmental	risk	assessment.	Simple-
Box	(Brandes	et	al.	1996)	is	implemented	in	the	regulatory	European	Union	System	
for	the	Evaluation	of	Substances	(EUSES)	models	(Vermeire	et	al.	1997)	that	are	used	
for	risk	assessment	of	new	and	existing	chemicals.	Dedicated	SimpleBox	1.0	applica-
tions	have	been	used	for	integrating	environmental	quality	criteria	for	air,	water,	and	
soil	in	The	Netherlands.	Spreadsheet	versions	of	SimpleBox	2.0	are	used	for	multi-
media	chemical	fate	modeling	by	scientists	at	universities	and	research	institutes	in	
various	countries.	SimpleBox	models	exposure	concentrations	in	the	environmental	
media.	In	addition	to	exposure	concentrations,	SimpleBox	provides	output	at	the	level	
of	toxic	pressure	on	ecosystems	by	calculating	potentially	affected	fractions	(PAF)	on	
the	basis	of	species	sensitivity	distribution	(SSD)	calculus	(see	Chapter	4).

SimpleBox	is	a	multimedia	mass	balance	model	of	the	so-called	“Mackay	type.”	
It	represents	the	environment	as	a	series	of	well-mixed	boxes	of	air,	water,	sediment,	
soil,	and	vegetation	(compartments).	Calculations	start	with	user-specified	emission	
fluxes	into	the	compartments.	Intermedia	mass	transfer	fluxes	and	degradation	fluxes	
are	calculated	by	the	model	on	the	basis	of	user-specified	mass	transfer	coefficients	
and	degradation	rate	constants.	The	model	performs	a	simultaneous	mass	balance	
calculation	 for	 all	 the	 compartments,	 and	produces	 steady-state	 concentrations	 in	
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the	compartments	as	output.	SimpleBox	defines	3	partially	nested	spatial	scales:	a	
regional	and	continental	scale	nested	in	a	 temperate	northern	hemisphere	scale,	a	
tropical	scale,	and	an	arctic	northern	hemisphere	scale.	Applicability	is	limited	to	
environmental	 situations	 where	 spatial	 differences	 in	 concentrations	 within	 com-
partments	or	boxes	are	negligible	or	unimportant.	The	model	is	fully	described	in	
publicly	available	RIVM	reports	(van	de	Meent	1993;	Brandes	et	al.	1996).	Advan-
tages	and	 limitations	of	multimedia	 fate	models	are	described	and	evaluated	 in	a	
SETAC	publication	(Cowan	et	al.	1995).	The	most	recent	spreadsheet	version	(3.0)	of	
SimpleBox	is	available	from	the	Internet	(den	Hollander	et	al.	2004).

2.4.1.6.1 Example of SimpleBox Use
Measured	concentrations	are	not	always	available	or	may	even	be	nonexistent,	as	in	
the	case	of	the	planned	production	of	new	substances.	A	producer	may	consider	mar-
keting	a	new	herbicide	that	is	believed	to	perform	better	with	respect	to	unwanted	
side	 effects	 (leaching	 to	 groundwater,	 runoff	 to	 surface	 water,	 volatilization,	 and	
subsequent	deposition	to	nearby	natural	ecosystems).	Modeling	may	then	assist	deci-
sion	making.

In	the	example,	SimpleBox	3.0	was	used	to	analyze	the	environmental	perfor-
mance	of	a	substitute	compound	for	existing	pesticides,	with	atrazine	as	a	reference	
compound.	SimpleBox	modeled	 the	environmental	 fate	of	 the	 agriculturally	used	
pesticides	in	a	generic	river	basin	(230	000	km2)	where	60%	of	the	land	is	used	for	
agriculture,	10%	is	urban	and	30%	is	“natural.”	In	the	calculations	it	was	assumed	
that	agricultural	soil	is	loaded	at	a	constant	rate,	that	is,	the	average	annual	pesticide	
use.	Pesticides	are	eliminated	 from	agricultural	 soil	by	degradation	and	 transport	
to	other	compartments.	Steady-state	concentrations	 in	air,	 freshwater,	coastal	sea-
water,	agricultural	soil,	and	natural	soil	were	calculated	for	the	47	most	intensively	
used	active	ingredients	in	The	Netherlands.	Thereupon,	toxic	pressures	(PAFs)	were	
derived	from	the	concentrations	in	water	(dissolved)	and	soil	(pore	water),	using	a-	
and b-parameters	of	the	log-logistic	SSDs	of	each	compound.	Results	are	shown	in	
Table	2.10.

Typical	use	rates	run	up	to	0.16	kg	of	active	ingredient	per	hectare	of	agricultural	
land	per	year	(atrazine	and	substitute:	0.12	and	0.1	kg⋅ha⋅yr–1,	respectively).	Typically	
20%	of	all	of	this	is	degraded	in	the	agricultural	soil	system:	72%	for	atrazine,	and	
98%	for	the	slightly	better	degradable	substitute.	Lesser	proportions	find	their	way	
to	air,	surface	water,	and	groundwater.	Logically,	 the	highest	pesticide	concentra-
tions	are	predicted	in	agricultural	soil;	concentrations	in	the	nontarget	compartments	
are	 typically	 much	 lower.	 For	 example,	 concentrations	 in	 seawater	 are	 roughly	 2	
orders	 of	 magnitude	 lower	 than	 concentrations	 in	 pore	 water	 of	 agricultural	 soil,	
for	both	atrazine	and	the	proposed	substitute.	Atrazine	and	the	substitute	primarily	
differ	 with	 regard	 to	 the	 proportion	 that	 volatilizes	 to	 air	 (atrazine	 0.4%,	 substi-
tute	<<	0.1%).	As	a	 result,	a	greater	concentration	difference	between	agricultural	
soil	 and	natural	 soil	 is	 predicted	 for	 the	 substitute	 than	 for	 atrazine.	 This	 is	 also	
reflected	in	the	calculated	toxic	pressures	on	ecosystems.	Atrazine	and	the	substitute	
have	approximately	equal	toxicities,	and	used	in	similar	quantities.	Toxic	pressures	
in	agricultural	soils	are	comparable,	as	are	the	toxic	pressures	in	aquatic	ecosystems.	
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tABLe	2.10
Modeled	fate,	concentrations,	and	toxic	pressures	(PAF)	of	pesticides		
for	a	generic	river	basin

Unit typical	pesticidea Atrazine substitute

Use	in	agriculture kgai⋅ha⋅yr-1 0.001 0.16 0.12	 0.1	

Air–water	partition	coefficient — 10-10 10-4 10-7 10-7

Solids–water	partition	
coefficient

— 10-1 104 8 100

Degradation	half-life	in	water d 0.2 40 18 8
Degradation	half-life	in	soil d 0.3 300 50 40

a-value	aquatic	species g⋅L-1 -7 -2.7 -3.84 -4.5

b-value	aquatic	species — 0.34 0.75 0.62 0.7

Degradation	in	agricultural	soil % 19 100 72 98
Uptake	from	agricultural	soil	by	

vegetation
% 0 45 16 0.2

Runoff	to	surface	water % 0 21 6 0.5
Leaching	to	groundwater % 0 21 6 0.5
Volatilization	to	air % 0 22 0.4 <<	0.1
Bulk	concentration	in	
agricultural	soil

g⋅kgw
-1 4	× 10-9 2	× 10-5 1	× 10-5 1	× 10-5

Concentration	in	pore	water	
agricultural	soil

g⋅L-1 4	× 10-11 3	× 10-5 4	× 10-6 3	× 10-7

Bulk	concentration	in	freshwater g⋅L-1 6	× 10-12 3	× 10-6 6	× 10-7 2	× 10-8

Concentration	dissolved	in	
freshwater

g⋅L-1 5	× 10-12 2	× 10-6 6	× 10-7 2	× 10-8

Bulk	concentration	in	coastal	
seawater

g.L-1 2	× 10-13 4	× 10-7 8	× 10-8 2	× 10-9

Concentration	dissolved	in	
coastal	seawater

g⋅L-1 2	×	10-13 4	×	10-7 8	×	10-8 2	×	10-9

Bulk	concentration	in	air g⋅m-3 1	×	10-16 1	×	10-9 2	×	10-12 3	×	10-14

Bulk	concentration	in	natural	
soil

g⋅kgw-1 8	×	10-14 2	×	10-7 8	×	10-8 3	×	10-9

Concentration	in	pore	water	
natural	soil

g⋅L-1 4	×	10-16 1	×	10-7 3	×	10-8 8	×	10-11

Toxic	pressure	agricultural	soil %b 0 24 7 5	
Toxic	pressure	freshwater %b 0 7 2 1	
Toxic	pressure	coastal	seawater %b 0 2 0.5 0.3
Toxic	pressure	natural	soil %b 0 1.4 0.2 0.03

a	5th	and	95th	percentiles	of	47	active	ingredients	modeled.
b	 Percentage	 of	 species	 exposed	 to	 a	 concentration	 higher	 than	 their	 NOEC:	 potentially	 affected		
fraction	(PAF).
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However,	toxic	pressures	on	natural	terrestrial	ecosystems	are	predicted	to	be	much	
lower	for	the	proposed	substitute.

2.4.2	 exTrapolaTion	Tools	solely	relaTed	To	species	properTies

There	are	few	specific	extrapolation	methods	that	attempt	to	extrapolate	species	sen-
sitivities	across	media	and	matrices.	The	 types	of	 interspecies	 (life-cycle	models)	
and	 intraspecies	 (allometric	 models,	 physiologically	 based	 toxicokinetic	 models,	
dynamic	energy	budget	models,	etc.)	extrapolations	only	marginally	deal	with	the	
influence	of	media	and	matrices.	The	few	extrapolations	that	have	been	investigated	
or	applied	(e.g.,	predicting	marine	species	sensitivity	from	freshwater	species	sensi-
tivity)	are	based	purely	on	empirical	correlations	between	sensitivity	distributions	of	
selected	taxonomic	groups	in	different	media	and	matrices.	Pastorok	et	al.	(2002),	
in	their	book	entitled	Ecological Modeling in Risk Assessment,	dealt	with	inter-	and	
intraspecies	extrapolations.	Species	extrapolations	are	dealt	with	in	Chapter	4.

2.4.3	 exTrapolaTion	Tools	relaTed	To	exposure	and	faTe		
and	species	sensiTiviTy

A	variety	of	aquatic	and	terrestrial	ecosystem	models	have	been	developed	to	rep-
resent	biotic	and	abiotic	structures	in	combination	with	physical,	chemical,	biologi-
cal,	 and	ecological	processes.	Several	 of	 these	may	be	particularly	promising	 for	
assessing	the	risks	of	toxic	chemicals	to	ecological	systems.	They	vary	in	terms	of	
performance,	practical	feasibility,	the	resources	required	for	site-specific	parameter	
estimation,	and	the	extent	to	which	they	have	been	or	can	be	validated.	An	excellent	
review	of	ecosystem	models	relevant	to	risk	assessment,	which	assesses	each	model	
in	 terms	 of	 its	 realism,	 relevance,	 flexibility,	 treatment	 of	 uncertainty,	 degree	 of	
development	and	consistency,	ease	of	estimating	parameters,	regulatory	acceptance,	
credibility,	and	resource	efficiency,	is	provided	by	Pastorok	et	al.	(2002,	Chaps.	9	
and	10).	These	authors	also	provided	equivalent	 reviews	of	 food-web	models	 that	
describe	feeding	relationships	or	predator–prey	relationships	among	all	or	some	spe-
cies	in	an	ecological	community	(Pastorok	et	al.	2002,	Chap.	8)	and	landscape	mod-
els	that	differ	from	ecosystem	models	in	being	spatially	explicit	and	in	potentially	
including	several	types	of	ecosystems	(Pastorok	et	al.	2002,	Chap.	11).

The	USEPA	AQUATOX	model	(Park	1999)	provides	a	possibility	to	model	toxi-
cant	effects	in	a	food	web	consisting	of	several	trophic	levels	(see	Section	2.4.1.4).	
The	effects	portion	of	the	model	includes	chronic	and	acute	toxicity	to	the	various	
organisms	modeled,	and	 indirect	effects	 such	as	 release	of	grazing	and	predation	
pressure,	increase	in	detritus	and	recycling	of	nutrients	from	killed	organisms,	dis-
solved	 oxygen	 decline	 due	 to	 increased	 decomposition,	 and	 loss	 of	 food	 base	 for	
animals.	AQUATOX	represents	the	aquatic	ecosystem	by	simulating	the	changing	
concentrations	(in	mg/L	or	g/m3)	of	organisms,	nutrients,	chemicals,	and	sediments	
in	a	unit	volume	of	water.	As	such,	it	differs	from	population	models,	which	repre-
sent	the	changes	in	numbers	of	individuals.	As	O’Neill	et	al.	(1986)	stated,	ecosystem	
models	and	population	models	are	complementary;	one	cannot	take	the	place	of	the	
other.	Population	models	excel	at	modeling	individual	species	at	risk	and	modeling	
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fishing	pressure	and	other	age	or	size-specific	aspects;	but	the	recycling	of	nutrients,	
the	combined	fate	and	effects	of	toxic	chemicals,	and	other	interdependencies	in	the	
aquatic	ecosystem	are	important	aspects	that	AQUATOX	represents	and	that	cannot	
be	addressed	by	a	population	model.

2.5	 CHoosinG	tHe	eXtRAPoLAtion	MetHoDs

An	array	of	extrapolation	types	for	matrix	and	media	extrapolations	has	been	given,	
with	specific	approaches	being	dependent	on	compound,	medium	and	matrix,	and	
species	and	ecosystem	properties.	Guidance	to	provide	a	systematic	orientation	in	
the	array	of	methods	is	useful	when	considering	their	practical	use	in	a	regulatory	
context.	 Using	 a	 tiered	 approach	 (see	 Chapter	 1),	 the	 tiers	 for	 media	 and	 matrix	
extrapolation	listed	in	Table	2.11	are	recommended.

tABLe	2.11
tiers	in	media	and	matrix	extrapolation

tier Characteristics

exposure

1 Assume	all	molecules	of	the	compound	to	be	fully	available	for	uptake	by	biota	(i.e.,	use	
total	concentrations	of	a	compound,	i.e.,	do	not	apply	any	matrix–media	extrapolation	
method	to	address	possible	differences	in	exposure	levels	between	laboratory	and	field	
conditions).

2 Assume	that	the	matrix	or	medium	influence	the	speciation	of	the	compound,	which	in	turn	
influences	exposure	(i.e.,	assume	that	the	matrix	or	medium	determine	which	proportion	
of	the	molecules	of	the	compound	is	available	for	uptake	[the	“supply”	side	of	
bioavailability,	or	physicochemical	availability	assessment],	i.e.,	apply	matrix	or	media	
extrapolation	methods	to	address	differences	in	exposure	levels	between	laboratory	and	
field	conditions).

3 Assume	that	the	matrix	or	medium	(“supply”)	influences	not	only	uptake	and	exposure	but	
also	the	biological	“demand”	in	a	species-specific	way,	due	to	an	organism’s	ecological	
preferences	and	behavior	and	its	ecophysiological	apparatus.

effects

1 Assume	that	the	exposed	organisms	experience	a	level	of	stress	caused	by	the	matrix		
or	medium	similar	to	the	level	of	stress	that	they	encountered	in	the	laboratory	tests	(i.e.,	
do	not	apply	extrapolation	methods	to	address	possible	sensitivity	differences	between	
laboratory	and	field	conditions	caused	by	additional	matrix	or	medium-associated	stress	
factors).

2 Assume	that	the	exposed	organisms	experience	a	level	of	stress	caused	by	the	matrix		
or	medium	dissimilar	to	the	level	of	stress	that	they	encountered	in	the	laboratory	tests,	(i.
e.,	do	apply	extrapolation	methods	to	address	possible	sensitivity	differences	between	
laboratory	and	field	conditions	caused	by	additional	matrix	or	medium-associated	stress	
factors).

3 As	in	Tier-2,	not	further	specified	due	to	lack	of	systematic,	broadly	applicable	concepts	or	
approaches.
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Note	that	the	number,	variety,	and	type	(empirical	or	mechanistic)	of	extrapola-
tion	approaches	are	higher	for	the	exposure	assessment	side	of	the	problem.	For	the	
effects	assessment,	 relatively	 few	methods	as	yet	exist,	 and	many	of	 them	have	a	
limited	applicability	(typical	compound,	typical	organism	group,	etc.).	Note	further	
that,	over	time,	when	scientific	concepts	improve	and	become	more	operational	and	
when	 empirical	 techniques	 are	 replaced	 by	 mechanistic	 approaches	 with	 broader	
applicability,	the	tiers	may	change	accordingly.

Given	the	tiered	system,	evidently,	any	step	in	the	exposure	and	effects	assess-
ment	can	be	considered	in	a	deterministic	or	probabilistic	way.	This	does	affect	the	
outcomes	of	the	risk	assessment,	but	it	does	not	influence	the	choice	of	extrapolation	
methods	as	guided	by	the	decision	tree	itself.

With	3	 tiers	 for	both	exposure	and	effects	 assessment,	 a	decision	 tree	can	be	
designed	 as	 outlined	 in	 Figure	2.8	 and	 described	 below.	 In	 the	 decision	 tree,	 the	

Entry

EffectsExposure

Matrix
stressful

Multi-stress
model

Does it alter
sensitivity

stop

noyes

Empirical
model
or UF

Assume
complete availability

Exposure > Effect

yes

no

Determine exposure route

stop

Select appropriate model

M

Apply model to estimate
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stop

O D E L
-

yes
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Unknown

FiGURe	2.8	 Decision	tree	for	media	and	matrix	extrapolation.
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assessor	 is	 asked	 to	 answer	 a	 series	 of	 questions,	 leading	 through	 the	 tree	 to	 the	
required	technique	at	the	appropriate	tier	in	the	assessment	scheme.

There	are	3	levels	of	questions	that	can	guide	users	to	the	available	models	for	
matrix	and	media	extrapolation:	procedure-,	compound-,	and	matrix-related	ques-
tions.	Procedurally,	 the	user	begins	 the	process	by	responding	to	a	basic	question	
of	whether	the	problem	is	a	typical	general	problem	requiring	a	tiered	and	efficient	
approach	that	starts	from	generic	approaches	and	ends	 in	specific,	or	 typical	site-	
specific,	assessment	problems.	In	the	latter	case,	one	would	start	with	site-specific	
information	in	the	earliest	stages	of	the	assessment.	Further,	typical	procedure	ques-
tions	for	matrix	and	media	extrapolation	are	whether	there	is	a	prescribed	procedure	
to	be	 followed	 (e.g.,	 enforced	by	 the	 regulatory	context),	 and	whether	a	 trigger	 is	
defined	or	to	be	defined	to	go	to	a	next	tier.

Typical	 questions	 related	 to	 the	 compound	 are	 whether	 the	 toxicity	 data	 that	
are	available	match	with	the	situation	that	is	being	investigated,	both	regarding	the	
test	matrix	and	the	assessed	matrix	(physicochemical	processes	determining	avail-
ability),	and	regarding	 the	species	 that	were	 tested	and	 the	 typical	species	for	 the	
assessed	situation	(biotic	similarity).

Typical	questions	related	to	the	matrix	are	as	follows:

What	is	the	medium	(water,	soil,	or	sediment)?
Is	there	a	need	for	intermedia	extrapolation?
What	is	the	matrix	(water	type,	soil	type,	sediment	type,	and	their	physi-
cochemical	characteristics)?
Is	there	a	need	for	intramedia	extrapolation?
What	properties	of	the	matrix	could	affect	availability	(pH,	organic	mat-
ter	content,	etc.)?
In	which	way	do	these	properties	act	in	a	compound-dependent	way?
What	properties	of	the	matrix	could	act	as	stressors?
Is	 there	 reason	 to	 believe	 that	 there	 are	 matrix-specific	 differences	 in	
sensitivity?

Typical	questions	related	to	the	biota	are	as	follows:

What	is	known	about	the	likely	routes	of	exposure?
Are	there	behavioral	issues	that	might	affect	exposure?
How	well	do	the	species	for	which	toxicity	data	are	available	relate	to	the	
species	for	which	risk	is	being	assessed?

In	 answering	 these	 questions,	 the	 risk	 assessor	 is	 guided	 to	 the	 extrapolation	
methods	provided	in	this	chapter.

2.6	 UnCeRtAinties

There	are	numerous	sources	of	uncertainty	and	variation	in	natural	systems.	These	
include	site	characteristics	such	as	water	depth	and	soil	type,	which	may	vary	from	
site	 to	 site;	 environmental	 conditions	 such	 as	 water	 flow,	 temperature,	 and	 light,	

•
•
•

•
•

•
•
•

•
•
•
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which	may	have	a	stochastic	component;	and	critical	biotic	parameters	such	as	max-
imum	photosynthetic	and	consumption	 rates,	which	vary	among	experiments	and	
representative	organisms.	In	addition,	there	are	sources	of	uncertainty	and	variation	
with	regard	 to	pollutants,	 including	pollutant	 loadings	from	runoff,	point	sources,	
and	atmospheric	deposition,	which	may	vary	stochastically	from	day	to	day	and	year	
to	year;	physicochemical	characteristics	such	as	octanol–water	partition	coefficients	
and	Henry	law	constants	that	cannot	be	measured	easily;	and	chemodynamic	param-
eters	such	as	microbial	degradation,	photolysis,	and	hydrolysis	rates,	which	may	be	
subject	to	both	measurement	errors	and	indeterminate	environmental	controls.

Increasingly,	environmental	analysts	and	decision	makers	are	requiring	probabilis-
tic	modeling	approaches	 so	 that	 they	can	consider	 the	 implications	of	uncertainty	 in	
the	analyses.	The	user	can	explore	uncertainty	by	specifying	the	types	of	distributions	
and	key	statistics	for	a	wide	selection	of	input	variables	to	the	risk	assessment	process.	
Depending	on	the	specific	variable	and	the	amount	of	available	information,	any	one	of	
several	distributions	may	be	most	appropriate.	A	log-normal	distribution	is	the	default	
for	environmental	and	pollutant	loadings	and	concentrations.	A	sequence	of	increasingly	
informative	distributions	should	be	considered	for	most	parameters.	If	only	2	values	are	
known	and	nothing	more	can	be	assumed,	the	2	values	may	be	used	as	minimum	and	
maximum	values	for	a	uniform	distribution;	this	is	often	used	for	parameters	where	only	
2	values	are	known.	If	minimal	information	is	available,	but	there	is	reason	to	accept	a	
particular	value	as	most	likely,	perhaps	based	on	calibration,	then	a	triangular	distribu-
tion	may	be	most	suitable.	Note	that	the	minimum	and	maximum	values	for	the	distri-
bution	are	constraints	 that	have	zero	probability	of	occurrence.	 If	additional	data	are	
available	indicating	both	a	central	tendency	and	spread	of	response,	such	as	parameters	
for	well-studied	processes,	then	a	normal	distribution	may	be	most	appropriate.

The	 extrapolation	 methods	 related	 to	 differences	 in	 media	 and	 matrices	 are	
mainly	governed	by	sorption	processes.	Therefore,	uncertainty	analysis	should	try	to	
address	toxicant	properties	related	to	sorption	(KD,	KOW,	Ka,	etc.)	and	matrix-specific	
characterization	of	 sorption	 sites	 (qualitative	 and	quantitative).	Some	of	 the	 com-
puterized	models	for	exposure	and	effects	assessment	explicitly	include	options	for	
treating	key	variables	as	probability	distributions	(e.g.,	AQUATOX).

In	general,	the	relationship	between	the	concentration	of	a	contaminant	in	the	
pore	water	and	the	total	concentration	in	soil	is	rather	uncertain	due	to	geographi-
cal	differences	and	lack	of	knowledge.	The	following	are	a	few	points	that	can	be	
addressed	to	improve	our	ability	to	make	reliable	availability	predictions:

Organic	matter	is	an	important	agent	in	soils	for	adsorbing	metals	as	well	
as	organic	contaminants.	However,	part	of	the	organic	matter	might	be	in	
solution	(DOC).	As	a	consequence,	sorption	onto	organic	matter	might,	in	
some	cases,	increase	the	total	concentration	in	the	pore	water	and	thus	the	
mobility	of	the	toxicant.	In	other	words,	the	influence	of	organic	matter	is	
not	unequivocal.
In	many	references	that	describe	the	relationship	between	the	concentra-
tion	of	a	contaminant	in	the	pore	water	and	the	total	concentration	in	soil,	
the	kind	of	pore	water	concentration	assessed	(inclusive	or	exclusive	of	
organic	and	inorganic	metal	complexes)	is	not	mentioned.

•

•
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Although	many	soil	organisms	are	exposed	to	the	freely	available	metal	
fraction,	other	organisms	show	adverse	effects	due	to	intake	of	contami-
nated	soil	particles.	In	the	latter	case,	the	freely	available	metal	fraction	is	
not	the	right	key	parameter	for	assessing	ecotoxicological	effects.
In	general,	the	relationship	between	the	concentration	of	a	contaminant	in	
the	pore	water	and	the	total	concentration	in	soil	varies	with	soil	depth	due	
to	variations	in	soil	characteristics.	Because	soil	samples	in	most	experi-
ments	are	taken	in	the	upper	soil	layer,	where	at	least	the	organic	matter	
content	 is	 relatively	 high,	 the	 calculated	 available	 fraction	 of	 contami-
nants	 generally	 underestimates	 the	 actual	 average	 available	 fraction	 of	
contaminants	for	the	whole	unsaturated	soil	profile.
The	best	experimental	setup	to	derive	the	relationship	between	the	con-
centration	of	a	contaminant	in	the	pore	water	and	the	total	concentration	
in	 soil	 is	 under	 discussion.	 Field	 experiments,	 especially	 those	 with	 in	
situ	contaminated	soils,	match	better	with	contaminated	sites	evaluation.	
Time-dependent	 influences	 like	 pore	 water	 content	 could	 show	 a	 large	
variation	 in	 the	pore	water	concentration	with	 time.	Laboratory	experi-
ments	suffer	from	lack	of	reality	when	spiked	soils,	sometimes	containing	
high	metal	concentrations,	are	used.

2.7	 ConCLUsions

Media	and	matrix	extrapolation	 is	mainly	concerned	with	bioavailability	and	fate	
of	toxic	substances.	To	a	large	extent,	the	properties	of	the	matrix	in	combination	
with	the	properties	of	the	toxicant	determine	the	uptake	of	a	toxicant	by	the	biota,	
and	thus	the	consequential	effects.	A	large	difference	can	be	observed	between	the	
methods	 available	 for	 calculating	 matrix	 interference	 with	 organic	 and	 inorganic	
toxicants.	 Organic	 compounds	 are	 considered	 to	 follow	 the	 rules	 of	 equilibrium	
partitioning	between	the	large-molecule	organic	constituents	of	the	matrix	and	the	
lipid	content	of	the	exposed	organisms.	A	number	of	computer-operated	models	are	
available	 for	predicting	equilibrium-partitioning	 exposure.	The	 required	 input	 for	
those	models	(partitioning	coefficients	or	fugacities	and	proportions	of	partitioning	
compartments)	is,	in	general,	easily	available.	For	inorganic	toxicants,	mainly	heavy	
metals,	 speciation	 is	considered	 to	govern	availability.	 In	 the	water	compartment,	
metal	speciation	can	be	tackled	in	a	mechanistic	way.	A	large	number	of	computer	
programs	are	available	to	calculate	the	proportion	of	the	metal	species	capable	of	
entering	the	exposed	organisms.	The	input	to	those	calculations	requires	a	quanti-
fication	of	a	number	of	water	chemical	variables	(pH,	hardness,	DOC,	etc.).	For	the	
soil	and	sediment	compartments,	the	bioavailable	fraction	of	the	metals	is,	in	gen-
eral,	empirically	related	to	a	number	of	soil	and	sediment	characteristics	(pH,	cation	
exchange	capacity,	calcium	content,	and	such).

Different	media	and	matrices	may	also	be	characterized	by	species	that	have	an	
intrinsic	susceptibility	that	is	different	for	the	toxicants	they	are	exposed	to.	However,	
knowledge	on	this	aspect	is	scarce,	and	it	is	seldom	evaluated	on	a	site-by-site	basis.

In	media	and	matrix	evaluation,	3	general	 levels	of	complexity	can	be	 recog-
nized.	The	simplest	approach	assumes	that	all	toxicants	are	completely	available	to	

•

•

•
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be	taken	up	by	the	biota.	In	this	case,	no	extrapolation	is	required.	A	slightly	more	
complicated	step	 in	 the	extrapolation	process	 requires	 the	calculation	of	bioavail-
able	fractions	of	toxicants.	The	highest	level	of	complexity	additionally	includes	the	
action	of	physiological	processes	to	the	expression	of	the	results.

Bioavailability	of	metals	in	soil	and	sediments	is	a	topic	that	requires	strengthen-
ing	from	a	scientific	point	of	view.	Chemical	speciation	models	for	metals	in	soil	and	
sediment	are	in	the	process	of	being	developed.	Media-	and	matrix-related	differ-
ences	in	intrinsic	sensitivity	of	species	comprise	a	topic	that	deserves	to	be	studied.

Bioavailability	considerations	for	both	toxic	metals	and	organic	chemicals	are	
based	either	on	sound	knowledge	of	chemical	processes	or	on	pure	empiricism.	Both	
lines	are	extensively	verified.

In	the	United	States	as	well	as	in	Europe,	the	use	of	matrix	extrapolation	tech-
niques	 for	 estimating	 the	 bioavailability	 of	 toxicants	 is	 officially	 encouraged.	 An	
example	is	the	Ohio	EPA	(1996)	recommendation	to	use	hardness-corrected	water	
quality	criteria	for	heavy	metals.	The	EUSES	(Jager	2003)	computer	program	of	the	
European	Union	for	predicting	the	risk	of	new	compounds	to	be	released	into	the	
environment	corrects	 for	partitioning	processes	 in	 the	calculation	 for	all	 types	of	
effects.
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3.1	 IntroduCtIon	and	Problem	FormulatIon

(Quantitative)	structure-activity	relationships	([Q]SARs)�	are	mathematical	models,		
and	 thus	 represent	 an	 idealized	 representation	of	 reality	based	on	 the	 theory	 that	
a	relationship	exists	between	a	chemical’s	structure,	its	physical	or	chemical	prop-
erties,	 and	 a	 measured	 biological	 activity.	 Albert	 Einstein	 stated	 that	 all	 models	
should	be	evaluated	for	 their	usefulness	relative	to	 their	domain	and	not	 to	a	per-
ceived	 reality	 such	 as	 experimental	 data,	which	 themselves	 are	 also	models.	The	
goal	in	any	(Q)SAR	modeling,	therefore,	is	to	obtain	a	mathematical	expression	that	
best	portrays	the	relationship	between	chemistry	and	biology	(Cronin	et	al.	2003).	
Between	1950	and	1970,	regression	analysis	and	other	statistical	methods	to	derive	
ecotoxicological	(Q)SARs	increased	in	use.	The	driving	mechanisms	for	this	were	
significant	reductions	in	the	costs	and	time	consumption	for	prediction	of	ecotoxico-
logical	and	environmental	properties	of	chemicals	(Walker	2003).	Under	the	USEPA	
Toxic	Substances	Control	Act	(TSCA)	of	1976,	the	USEPA	was	required	to	conduct	
a	 risk	 assessment	 and	 show	 potential	 risk	 before	 it	 could	 require	 test	 data.	 Thus	
the	USEPA	was	forced	to	use	(Q)SARs	to	predict	effect	concentrations	before	they	
could	request	toxicity	data	from	the	notifier.	Three	elements	comprise	the	relation-
ship:	1)	a	descriptor,	which	could	be	a	physical	or	chemical	entity;	2)	an	endpoint	to	
be	predicted,	perhaps	another	physical	or	chemical	property	or	a	biological	activity;	
and	3)	a	derived	relationship	between	the	descriptors	and	the	endpoint	(see	Equation	
3.1,	below).	(Q)SARs	are	used	as	the	first	tier	in	tiered	risk	assessments	and,	as	such,	
typically	result	in	the	application	of	the	highest	uncertainty	factors	for	extrapolation	
of	data,	due	to	the	relative	remoteness	of	natural	realism	in	the	model.	In	this	chap-
ter,	we	focus	on	ecotoxicological	(Q)SARs.

3.1.1	 RegulatoRy	Policies

In	contrast	 to	more	basic	science,	environmental	 science	 is	often	goal	driven	and	
should	provide	 the	basis	for	 risk	assessment,	 incorporate	precautionary	measures,	
and	 support	 decision	 and	 pragmatic	 policy	 making	 (Escher	 and	 Hermans	 2002).	
Additionally,	 more	 than	 95%	 of	 existing	 chemicals	 lack	 publicly	 available	 basic	
acute	toxicity	data	for	representative	ecotoxicological	species.	This	lack	of	knowl-
edge	emphasizes	the	need	to	develop	more	pragmatic	approaches	for	environmental	
management	 to	 meet	 the	 political	 and	 public	 goals	 of	 control	 over	 our	 chemical	
environment,	 while	 maintaining	 a	 competitive	 and	 innovative	 industry	 (Zeeman		
et	al.	1995).	The	European	Inventory	of	Existing	Commercial	Substances’	(EINECS)	
list	of	nonassessed	commercial	chemicals	comprises	roughly	100	000	different	com-
pounds,	where	chemicals	with	a	production	volume	of	between	1	and	1000	metric	
tonnes	must	be	registered	(~	30	000	substances).	In	the	EU,	risk	assessment	of	chemi-
cal	substances	is	driven	by	the	requirements	of	Directive	93/67/EEC	on	risk	assess-
ment	for	new	notified	substances	and	Commission	Regulation	(EC)	No.	1488/94	on	
risk	assessment	for	existing	substances	(a	Technical	Guidance	Document,	or	TGD).	
The	European	Union	decided	in	2001	to	develop	a	new	chemicals	policy	strategy	

�	(Q)SARs	 include	 both	 QSARs	 and	 SARs	 (structure-activity	 relationships	 without	 quantified	
predictions).
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called	 REACH	 (Registration,	 Evaluation,	 and	 Authorization	 of	 Chemicals).	 The	
policy	was	adopted	in	December	2006	and	initiated	June	2007,	and	is	set	to	be	com-
pletely	implemented	by	2012.	With	this	new	proposal	for	future	chemicals	policy,	
the	burden	of	proof	 is	 reversed	under	 the	slogan	“No	data	—	no	market.”	 In	 this	
procedure,	there	will	be	no	discrimination	between	existing	and	new	chemicals.	The	
EU	is	obliged	by	the	3	R’s	(reduce,	replace,	and	refinement)	strategy	for	animal	test-
ing	in	this	process	and	thus	places	special	emphasis	on	the	development	and	use	of	
(Q)SAR	models	to	reduce	the	use	of	animals	in	toxicity	testing	—	it	is	estimated	that	
up	to	30	animal	studies	are	needed	to	characterize	one	substance	(Danish	Environ-
mental	Protection	Agency	2001;	European	Commission	2001).	Environment	Canada	
and	Health	Canada	were	required	by	the	revised	Canadian	Environmental	Protec-
tion	Act	(CEPA)	to	categorize	23	000	substances	by	September	2006	for	persistence	
and/or	bioaccumulation	potential	and	inherent	toxicity.	Japan	initiated	its	assessment	
of	existing	chemicals	and	implemented	these	into	the	existing	premarket	evaluation	
criteria	of	new	substances	on	April	1,	2004.	The	USEPA	annually	reviews	2300	sub-
stances	under	the	TSCA	for	potential	hazards	to	human	health	and	the	environment;	
95%	of	these	have	no	publicly	available	ecotoxicological	data.	The	substance	must	
be	reviewed	by	the	USEPA	within	90	days	for	premanufacture	notification	(the	PMN	
program;	Russom	et	al.	2003).	Within	the	OECD,	(Q)SARs	can	be	applied	to	a	high-
production-volume	(HPV)	chemicals	program,	under	which	a	screening	information	
data	set	(SIDS)	is	produced.

Based	on	US	dollars,	cost	estimates	to	produce	basic	experimental	physical	prop-
erty	and	environmental	fate	data	range	from	$65,000	to	$125,000	for	1	substance.	If	
(Q)SARs	were	used,	it	would	cost	between	$17,000	to	$25,000	to	provide	all	the	basic	
physical	properties	and	environmental	fate	parameters,	yielding	savings	of	$50,000	
to	$100		000.	In	light	of	time	constraints	for	the	registration	of	chemicals,	the	number	
of	substances	being	registered,	and	the	high	monetary	savings	from	using	(Q)SARs,	
interest	in	developing	(Q)SARs	and	their	uses	in	the	regulatory	arena	has	increased	
significantly	in	recent	years	(Walker	2003).	With	this	increased	use	has	come	rec-
ognition	of	the	importance	of	calibrating	(Q)SAR	models	and	of	exercising	caution	
during	interpolation	and	extrapolation	of	data	beyond	the	models	domain,	both	of	
which	can	affect	the	magnitude	of	the	associated	uncertainty	factors	(10–10	000)	in	
risk	management.	Especially	more	recently	in	the	European	Union,	in	Canada,	and	
within	the	OECD	countries,	this	issue	is	of	urgent	importance	along	with	approaches	
to	harmonized	development	and	use	of	(Q)SARs	in	the	regulation	of	chemicals,	and	
the	definition	of	domain	of	applicability,	use,	and	magnitude	of	assessment	factors.	
Therefore,	the	OECD	started	a	new	activity	in	November	2002	aimed	at	increasing	
the	 regulatory	acceptance	of	 (Q)SARs	and	 the	 identification	of	validation	criteria	
for	(Q)SARs	in	order	to	prevent	member	countries	from	unilaterally	developing	and	
applying	 national	 and	 inconsistent	 (Q)SARs.	 General	 guidance	 on	 decision	 mak-
ing	based	on	(Q)SARs	is	not	practical,	and	should	be	left	to	the	specific	regulatory	
authority	(OECD	2003,	Section	1.4.4).	(Q)SARs	are	used	in	the	lower	tiers	of	the	risk	
assessment	process	and	have	traditionally	been	used	for	priority	setting	rather	than	
actual	 risk	assessment;	however,	 the	 importance	of	prioritization	may	be	as	great	
as	the	risk	assessment	process	itself,	because	the	consequences	of	not	selecting	the	
correct	substances	 in	priority	setting	can	be	significant	 in	 terms	of	 resources	and	
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monetary	commitment.	Because	(Q)SARs	comprise	the	first	tier	in	risk	assessment,	
they	are	intentionally	created	conservative	(to	protect	against	false	negatives).

3.1.2	 PRoblem	FoRmulation

The	 aim	of	 this	 chapter	 is	 to	 introduce	 ecotoxicological	 (Q)SARs	 in	general	 and	
give	examples	of	current	and	potential	regulatory	uses	of	(Q)SAR	models.	Because	
(Q)SARs	are	 typically	applied	in	 the	absence	of	 toxicological	data,	we	will	focus	
on	 the	 uncertainty	 associated	 with	 using	 (Q)SAR	 models	 in	 extrapolation.	 To	
this	 end,	 we	 have	 conducted	 a	 case	 study	 with	 4	 chemicals	 (2,4-dichloroaniline,		
pentachlorophenol,	nonylphenol,	and	linear	alkylbenzenesulfonate)	using	the	USE-
PA’s	EPIWIN	package	and	 the	University	of	Missouri	USEPA’s	ICE	(interspecies	
correlation	 estimation;	 Asfaw	 et	 al.	 2004)	 program	 to	 develop	 species	 sensitivity	
distributions	 (SSDs)	 for	 estimating	 5th	 percentile	 hazard	 concentrations	 (HC5).	
These	results	are	then	compared	to	those	from	toxicity	tests	with	and	without	default	
assessment	factors.

3.2	 (Q)sar	deVeloPment

3.2.1	 geneRal

The	ideal	(Q)SAR	should	have	a	well-defined	and	measurable	endpoint	based	on	a	
diverse	data	set,	and	a	statistical	method	that	is	transparent	and	appropriate	to	the	end-
point	data.	It	should	consider	an	adequate	number	of	chemicals	for	sufficient	statistical	
representation	and	include	a	reasonable	distribution	of	active	and	inactive	chemicals.	
A	wide	range	of	quantified	toxic	potency	(i.e.,	several	orders	of	magnitude)	should	be	
included	in	the	training	data	set	and	if	possible	yield	a	mode	of	action	or	mechanistic	
interpretation.	Data	sets	used	to	develop	the	model	must	meet	the	basic	requirements	
underlying	 the	 statistical	procedure	used	 to	develop	 the	 (Q)SAR	model.	The	most	
significant	limiting	factor	in	the	development	of	(Q)SARs	is	the	availability	of	high-
quality	experimental	data.	In	the		European	Union,	it	is	policy	that	if	an	approved	test	
guideline	or	protocol	is	used,	then	the	resulting	test	data	are	valid	a	priori;	however,	
accessible	laboratory	reports	may	be	too	incomplete	to	provide	an	adequate	validation	
of	the	results.	The	use	of	test	guidelines	is	not	the	same	as	good	laboratory	practice	
(GLP).	Moreover,	 the	 (Q)SAR	 is	 typically	only	 applicable	 to	 chemicals	 similar	 to	
those	used	in	its	development	(interpolation;	Walker	et	al.	2003b).

3.2.2	 use	oF	the	octanol–WateR	PaRtition	coeFFicient	(KoW)

A	significant	descriptor	for	baseline	toxicity	is	the	KOW.	Baseline	toxicity	(or	narco-
sis)	is	believed	to	be	a	result	of	nonspecific	disturbance	of	membrane	integrity	and	
function	as	a	result	of	partitioning	of	the	xenobiotic	across	biological	membranes.	
Baseline	toxicity	is	the	reference	case	for	most	(Q)SARs	because	it	 is	assumed	to	
represent	 the	 minimal	 toxicity	 of	 any	 given	 chemical.	 Basal	 cellular	 structures,	
functions,	and	membranes	are	highly	conserved	and	similar	in	most	biological	enti-
ties.	Therefore,	a	large	number	of	toxic	effects	that	target	the	cell	are	universal	in	
all	 organisms	 and	 target	 tissues.	 On	 the	 other	 hand,	 there	 are	 also	 more	 specific	
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modes	of	action	(e.g.,	uncoupling	of	oxidative	phosphorylation,	acetylcholinesterase	
[AChE]	inhibition,	etc.)	that	may	be	easily	modeled,	but	for	which	KOW	is	not	a	good	
descriptor	of	 toxicity.	The	 ability	of	 the	xenobiotic	 to	 interact,	 pass	 through,	 and	
disturb	the	cell	membrane	is	the	first	step	for	setting	up	a	predictive	model	across	
different	organisms.	The	octanol–water	partition	 coefficient	 is	 a	 ratio	of	 the	 con-
centration	of	the	chemical	in	n-octanol	and	water	when	the	2	layers	are	equilibrated	
with	each	other.	Chemicals	with	a	high	log	KOW	preferentially	partition	into	octanol.	
It	is	assumed	that	octanol	may	act	as	a	surrogate	for	tissue,	lipids,	and	membranes,	
and	 thus,	 by	plotting	 the	 log	KOW	versus	 the	 log	LC50	of	 a	 compound,	 it	 is	 pos-
sible	to	derive	a	statistical	relationship	between	the	descriptors	and	the	endpoint	(see	
Equation	3.1;	Walker	et	al.	2003b).

Most	 ecotoxicological	 (Q)SAR	software	 aims	 to	 identify	 substructures	of	 the	
compound	that	appear	mostly	in	active	molecules	and	may	therefore	be	responsible	
for	observed	activity.	The	(Q)SAR	software	will,	depending	on	the	sophistication,	
generally	start	by	identifying	possible	linear	relationships	between	KOW	and	observed	
toxicity	(baseline	toxicity	or	narcosis),	when	the	toxicity	of	an	active	compound	can	
be	explained	by	its	lipophilicity	or	when	the	chemical’s	mode	of	action	is	unknown.	
Narcosis	 is	a	reversible,	nonspecific	state	of	arrested	activity	of	proplasmic	struc-
tures	in	the	cell	membrane.	The	exact	narcosis	mechanism	remains	an	area	of	active	
research	with	hypotheses	centering	around	lipid	membrane	perturbations	or	bind-
ing	 to	 specific	 lipid	proteins	 (Bradbury	 et	 al.	 2003).	A	 survey	 showed	 that	 about	
25%	of	the	toxicity	of	tested	chemicals	could	be	explained	simply	by	their	narcosis	
effect;	within	the	remaining	75%	of	chemicals,	the	narcosis	effect	had	a	strong	influ-
ence	on	the	overall	toxicity	(Klopman	et	al.	2000).	Other	studies	suggest	that	nearly	
70%	of	all	industrial	organic	chemicals	are	estimated	to	act	via	baseline	and	polar	
narcosis	modes	of	action	 in	acute	exposures	(1	 to	14	days;	Bradbury	et	al.	2003).		
Narcosis	 related	 to	 the	 lipophilicity	of	 the	compound	may	be	modeled	using	KOW	
as	 the	only	descriptor.	Chemicals	may	have	multiple	modes	of	 action,	which	can	
obscure	(Q)SARs	that	estimate	nonspecific	narcosis.	Niederlehner	et	al.	(1998)	found	
that	a	(Q)SAR	describing	the	48-hour	EC50	as	a	function	of	log	KOW	accounted	for	
91%	of	the	variability	in	response	across	model	chemicals,	and	a	similar	(Q)SAR	for	
chronic	effects	on	reproduction	accounted	for	79%.

Through	a	careful	selection	of	descriptors	and	model	development,	the	resulting	
(Q)SARs	may	lead	to	predictions	of	reasonable	accuracy.	(Q)SAR	models	generally	
work	according	to

	 P =	f	(Dstructural, Delectronic, Dhydrophobic, Dx)	+	e	 (3.1)

where
P:	properties	(endpoint)
Ds,e,h,x:	descriptors	of	the	molecule
e:	noise

The	flowchart	in	Figure	3.1	describes	the	typical	role	of	(Q)SARs	for	risk	assess-
ment	and	prioritization	of	further	experimental	requirements,	especially	in	the	absence	
or	paucity	of	experimental	results,	where	(Q)SARs	will	play	a	significant	role.
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3.2.3	 tRaining	sets	and	aPPlicability	domains

The	overall	lipophilicity	of	a	compound	is	typically	based	on	adding	all	the	contrib-
uting	fragments	from	the	molecule	according	to	the	universal	quasi-chemical	func-
tional	group	activity	coefficient	(UNIFAC)	method.	The	UNIFAC	model	basically	
calculates	differences	in	energies,	which	subsequently	are	used	to	predict	physico-
chemical	endpoints	such	as	solubility,	partitioning,	and	so	on	(Carlsen	2003).	The	
domain	 of	 a	 (Q)SAR	 is	 established	 by	 the	 training	 set	 of	 chemicals.	 The	 model	
domain	is	defined	as	the	types	or	classes	of	compounds	that	may	be	studied	by	the	
model.	Rarely	is	a	training	set	selected	in	an	ideal	manner	due	to	the	paucity	of	high-
quality	experimental	data.	It	is	important	in	both	the	training	and	test	set	selections	
to	ensure	that	all	substructures	that	are	of	interest	or	are	likely	to	have	a	significant	
impact	on	the	results	are	adequately	represented.	Extrapolation	to	chemicals	beyond	
the	domain	of	the	model	is	not	warranted.	It	is	critical	that	the	process	of	(Q)SAR	
calibration	 should	 test	 the	 predictive	 capability	 of	 the	 relationship,	 examine	 the	
restrictions	of	its	applicability,	and	evaluate	its	mechanistic	hypothesis.	Statistically,	
a	(Q)SAR	needs	to	have	significant	goodness-of-fit	statistics	that	indicate	how	well	
the	model	is	able	to	explain	variability	in	the	training	data	set.	The	(Q)SAR	should	
also	be	evaluated	for	internal	goodness-of-prediction	with	cross-calibration.	Finally,	
it	needs	to	be	addressed	in	terms	of	its	predictive	power	by	using	data	that	were	not	
used	in	the	development	of	the	model	(external	calibration).	External	calibration	is	
not	a	substitute	for	internal	calibration	(Walker	et	al.	2003a).

The	USEPA	Office	of	Pollution	Prevention	and	Toxics	(OPPT)	(Q)SAR	Analysis	
Methods	Branch	assesses	the	model	domain	for	ecotoxicity	(Q)SAR	determined	by	
structural	attributes	used	to	predict	toxicity.	For	example,	the	domain	for	molecular	
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FIgure	3.1	 Flowchart	of	typical	role	for	(Q)SAR	in	risk	assessment.
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weight	(MW)	covers	2	types	of	toxicants:	systemic	toxicants	and	surface-active	toxi-
cants.	The	MW	domain	for	systemic	toxicants	(i.e.,	chemicals	that	have	to	be	absorbed	
to	be	toxic)	is	less	than	1000	MW	(ECOSAR	Suite	help	files).	Chemicals	with	MWs	
greater	than	1000	are	assumed	to	be	too	large	to	be	absorbed	through	membranes.	
The	MW	domain	for	surface-active	toxicants	has	no	limits.	For	example,	cationic	
chemicals,	such	as	polycationic	polymers,	can	show	high	toxicity	with	MWs	≥ 3	mil-
lion	as	long	as	they	are	dispersible	in	water	(ECOSAR	Suite	help	files).

The	domain	for	the	octanol–water	partition	coefficient	is	generally	less	than	log	
5.0	with	(Q)SARs	for	neutral	chemicals	predicting	acute	toxicity	to	fish	and	daph-
nids	and	less	than	8.0	for	(Q)SARs	predicting	chronic	toxicity	to	fish	and	daphnids.	
The	USEPA	OPPT	relies	on	predicted	KOW	as	the	basis	of	its	(Q)SARs	because	mea-
sured	KOW	is	unavailable	for	more	than	96%	of	chemicals.	The	OPPT	has	to	predict	
the	toxicity	of	every	new	chemical	regardless	of	its	position	in	the	chemical	universe.	
Thus,	the	practical	operating	range	of	(Q)SARs	for	neutral	chemicals	is	–3.0	to	5.0	
for	acute	toxicity	and	–3.0	to	8.0	for	chronic	toxicity.	The	range	of	log	KOW	values	for	
chemicals	actually	contributing	to	the	(Q)SAR	may	be	much	smaller,	for	example,	
0.0	to	3.0.	In	order	for	the	OPPT	to	do	its	assessments,	toxicity	predictions	cannot	
be	limited	to	interpolation	within	actual	test	data	determining	the	(Q)SAR,	but	must	
include	extrapolation	most	of	the	time.	ECOSAR	will	provide	EC50	values	for	all	
substructures	of	the	molecule,	and	the	choice	of	which	value	and	substructure	that	
are	the	best	descriptors	of	the	molecule’s	toxicity	is	left	to	the	user	to	decide.	Often	
the	lowest	value	is	chosen.

The	domain	of	log	KOW	for	chemical	classes	that	can	be	ionized,	such	as	amines,	
phenols,	and	aldehydes,	or	for	organometallics,	such	as	organotins,	may	range	beyond	
8.0	and	is	defined	for	each	chemical	class.	For	example,	the	log	KOW	range	for	fish	
acute	 toxicity	by	aliphatic	amines	based	on	predicted	 log	KOW	for	 the	 free	amine	
ranges	up	to	at	least	22	based	on	measured	toxicity	data.	The	USEPA	OPPT	(Q)SAR	
for	aliphatic	amines	is	based	on	predicted	log	KOW	for	the	free	amine	and	toxicity	
data	based	on	the	ionized	amine	tested	as	a	soluble	salt	(e.g.,	chloride	at	100%	active	
ingredients	[AI]	at	pH	7,	hardness	less	than	150.0	mg	L–1	as	CaCO3,	and	total	organic	
carbon	[TOC]	concentration	of	dilution	water	of	less	than	2.0	mg	L–1).	The	domain	
for	some	surfactant	(Q)SAR	classes	is	defined	by	the	USEPA	OPPT	as	the	number	of	
linear	carbons	in	the	hydrophobe	of	the	surfactant	and	can	range	from	1	to	more	than	
100	carbon	atoms	(e.g.,	the	domain	of	alkyl	sulfonate	anionic	surfactants).	The	range	
of	surfactants	with	actual	measured	toxicity	data	may	be	much	less,	for	example,	6	
to	20	carbon	atoms.	In	the	future,	the	domain	of	surfactant	classes	will	be	defined	as	
the	predicted	log	KOW	of	the	hydrophobe.

The	USEPA	OPPT	cannot	design	training	sets,	nor	can	it	measure	the	toxicity	
of	 industrial	 chemicals	directly.	The	TSCA	prescribes	 that	 the	 chemical	 industry	
test	chemicals	for	toxicity;	thus,	the	OPPT	is	dependent	upon	what	toxicity	data	are	
submitted	to	the	USEPA	under	the	TSCA.	The	OPPT	could	design	a	training	set	for	
a	(Q)SAR	such	as	fish	acute	toxicity	for	aromatic	diazoniums,	but	it	does	not	have	
the	ability	to	get	the	chemicals	in	the	training	set	tested.	Thus,	some	(Q)SARs	used	
by	the	OPPT	have	training	sets	composed	of	two	data,	one	datum,	or	no	data	—	just	
assumptions	about	intercept,	slope,	and	log	KOW	at	which	no	toxic	effects	at	satura-
tion	will	occur.
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The	ecological	structure	activity	relationship	(ECOSAR)	model	does	not	have	
any	computerized	or	 statistical	procedure	 for	 removing	outliers;	 the	USEPA	 then	
relies	upon	expert	judgment.	Toxicity	data	for	chemicals	not	used	in	a	(Q)SAR	are	
listed	with	that	(Q)SAR,	and	a	reason	is	given	for	not	using	the	data.	If	a	chemical’s	
measured	toxicity	is	more	than	10	times	of	that	predicted	by	its	(Q)SAR,	then	the	
chemical	is	investigated	for	test	conditions	that	could	have	enhanced	the	chemical’s	
toxicity	or	possible	excess	toxicity	due	to	a	more	specific	toxic	mode	of	action.	If	the	
observed	excess	toxicity	can	be	explained	by	theoretical	and/or	metabolic	consider-
ations,	then	a	new	(Q)SAR	class	is	developed	for	that	chemical,	and	other	chemicals	
could	belong	to	a	homologous	series	containing	the	tested	chemical.	An	analogous	
procedure	is	followed	for	a	chemical	whose	measured	toxicity	is	10	times	less	than	
predicted.	Test	conditions	of	the	toxicity	test	are	investigated	for	attributes	of	dilution	
water,	chemical	identity,	and/or	purity,	which	could	have	mitigated	the	bioavailabil-
ity	and	toxicity.	If	the	observed	toxicity	cannot	be	explained	by	testing	conditions,	
then	 the	chemical	 is	 investigated	 for	 reasons	why	 the	chemical	was	placed	 in	 the	
wrong	(Q)SAR	chemical	class.

3.2.4	 statistical	models

Several	different	 statistical	models	may	be	used	 in	 the	development	of	a	 (Q)SAR	
(Carlsen	2003;	Eriksson	et	al.	2003).	These	are	discussed	below.

3.2.4.1	 linear	regression

The	simplest	model	is	linear	regression.	A	series	of	descriptor	values	together	with	
the	 corresponding	 endpoint	 values	 are	 fed	 into	 the	 program,	 which	 subsequently	
calculates	the	best	straight-line	fit	through	the	data	points,	typically	requiring	an	R2	
value	of	0.95.	The	advantage	of	this	method	is	its	simplicity	and	transparency	as	well	
as	the	general	availability	of	software.	On	the	other	hand,	the	applicability	is	rather	
limited	because	only	1	descriptor	can	be	taken	into	account	in	relating	endpoints	to	
descriptor	values.

3.2.4.2	 multilinear	regression

Multilinear	 regression	 can	 be	 used	 where	 the	 investigated	 endpoint	 is	 correlated	
to	a	 linear	combination	of	 independent	variables	 (the	descriptors).	This	 technique	
assumes	linearity	over	the	whole	data	set	with	respect	to	the	descriptors.	In	addition,	
normality	of	the	data	must	be	fulfilled,	and	the	descriptors	cannot	be	intercorrelated.	
Multilinear	regression	is	widely	used	in	(Q)SAR	modeling	and	has	the	advantage	
that	all	numerical	information	is	retained	and	the	predicted	endpoint	may	be	better	
estimated.	However,	 the	model	may	eventually	“overfit”	 the	data,	after	which	 the	
addition	of	further	descriptors	causes	a	decrease	in	accuracy	of	the	model;	however,	
this	will	typically	be	disclosed	in	the	calibration	step	of	development.

3.2.4.3	 ordination	methods

Obviously,	chemical	compounds	can	be	characterized	by	a	wide	variety	of	descrip-
tors.	 Principal	 component	 analysis	 (PCA)	 typically	 transforms	 large	 numbers	 of	
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possibly	intercorrelated	“raw”	descriptors	into	a	relatively	low	number	of	mutually	
uncorrelated	latent	descriptors	that	are	linear	combinations	of	the	original	descrip-
tors.	The	developed	set	of	latent	descriptors	can	subsequently	be	used	to	summarize	
the	original	data	set	without	too	much	loss	of	information.	However,	the	problem	of	
finding	relationships	among	latent	descriptors,	as	in	multilinear	regression,	requires	
a	specific	functional	relationship	to	be	assumed.	Even	if	a	reduction	to	2	dimensions	
is	possible,	the	problem	of	ordering	remains.	Finally,	the	interpretation	of	latent	vari-
ables	is	often	not	easy.

Principal	component	(PCR)	regression	combines	the	PCA	and	the	multilinear	
regression	 methodology.	 Thus,	 by	 means	 of	 the	 principal	 component	 analysis,	
the	actual	number	of	original	descriptors	is	reduced	to	a	limited	number	of	latent	
descriptors.	These	are	 subsequently	applied	as	descriptors	 in	a	conventional	mul-
tilinear	regression	model.	The	advantages	of	PCR	appear	to	be	similar	to	those	of	
the	multilinear	regression	method;	they	are	relatively	simple.	The	method	requires	
some	calculation	effort	to	retrieve	the	actual	endpoint,	hampering	the	transparency	
of	the	method.

3.2.4.4	 Partial	least	squares

Partial	least	squares	(PLS)	regression	is	a	technique	related	to	PCR,	although	it	is	per-
formed	in	a	somewhat	different	way.	In	contrast	to	PCR,	PLS	is	a	1-step	method,	where	
the	latent	descriptors	are	determined	and	used	in	1	operation;	PLS	does	not	require	a	
separate	regression	step	as	in	the	case	of	PCR.	PLS	is,	together	with	multilinear	regres-
sion,	one	of	the	most	widely	used	techniques	for	custom-made	(Q)SAR	model	develop-
ment.	A	main	advantage	to	this	methodology	is	that	PLS,	unlike	PCR,	yields	results	
that	are	directly	related	to	the	endpoints	of	interest.	Further	advantages	are	that	it	1)	
can	handle	missing	data,	2)	generally	has	a	robust	calibration,	and	3)	can	handle	inter-
correlated	physicochemical	descriptors.	Disadvantages	include	reduced	transparency	
and	interpretability.	In	order	to	obtain	accurate	models,	a	large	number	of	samples	for	
calibration	are	generally	required.	PLS	models	can,	in	principle,	be	applied	for	inter-
polation	as	well	as	extrapolation	due	to	the	linear	nature	of	the	relationships.

3.2.4.5	 Partial	order	ranking

Partial	order	ranking	(POR)	is	based	on	elementary	methods	of	discrete	mathematics	
(e.g.,	Hasse	diagrams)	—	if	A	<	B	and	B	<	C,	then	A	<	C	in	the	ranking	procedures.	
POR	 does	 not	 assume	 linearity	 or	 any	 assumptions	 about	 distribution	 properties	
such	as	normality.	The	disadvantage	is	that	often	a	preprocessing	of	data	is	needed	
to	avoid	the	effects	of	stochastic	noise.	Combining	POR	with	PCA	may	improve	its	
usefulness.	POR	can	only	be	applied	for	interpolation.

3.2.4.6	 artificial	neural	network

The	artificial	neural	network	(ANN)	is	a	relatively	new	technique	and	possibly	the	
preferred	 one	 for	 current	 and	 future	 (Q)SAR	 development.	 Basically,	 ANNs	 can		
be	regarded	as	multinonlinear	regression	methods.	Thus,	the	neural	network	software	
simply	multiplies	the	input	by	a	set	of	weights	that	in	a	nonlinear	way	transforms	the	
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input	to	an	output	value.	ANNs	are	a	form	of	a	multiprocessor	computer	system	that	
aim	to	mimic	the	way	the	human	brain	works	with	1)	simple	processing	elements,	2)	
a	 high	 degree	 of	 interconnectedness,	 3)	 simple	 scalar	 messages,	 and	 4)	 adaptive	
interactions	between	the	elements.	Roughly	speaking,	neural	networks	operate	by	
assigning	 individual	weights	 to	 the	single	descriptors	 in	such	a	way	 that	 the	end-
points	of	the	training	set	are	mimicked	by	the	calculation.	In	this	way,	the	network	
is	trained,	which	simply	means	that	it	uses	these	examples	to	establish	(learn)	the	
actual	relations	that	exist	between	the	input	descriptors	and	the	endpoint	by	setting	
these	weights.	When	the	relationships	between	the	descriptors	and	the	endpoints	are	
established,	the	model	can	subsequently	be	used	for	prediction	endpoints	unknown	to	
the	neural	network	by	feeding	the	network	with	respective	descriptors	corresponding	
to	these	compounds.	The	major	risk	in	applying	ANN	is	overtraining,	which	eventu-
ally	leads	to	erroneous	predictions,	as	the	model	will	try	to	include	minor	variations	
in	the	data	of	the	training	set	as	being	significant.	ANN	can	exclusively	be	applied	
for	interpolation	(limited	to	the	model	domain).	Two	of	the	major	advantages	of	the	
ANN	approach	are	the	generality	and	applicability	of	the	generated	models.	Disad-
vantages	include	slow	data	processing,	the	need	for	considerable	computer	power,	
and	 a	 lack	of	 transparency;	 indeed,	ANN	models	 are	virtually	black	box	models	
(Carlsen	2003;	Eriksson	et	al.	2003).

3.2.4.7	 Comparative	molecular	Field	analysis

Comparative	molecular	field	analysis	(CoMFA)	enables	prediction	of	the	ability	of	
chemical	substances	 to	 interact	with	various	receptors.	The	basic	principle	 is	 that	
the	total	energy	of	a	system	consisting	of	the	receptor	site	and	the	substances	under	
investigation	is	minimized.	The	better	the	substance	(often	named	“ligand”)	fits	into	
the	receptor	site,	the	lower	the	energy.	The	technique	has	been	extensively	used	in	
relation	to	the	design	of	pharmaceuticals	and	recently	has	been	of	increasing	interest	
for	environmental	modeling.	The	method	is	not	limited	to	a	certain	class	of	chemi-
cals	 and	 can	 be	 recognized	 as	 a	 noncongeneric	 method.	 The	 method	 unambigu-
ously	relies	on	a	detailed	knowledge	of	 the	receptor	site.	However,	 the	number	of	
known	structures	of	 receptor	sites	 is	 rapidly	 increasing,	opening	new	possibilities	
in	 the	area	of	environmental	 (Q)SARs	 (Carlsen	2003).	The	USEPA	is	developing	
a	(Q)SAR	based	on	CoMFA	modeling	for	estrogen	receptor	binding	that	incorpo-
rates	3-D	chemical	structure	assessment,	identification	of	a	bioactive	conformer,	and	
molecular	alignment	(Schmieder	et	al.	2003).

3.2.5	 limitations	and	outlook	oF	(Q)saR	models

Accurate	 prediction	 of	 mixtures	 of	 chemicals	 is	 one	 of	 the	 future	 challenges	 for	
risk	assessment	 and	 (Q)SAR	modeling.	Most	 compounds	are	present	 in	 the	envi-
ronment	at	concentrations	far	below	their	individual	median	effective	concentration	
(EC50	or	LC50)	and	possibly	below	their	no-observed-adverse-effect	concentrations	
as	 well,	 yet	 they	 may	 contribute	 to	 substantial	 effects	 through	 combination	 with	
other	chemicals.	It	is	theoretically	possible	to	construct	a	(Q)SAR	model	to	predict	
mixture	effects;	however,	it	is	generally	difficult	to	validate	their	predictive	power,	
due	to	a	lack	of	experimental	calibration	(Altenburger	et	al.	2003).	Semiempirical	
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quantum	chemical	and	force-field	methods	are	widely	used	in	drug	discovery	and	
design,	 but	 have	 not	 been	 considered	 in	 environmental	 (Q)SAR	 contexts,	 in	 part	
due	to	a	lack	of	efficient	computational	software	and	associated	hardware	to	permit	
real-time	desktop	3-D	calculations.	However,	these	techniques	are	becoming	more	
widely	applicable,	as	is	shown	by	Schmieder	et	al.	(2003),	and	indicate	a	future	chal-
lenge	for	environmental	(Q)SAR	modeling	(Bradbury	et	al.	2003).	For	nonassessed	
chemicals,	 the	main	problems	are	 the	uncertainty	in	modes	of	action	of	 the	com-
pound	in	different	organisms,	the	whole	body	burden	(Escher	and	Hermans	2002),	
attributing	chemicals	to	specific	classes,	and,	thus,	determining	the	domain	of	the	
model	 (Bradbury	 et	 al.	 2003).	 Octanol	 is	 not	 an	 optimal	 surrogate	 for	 biological	
membranes,	 and,	 in	 future	 work,	 conventional	 physiochemical	 descriptors	 should	
be	supplemented	with	other	toxicologically	relevant	parameters	(e.g.,	derived	from	
toxicogenomic	analysis).	Thus,	 the	 internal	effect	concentration	might	be	over-	or	
underestimated	using	octanol	as	 the	model.	A	step	beyond	current	environmental	
(Q)SARs	is	setting	up	predictive	models	that	would	combine	toxicodynamic	infor-
mation	with	toxicokinetic	modeling	(physiologically	based	toxicokinetic,	or	PB-TK)	
to	analyze	and	predict	concentrations	in	target	tissue	and	target	sites.	If	combined	
with	dynamic	aspects	via	physiologically	based	 toxicodynamic	modeling,	 a	more	
complete	ecotoxicity	picture	 is	obtained.	This	will	give	 insights	 into	rate-limiting	
steps	in,	and	a	theoretically	based	mathematical	model	of,	the	whole	chain	of	events	
from	dose	to	observable	effect.	This	model	could	then	feed	back	into	the	develop-
ment	of	(Q)SAR;	such	models	have	been	developed	for	human	health	risk	assess-
ments	(Yang	et	al.	1998;	Escher	and	Hermans	2002).	However,	this	process	should	
be	done	with	care,	as	 toxicity	 is	a	complicated	effect	and	many	steps	 involved	 in	
identifying	 toxic	 modes	 of	 action	 are	 poorly	 understood	 and	 characterized.	 Ren	
(2003)	compared	predicted	toxicity	obtained	using	a	direct	(Q)SAR	toxicity	predic-
tion	based	on	narcosis	and	a	multiple	mechanism	identification	toxicity	prediction	
(Q)SAR	relative	to	the	observed	toxicity	of	206	phenols.	The	result	indicated	that	
toxicity	could	be	significantly	over-	or	underestimated	due	to	the	incorrect	identifica-
tion	of	the	mechanism	in	the	multiple	mechanism	identification	toxicity	prediction	
(Q)SAR	approach.	The	more	simple	and	direct	(Q)SAR	toxicity	based	on	narcosis	
outperformed	the	mechanism-based	(Q)SAR.	If	mechanisms	could	be	correctly	pre-
dicted	in	the	first	place,	the	mechanism-based	(Q)SAR	could	potentially	yield	more	
accurate	and	precise	predictions	than	the	more	simple	and	direct	toxicity	(Q)SAR	
(Ren	2003).	This	cannot	be	generalized	to	all	bioactivated	or	receptor-mediated	reac-
tions,	but	it	illustrates	that	the	processes	in	acute	toxicity	tests	can	be	less	specific	
and	therefore	less	complex	than	effects	in	other	tests	(Hermens	1991).	Escher	and	
Hermens	(2002)	critically	reviewed	the	role	of	modes	of	action	in	ecotoxicology	in	
relation	to	(Q)SARs,	body	burdens,	and	pharmacokinetics	and	pharmacodynamics,	
and	concluded	that	these	entities	are	very	complex	and	often	oversimplified	in	eco-
toxicology.	A	better	understanding	of	toxicological	modes	of	action	and	membrane	
integrity	 is	 required	 for	 receptor-mediated	 toxicity	 to	 be	 discernible	 in	 standard-
ized	toxicity	tests.	Currently,	standard	acute	toxicity	tests	are	designed	for	identifica-
tion	of	severe	effects,	typically	as	a	result	of	multiple	and	significant	disruptions	of	
membrane	 integrity,	and	 this	 is	why	narcosis-based	(Q)SAR	models	based	on	the	
standard	 toxicity	data	domain	will	be	predictive	of	 toxicity	 for	most	 compounds.	
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Prediction	of	receptor-mediated	toxicity	would	require	a	training	set	based	on	other	
than	short-term,	primarily	acute,	standardized	toxicity	tests.

The	predictive	ability	varies	with	the	(Q)SAR	model;	generally,	an	acceptable	
concordance	 of	 >	 70%	 to	 85%	 of	 the	 chemicals	 examined	 is	 recommended.	 Of	
course,	a	model	can	never	be	more	precise	than	the	test	data	on	which	it	was	based	
(the	training	set).	Therefore,	it	is	important	to	be	aware	of	the	precision	and	repro-
ducibility	of	the	test	data	used	for	developing	a	model.	For	example,	if	a	biological	
test	gives	wrong	results	17%	of	the	time,	the	perfect	model	based	on	these	results	will	
also	be	wrong	17%	of	the	time.	Furthermore,	the	compounds	screened	with	(Q)SAR	
models	might	possess	other	hazardous	properties	that	are	not	taken	into	account	in	
the	model	domain	or	that	are	receptor	driven.	(Q)SARs	may	be	developed	that	either	
have	high	sensitivity	and	low	specificity,	yielding	a	high	number	of	false	positives,	or	
low	sensitivity	and	high	specificity,	yielding	a	high	number	of	false	negatives.	This	
is	the	general	optimization	dilemma	for	the	development	of	(Q)SARs	(Walker	et	al.	
2003a).	Another	general	dilemma	is	the	risk	of	overfitting	models	and	decreasing	the	
transparency	of	the	model	with	increased	sophistication,	and	potential	inclusion	of	
additional	data	uncertainty.	ECOSAR	output	encompasses	multiple	effect	concen-
trations	for	a	single	chemical,	which	can	be	seen	to	represent	measurement	uncer-
tainty	within	and	among	laboratories,	which	is	not	insignificant,	with	coefficients	of	
variation	(CVs)	of	48.1%	for	Ceriodaphnia	21-day	reproduction	tests	among	labs	and	
CVs	of	47.6%	within	labs	(n	=	11)	for	Daphnia pulex	acute	48-hour	LC50	(Warren-	
Hicks	and	Parkhurst	2003).

3.3	 (Q)sar	under	ePI	suIte	VersIon	3.12

3.3.1	 ecosaR

We	focus	on	ECOSAR	for	the	following	reasons:	1)	in	a	recent	comparative	analysis,	
ECOSAR	(Ecological	Structure-Activity	Relationship	v0.99g)	under	the	EPI	Suite	was	
ranked	highly	as	an	effect	prediction	program	(Moore	et	al.	2003);	2)	the	program	and	
training	sets	have	been	developed	and	used	extensively	by	the	USEPA	for	more	than	20	
years;	3)	several	countries	and	organizations	use	the	EPI	Suite	(Carlsen	2003);	and	4)	
although	licenses	for	many	(Q)SAR	models	can	be	prohibitively	costly	for	wide	appli-
cation,	 the	EPI	Suite	package	 is	 free	and	can	be	downloaded	from	the	Internet	 from	
the	USEPA	website	(USEPA	2007).	The	package	contains	a	series	of	(Q)SARs	ranging	
from	physiochemical	to	biological	and	exposure	parameters.	These	include	KOW,	Henry’s	
Law	constant,	boiling	and	melting	points,	water	solubility,	atmospheric	oxidation,	soil	
absorption	coefficients,	hydrolysis,	bioconcentration	factors,	fate	and	exposure	predic-
tions,	and	ecotoxicological	endpoints.	A	predicted	KOW	from	the	EPI	Suite	(KOWWIN	
v1.66	program	based	on	the	structure	and	components	of	the	compound)	is	automatically	
generated	as	a	prerequisite	for	ecotoxicity	predictions	with	ECOSAR.

The	ECOSAR	program	is	used	to	predict	the	aquatic	toxicity	of	chemicals	based	
on	their	similarity	of	structure	to	chemicals	for	which	the	aquatic	toxicity	has	been	
previously	measured.	Since	1981,	the	USEPA	has	used	(Q)SARs	to	predict	the	aquatic	
toxicity	of	all	new	industrial	chemicals	(Nabholz	et	al.	1993;	Zeeman	et	al.	1995).		
The	 acute	 toxicity	 of	 a	 chemical	 to	 fish	 (both	 fresh-	 and	 saltwater),	 water	 fleas		
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(daphnids),	and	green	algae	has	been	the	focus	of	the	development	of	(Q)SARs.	These	
organisms	are	group	model-organisms	and	thus	not	specific	species.	The	type	of	pre-
dictions	cover	fish	96-hour	LC50,	daphnids	48-hour	LC50,	and	green	algae	96-hour	
EC50	(data	for	72-	and	96-hour	tests	are	combined).	ECOSAR	predicts	fish	chronic	
value	(ChV)	(28	to	120	days),	daphnids	ChV	(14	to	21	days),	and	green	algal	ChV	
(data	for	chronic	72-	and	96-hour	tests	are	combined).	Only	validated	data	are	used	in	
ECOSAR;	ideally,	these	data	are	based	on	the	flow-through	method	or	static	renewal	
method	with	mean	measured	concentrations;	test	data	based	on	a	static	method	and	
nominal	concentrations	are	used	in	(Q)SARs	only	when	there	is	a	high	probability	that	
these	data	are	equivalent	to	toxicity	data	based	on	flow-through	or	measured	methods.		
ECOSAR	will	select	all	the	(Q)SAR	classes	that	may	apply	to	a	chemical;	for	exam-
ple,	an	ester,	phenol,	aniline,	and	epoxide	will	be	selected	when	all	moieties	are	in	a	
molecule	and	(Q)SAR	predictions	are	given	for	each	(Q)SAR	class	selected;	it	is	up	
to	the	users	to	select	the	effective	concentrations	(EC)	that	they	want	to	use	for	the	
chemical.	In	practice,	the	OPPT	will	select	the	prediction	that	is	the	most	toxic;	thus,	
for	the	above	chemical,	the	fish	96-hour	toxicity	value	may	be	based	on	the	phenol	
(Q)SAR,	the	daphnids	48-hour	EC50	may	be	based	on	the	aniline	(Q)SAR,	the	algae	
96-hour	may	be	based	on	the	ester	(Q)SAR,	and	so	on.	The	test	data	used	are	validated	
by	the	USEPA	OPPT.	Mean	measured	concentrations	based	on	parent	material	are	
preferred,	but	nominal-based	data	can	be	used	if	the	data	are	equivalent	to	the	mean	
measured	data;	dilution	water	hardness	=	150	mg	L–1	as	CaCO3	or	less,	dilution	water	
TOC	is	less	than	2.0	mg	L–1,	and	all	data	are	based	on	100%	AI	of	parent	material.	
All	chemicals	that	can	be	ionized	in	water	(acids,	bases,	anilines,	aliphatic	amines,	
phenols,	etc.)	are	tested	as	a	soluble	salt	at	pH	7,	such	as	aliphatic	amine	stock	solution	
with	HCL	added	and	pH	adjusted	to	pH	7;	this	is	done	because	effluents	in	the	United	
States	are	neutralized	to	pH	near	7	prior	to	release	to	the	sewer	in	order	to	protect	the	
sewage	treatment	plant	—	thus,	the	aquatic	environment	is	only	exposed	to	the	ionized	
chemical	near	pH	7.	Chemicals	that	are	dispersible	in	water	similar	to	detergents	or	
surfactants	are	tested	as	the	whole	dispersed	material.	Ionizable	chemicals	are	tested	
at	pH	7	as	a	soluble	salt,	generally	Cl	or	Na,	and	the	toxicity	test	results	are	expressed	
in	terms	of	the	soluble	salt	at	pH	7	or	the	ionized	state	at	pH	7;	however,	the	(Q)SARs	
are	in	terms	of	the	predicted	log	KOW	for	the	free	amine,	the	free	acid,	the	free	base,	
the	free	phenol,	and	so	on.	The	(Q)SAR	therefore	expresses	the	EC50	in	terms	of	the	
ionized	chemical	at	pH	7	regressed	against	the	predicted	log	KOW	for	the	free	amine.	
Thus,	for	an	aliphatic	amine,	use	input	SMILES	(see	Section	3.3.2,	below)	for	the	free	
amine,	use	the	predicted	log	KOW	for	the	free	amine,	and	ECOSAR	gives	test	results	
for	the	ionized	amine	at	pH	7.	Thus	a	valid	comparison	of	applicant	(industry)	data	
and	ECOSAR	predictions	requires	that	the	industry	EC50	be	for	the	ionized	amine	
at	pH	7.	Industry	data	for	free	amines	will	show	either	that	the	low	molecular	weight	
amine	is	more	toxic	than	predicted	or	that	the	high	molecular	weight	amine	is	less	
toxic	than	predicted	when	compared	to	ECOSAR.	The	low	molecular	weight	amines	
change	the	pH	of	the	dilution	water	to	8	to	9,	and	the	high	molecular	weight	amines	
are	insoluble	in	water	as	the	free	amine.	High	molecular	weight	amines	are	dispers-
ible	in	water	at	pH	7	as	a	soluble	salt	just	as	surfactants	or	detergents	are	dispersible	
in	water	(i.e.,	they	form	micelles;	Nabholz	et	al.	1993;	American	Society	for	Testing	
and	Materials	[ASTM]	1993).
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(Q)SARs	are	developed	for	chemical	classes	based	on	measured	test	data	that	have	
been	submitted	by	industry,	or	they	are	developed	by	other	sources	for	chemicals	with	
similar	structures	(e.g.,	phenols).	Using	the	measured	aquatic	toxicity	values	and	esti-
mated	log	KOW	values,	regression	equations	(currently	more	than	150	for	more	than	50	
chemical	classes)	can	be	developed	for	a	class	of	chemicals.	A	note	of	caution	to	users	
was	issued	by	Kaiser	et	al.	(1999),	who	questioned	the	scientific	calibration	and	number	
of	regressions	(n)	in	the	ECOSAR	program.	However,	this	critique	should	be	considered	
in	view	of	a	study	of	8234	discrete	organic	chemicals	on	the	TSCA	inventory;	about	
95%	of	the	chemicals	fell	into	only	7	chemical	classes	(neutral	organics,	esters,	acids,	
amines,	phenols,	aldehydes,	and	anilines).	The	number	of	 regressions	 for	6	of	 those	
key	chemical	classes	were	neutral	organics	(60),	esters	(26),	amines	(52),	phenols	(53),	
aldehydes	(42),	and	anilines	(19).	Hence,	for	the	majority	(approximately	95%)	of	TSCA	
compounds,	 the	 size	of	n	 is	 not	 a	 domain-limiting	problem.	The	more	 frequent	 the	
chemical	structure	occurs	in	tested	substances,	the	more	preexisting	data	(which	is	the	
limiting	factor	for	all	(Q)SARs),	the	more	regressions,	and	the	more	reliable	predictions	
(Zeeman	et	al.	1995).	The	ECOSAR	class	program	is	a	computerized	version	of	the	
ECOSAR	analysis	procedure	as	currently	practiced	by	the	USEPA	OPPT.	It	has	been	
developed	within	the	regulatory	constraints	of	the	TSCA	and	is	a	pragmatic	approach	to	
(Q)SAR	as	opposed	to	a	theoretical	approach	(Meyland	and	Howard	1998).

3.3.2	 smiles

SMILES	is	an	acronym	for	“simplified	molecular	 input	 line	entry	system.”	It	 is	a	
chemical	notation	system	used	to	represent	a	molecular	structure	by	a	linear	string	
of	symbols	in	the	EPI	Suite.	A	SMILES	notation	depicts	a	molecular	structure	as	a	
2-dimensional	picture	as	if	drawn	on	a	piece	of	paper.	A	2-dimensional	drawing	of	a	
single	chemical	structure	is	possible	in	many	different	forms.	SMILES	notations	are	
comprised	of	atoms	(designated	by	atomic	symbols),	bonds,	parentheses	(used	to	show	
branching),	 and	 numbers	 (used	 to	 designate	 ring-opening	 and	 -closing	 positions).	
With	the	exception	of	designating	ring	positions,	numbers	are	not	used	in	SMILES	
notation	 (Howard	1998).	The	complementary	database	of	Chemical	Abstract	Ser-
vice	(CAS)	registry	numbers,	with	corresponding	SMILES	notations	of	more	than	
103	000	compounds,	allows	the	user	to	search	for	and	input	SMILES	notation	for	a	
compound	via	its	CAS	number.	When	the	ECOSAR	identifies	a	(Q)SAR	related	to	
the	compound,	a	“neutral	organic	(Q)SAR,”	primarily	a	log	KOW-based	output,	can	
be	 derived.	 This	 output	 is	 less	 exact	 than	 with	 excess	 toxicity	 predictions	 due	 to	
more	specific	modes	of	toxic	action	of	the	compound	based	on	the	structure	and	the	
molecule’s	entities	(aliphatic,	phenols,	or	other	properties).	With	excess	toxicity,	the	
toxicity	is	quantified,	and	a	new	(Q)SAR	is	developed	for	that	class	(Nabholz	et	al.	
1993).	With	the	excess	toxicity	present,	the	fit	to	regressions	becomes	more	accurate	
as	more	aspects	of	the	compound	contribute	to	the	USEPA’s	continuously	updated	
toxicity	database	(personal	communication,	Nabholz	2003	Feb	2002).

3.3.3	 calibRation	oF	ecosaR

Calibration	 (external	 validation)	 of	 ecotoxicological	 (Q)SAR	 predictions	 is	 obvi-
ously	a	major	concern	for	the	USEPA	because	it	regulates	newly	notified	chemicals	
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on	the	basis	of	(Q)SAR	predictions.	A	joint	US	and	EU	validation	project	(the	Minimum	
Premarket	Data–Structure-Activity	Relationship	[MPD–SAR]	study)	was	performed	
in	the	early	1990s	(OECD	1994;	USEPA	1994)	as	well	as	an	internal	OPPT–USEPA	
validation	 study	 (Nabholz	 et	 al.	 1993).	 The	 MPD–SAR	 study	 was	 conducted	 with	
145	 new	 chemicals	 from	 the	 European	 Union,	 and	 the	 internal	 USEPA	 study	 was	
conducted	with	462	 chemicals,	 primarily	new	chemicals	 (413)	but	 also	49	 existing	
chemicals.	In	both	studies,	predicted	effective	concentrations	(ECs)	were	compared	
to	measured	ECs.	The	 ratio	 for	 a	perfect	 prediction	was	 equal	 to	1;	 thus,	 ratios	of	
less	than	1	indicated	overprediction	of	toxicity	and	ratios	of	greater	than	1	indicated	
underprediction	of	toxicity.	Acceptable	predictions	were	determined	to	be	within	an	
order	of	magnitude	of	the	ideal	ratio	of	1.0	(i.e.,	from	0.1	to	1	or	from	1	to	10).	The	
internal	USEPA	validation	study	was	conducted	before	the	MPD–SAR	study.	The	462	
chemicals	had	920	individual	tests	or	ECs	associated	with	them	and	consisted	of	fish	
acute,	daphnid	acute,	green	algal	EC50,	fish	chronic	value	(ChV),	daphnid	ChV,	and	
algal	ChV.	This	allowed	for	920	comparisons	or	ratios	 to	be	calculated.	Eighty-five	
percent	of	the	predictions	were	within	the	acceptable	range.	Only	9%	of	ECs	had	ratios	
<	0.1	(overprediction	of	toxicity	by	10	times),	and	6%	of	ECs	were	underpredicted	by	a	
factor	of	10.	With	perfect	agreement	defined	as	a	(Q)SAR	predicted	toxicity	value	to	a	
measured	toxicity	value	equal	to	1.0,	the	average	ratio	was	0.72,	indicating	a	tendency	
toward	conservative	predictions.	It	was	concluded	that	ECOSAR	performed	extremely	
well	in	predicting	the	acute	toxicity	to	fish	and	daphnids	(Zeeman	et	al.	1995).

In	the	MPD–SAR	study,	the	USEPA	and	the	European	Union	compared	the	pre-
dicted	and	measured	ECs	 for	 the	European	Union’s	new	chemicals.	The	measured	
ECs	were	those	reported	in	the	European	Union’s	MPD	set	of	experimental	toxicity	
summaries.	When	the	USEPA-predicted	ECs	for	fish	and	daphnid	acute	toxicity	values	
were	 compared	 to	 the	 appropriate	MPD-measured	 acute	values,	 there	was,	 respec-
tively,	77%	and	59%	agreement,	7%	and	19%	underprediction,	and	16%	to	23%	over-
prediction	by	 the	USEPA.	Potential	 reasons	 for	 the	under-	and	overprediction	were	
investigated,	and	17	of	the	underpredictions	and	21	of	the	overpredictions	remained	
unresolved.	Therefore,	studies	that	had	potential	problems	were	eliminated,	and	the	
analysis	was	repeated.	The	highest	quality	subset	of	the	data	indicated	87%	and	79%	
agreement	between	predictions	and	measured	values.

When	the	USEPA’s	level	of	concern	for	environmental	toxicity	for	a	chemical	was	
compared	to	the	level	of	concern	based	on	the	MPD-measured	ECs	for	fish	and	daph-
nid	acute	toxicity	tests,	there	was	54%	agreement,	4%	to	9%	underprediction,	and	43%	
to	38%	overprediction	by	the	USEPA,	respectively.	Potential	reasons	for	under-	and	
overpredictions	were	investigated;	for	example,	the	USEPA	based	its	concern	level	
on	both	acute	and	chronic	toxicity	rather	than	acute	toxicity	alone.	Once	accounted	
for,	only	6	of	the	underpredictions	and	2	of	the	overpredictions	remained	unresolved.	
Therefore,	MPD	studies	that	had	potential	problems	were	eliminated,	and	the	analysis		
was	repeated.	The	highest	quality	subset	of	MPD-measured	ECs	indicated	97%	and	
93%	agreement	(within	one	order	of	magnitude)	between	predicted	and	measured	
concern	levels.	On	average,	both	the	European	Union	and	USEPA	experts	concluded	
that	 the	 USEPA	 predictions	 of	 environmental	 toxicity	 (i.e.,	 all	 fish,	 daphnid,	 and	
green	algal	toxicity	values	regardless	of	potential	quality)	were	in	excellent	agreement	
with	the	MPD-measured	data	set.	The	average	validation	ratio	was	0.71.	Eighty-nine		
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percent	of	all	predictions	were	within	a	factor	of	10,	and	74%	were	within	a	factor	of	5.	
The	MPD-measured	ECs	caused	only	8%	of	the	EPA-predicted	concern	levels	to	be	
changed,	but	half	of	these	changes	(i.e.,	4%)	might	had	been	found	to	be	false	if	com-
plete	toxicity	study	test	reports	had	been	available	for	test	data	validation	by	the	USEPA	
(Zeeman	et	al.	1995).	The	advantage	of	the	USEPA’s	(Q)SAR	analysis	over	the	MPD	
data	set	is	that	the	USEPA	method	assesses	all	of	the	potential	effects	and	concerns	
for	a	chemical	(e.g.,	both	acute	and	chronic	toxicity	to	fish,	invertebrates,	and	green	
algae	for	both	freshwater	and	saltwater	environments,	 including	benthic	organisms,	
aquatic	insects,	and	submerged	aquatic	vegetation).	In	addition,	potential	effects	to	ter-
restrial	organisms	(e.g.,	birds,	earthworms,	insects,	vascular	plants,	and	soil	microbes)	
are	evaluated.	In	the	European	Union,	MPDs	were	generally	restricted	to	the	fish	and	
daphnid	acute	toxicity	tests.	This	joint	EU–US	MPD–SAR	validation	study	suggested	
that	the	MPD	data	set	could	be	improved	by	adding	the	daphnid	chronic	toxicity	test	
and	the	green	algal	toxicity	test,	and	by	requiring	a	screen	for	analogy	of	new	chemi-
cals	in	the	EU	to	known	classes	of	pesticides	(OECD	1994;	USEPA	1994).

Conservative	use	of	data	from	ECOSAR	overestimated	 the	 toxicity	80%	of	 the	
time	 relative	 to	 experimental-derived	 toxicity	 data	 for	 pharmaceuticals	 (Sanderson	
et	al.	2003).	However,	this	comparison	only	covered	some	20	compounds	out	of	the	
more	 than	70	pharmaceuticals	 reported	 in	 the	 environment.	Cleuvers	 (2003)	 found	
that	 (Q)SARs	were	more	conservative	 than	measured	data	on	pharmaceuticals	 and	
that	narcosis	was	the	main	expression	of	toxicity.	ECOSAR	has	previously	been	used	
to	develop	a	framework	for	prioritizing	more	than	2141	complex	fragrance	materials	
for	aquatic	risk	assessment	(Salvito	et	al.	2002)	and	has	been	shown	to	be	applicable	
to	 pharmaceuticals	 for	 ranking	 purposes	 (personal	 communication,	 Nabholz	 2002;	
Sanderson	et	al.	2003;	Zeeman	2003).	ECOSAR	is	continuously	being	developed.	The	
training	set	in	1995	consisted	of	2353	chemicals	for	121	structure-activity	relationships	
for	46	chemical	classes	(Clements	et	al.	1995).	The	continuous	addition	of	new	data	
contributes	to	widening	and	increasing	the	robustness	of	the	scope	of	the	training	set,	
which	again	will	result	in	increasing	the	applicability	of	substances	within	the	model	
domain	(see	Figure	3.2).

3.4	 (Q)sar	to	ssds:	ProbabIlIstIC	eFFeCts	assessment

As	noted	previously,	the	use	of	(Q)SAR	for	effects	assessment	nearly	always	uses	
a	 static	 assessment	 factor	 to	 extrapolate	 to	 a	 predicted	 no-effect	 concentration	
(PNEC).	Assessment	factors	may	be	as	high	as	10	000	(Environment	Canada	2003).	

SAR

New SAR

Validation Prediction

Testing

FIgure	3.2	 Evolution	of	ECOSAR	in	the	USEPA.
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The	deterministic	hazard	quotient	(HQ)	risk	assessment	of	the	most	sensitive	species	
approach	with	application	of	an	uncertainty	or	safety	factor	is	assumed	in	a	regula-
tory	context	to	protect	a	significant	proportion	of	the	species	(e.g.,	>	95%	of	species).	
This	 excludes	 the	 relative	 relationships	 of	 species	 sensitivities	 and	 their	 potential	
impact	 on	 effects	 characterization,	 rendering	 the	 magnitude	 of	 conservatism	 and	
scientific	 justification	 of	 the	 deterministic	 HQ	 approach	 questionable.	 Recently,	
however,	estimating	interspecies	sensitivity	correlations	for	different	test	substances	
has	been	made	easier	with	the	introduction	of	the	Interspecies	Correlation	Estimates	
(ICE)	software	(Asfaw	et	al.	2004),	described	in	Section	3.4.2	(below).	Consisting	
of	derived	interspecies	correlation	estimates	for	acute	toxicity	to	aquatic	organisms,	
this	software	allows	the	user	to	extrapolate	(Q)SAR	estimates	for	fish,	invertebrate,	
and	algal	sensitivities	to	a	myriad	of	other	aquatic	organism	sensitivities	for	a	given	
test	substance.	To	illustrate	the	functionality	of	the	ICE	program,	we	used	ECOSAR	
estimates	for	fish,	daphnid,	and	algal	acute	toxicity	data	to	extrapolate	effects	values	
to	27	fish	and	invertebrate	species	for	4	model	substances:	dichloroaniline	(DCA),	
pentachlorophenol	 (PCP),	 nonylphenol	 (NP),	 and	 linear	 alkylbenzenesulfonate	
(LAS).	These	substances	cover	3	different	modes	of	action	(polar	narcotic,	nonpolar	
narcotic,	and	electron	transport	inhibitor)	and	a	range	of	uses	and	physical–chemical	
properties	representing	typical	industrial	chemicals.	Perhaps	more	importantly,	each	
of	these	chemicals	has	an	established	chronic	toxicity	data	set	whereby	species	sen-
sitivity	distributions	have	been	created	—	and	to	some	extent	verified	via	mesocosm	
tests	—	and	can	as	such	serve	as	representative	non-worst-case	model	compounds	
that	allow	a	context-dependent	comparison	of	extrapolated	probabilistic	predictions	
with	 measured	 deterministic	 hazard	 concentrations.	 The	 ECOSAR	 predictions,	
with	excess	toxicity,	were	input	into	the	ICE	program	without	uncertainty	of	default	
assessment	factors	to	enable	a	direct	comparison	between	measured	effect	concen-
trations	and	ICE-extrapolated	ECOSAR	predictions.

3.4.1	 ecosaR	estimates

Within	the	USEPA’s	EPI	Suite,	descriptions	of	basic	physical–chemical	properties	
for	 2,4-dichloroaniline	 (DCA;	 CAS	 No.	 554007),	 pentachlorophenol	 (PCP;	 CAS	
No.	 87865),	 nonylphenol	 (NP;	 CAS	 No.	 104405),	 and	 linear	 alkylbenzenesulfo-
nate	(C12	LAS;	CAS	No.	25155300)	were	obtained	using	the	EPI	Suite	(Table	3.1),	
whereas	acute	and	chronic	toxicity	estimates	for	the	median	effective	and	chronic	
effect	concentrations	(the	geometric	mean	between	chronic	lowest-observed-effect	
concentration	[LOEC]	and	no-observed-effect	concentration	[NOEC])	and	for	fish,	
daphnids,	and	algae	for	each	substance	were	estimated	from	ECOSAR	(Table	3.2).	
These	compounds	were	chosen	based	on	their	widespread	use.

3.4.2	 ice	estimates

ICE	was	developed	for	estimating	acute	toxicity	of	chemicals	to	species	where	data	
are	 lacking.	 Interspecies	 correlations	 were	 created	 for	 95	 aquatic	 and	 terrestrial	
organisms	using	least	squares	regression	where	both	variables	are	random	(i.e.,	both	
variables	 are	 independent	 and	 subject	 to	 measurement	 error;	 Asfaw	 et	 al.	 2004).	
The	correlation	coefficient	(r)	is	used	to	describe	the	linear	association	amongst	the		
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variables.	For	the	users	of	ICE,	the	toxicity	of	1	species	can	be	input	as	a	surrogate	
for	 a	predicted	 species.	For	 example,	 the	user	 can	 input	 an	EC50	 for	 the	 fathead	
minnow	(Pimephales promelas)	as	a	surrogate	species	 toxicity	value	 to	obtain	an	
estimated	EC50	for	rainbow	trout	(Oncorhynchus mykiss).	The	validity	of	the	esti-
mate	can	be	evaluated	by	observing	the	correlation	coefficient	and	confidence	limits	
about	the	regression	line.	In	this	example,	ECOSAR	estimates	for	fish	were	limited	
to	fathead	minnow	responses.	Hence,	in	ICE	the	user	identifies	fathead	minnow	as	
the	surrogate	species	for	a	wide	array	of	fish,	invertebrate,	and	algal	species.	Many	
of	the	correlations	between	fathead	minnow	and	other	species	were	not	significant.	
Only	species	with	at	least	10	observations	and	significant	regressions	were	used	in	
this	analysis,	leaving	27	predicted	species	responses	(Table	3.3).

table	3.1
Physical	and	chemical	characteristics	estimated	from	the	usePa’s	ePI	suite	
for	4	materialsa

Chemical	name
molecular	
formula

molecular	
weight log	KoW

Water	solubility	
(mg	l–1)

Dichloroaniline	(DCA) C6H5Cl2N 162.0 2.37 302.1
Pentachlorophenol	(PCP) C6H1Cl5O 266.3 4.74 1.899
Nonylphenol	(NP) C15H24O 220.4 5.99 0.08343
Linear	alkylbenzenesulfonate	(LAS) C18H21O3SNa 339.3 3.00 17.44

a	These	materials	represent	typical	industrial	chemicals	used	in	the	ECOSAR	and	interspecies	correla-
tion	evaluation	(ICE)	extrapolation	exercise.

	

table	3.2
eCosar	estimates	of	acute	and	chronic	toxicity	to	dichloroaniline	
(dCa),	pentachlorophenol	(PCP),	nonylphenol	(nP),	and	linear	
alkylbenzenesulfonate	(las)

Chemical	(mg	l–1)

organism duration endpoint dCa PCP nP las

Fish 96	hours LC50 26.0 0.803 0.115 2.595
Fish 28	days ChV 0.16 0.115 0.016 0.399
Daphnids 48	hours LC50 0.88 1.086 0.277 2.595
Daphnids 21	days ChV 0.02 0.088 0.012 0.399
Algae 96	hours LC50 10.0 0.497 0.032 0.007
Algae 96	hours ChV 2.5 0.242 0.032 0.005

	

73907_C003.indd   92 4/23/08   12:02:36 PM



(Q)SAR and Extrapolation 93

3.4.3	 ice-based	ssds

Two	 sets	 of	 SSDs	 were	 created	 based	 on	 ICE	 extrapolations	 from	 ECOSAR	 fish	
values	(assuming	fish	=	fathead	minnow):	1)	all	27	predicted	ICE	species,	exclud-
ing	ECOSAR	values;	and	2)	the	27	ICE	species	plus	ECOSAR	fish,	daphnids,	and	
algae.	 SSDs	 were	 created	 using	 a	 log-normal	 distribution	 (SAS	 Institute	 2002).	
Figure	3.3	illustrates	the	SSDs	for	DCA	and	NP	with	and	without	ECOSAR	species,	
and	Figure	3.4	provides	the	distributions	for	PCP	and	LAS.	The	predicted	hazard		

table	3.3
list	of	predicted	species	from	ICe	that	have	at	least	10	observations	and	
significant	correlations	(p	<	0.05)	with	the	surrogate	species	fathead	
minnow	(Pimephales promelas)

Predicted	species
number	of	

observations Intercept slope
Correlation	
coefficient

Aquatic	sow	bug	(Asellus brevicaudus) 13 –0.02 0.72 0.81
Atlantic	salmon	(Salmo salar) 12 –0.63 1.07 0.94
Black	bullhead	(Ameiurus melas) 11 0.79 0.77 0.89
Bluegill	sunfish	(Lepomis macrochirus) 92 –0.06 0.93 0.91
Brook	trout	(Salvelinus fontinalis) 15 –0.42 0.98 0.91
Brown	trout	(Salmo trutta) 12 –1.20 1.13 0.84
Channel	catfish	(Ictalurus punctatus) 60 0.45 0.83 0.89
Coho	salmon	(Oncorhynchus kisutch) 18 –0.56 0.99 0.95
Common	carp	(Cyprinus carpio) 14 0.20 0.94 0.95
Cutthroat	trout	(Oncorhynchus clarki) 19 –0.54 0.95 0.80
Eastern	oyster	(Crassostrea virginica) 32 1.29 0.43 0.68
Goldfish	(Carassius auratus) 27 0.33 0.94 0.97
Grass	shrimp	(Palaemonetes pugio) 12 –0.11 0.81 0.85
Green	sunfish	(Lepomis cyanellus) 14 0.24 0.86 0.94
Lake	trout	(Salvelinus namaycush) 10 –0.20 0.83 0.93
Largemouth	bass	(Micropterus 

salmoides)
20 –0.48 0.97 0.94

Midge	(Chironomous plumosus) 19 –0.60 1.07 0.77
Mysid	(Americamysis bahia) 32 –1.62 0.95 0.68
Ostracod	(Cypridopsis vidua) 10 0.72 0.32 0.65
Rainbow	trout	(Oncorhynchus mykiss) 93 –0.24 0.95 0.92
Scud	(Gammarus pseudolimnaeus) 16 –1.27 1.07 0.79
Sheepshead	minnow	(Cyprinodon 

variegatus)
31 0.25 0.87 0.89

Stonefly	(Claassenia sabulosa) 10 –0.45 0.31 0.69
Stonefly	(Pteronarcella badia) 11 –0.28 0.29 0.87
Stonefly	(Pteronarcys californica) 34 –0.06 0.41 0.47
Water	flea	(Daphnia magna) 69 –0.01 0.67 0.52
Yellow	perch	(Perca flavescens) 10 –0.19 0.99 0.98

	

73907_C003.indd   93 4/23/08   12:02:36 PM



94 Extrapolation Practice

A
m

er
ic

am
ys

is
ba

hi
a

C
la

ss
en

ia
sa

ba
lo

sa
P

te
ro

na
rc

el
la

ba
di

a
G

am
m

ar
us

 p
se

ud
ol

im
na

eu
s

P
te

ro
na

rc
ys

ca
lif

or
ni

ca

O
nc

or
hy

nc
h

us
 k

is
ut

ch
O

nc
or

hy
nc

hu
s 

cl
ar

ki

S
al

m
o 

tr
ut

ta

S
al

m
o 

sa
la

r
M

ic
ro

pt
er

us
sa

lm
oi

de
s

C
hi

ro
no

m
us

pl
um

os
us

S
al

ve
lin

us
fo

nt
in

al
is

D
ap

hn
ia

 m
ag

na

S
al

ve
lin

us
na

m
ay

cu
sh

A
se

llu
s

br
ev

ic
au

du
s

P
al

ae
m

on
et

es
pu

gi
o

O
nc

or
hy

nc
hu

s 
m

yk
is

s
C

yp
rid

op
si

s
vi

du
a

P
er

ca
fla

ve
sc

en
s

Le
po

m
is

m
ac

ro
ch

iru
s

Le
po

m
is

cy
an

el
lu

s
C

yp
rin

od
on

 v
ar

ie
ga

tu
s

C
yp

rin
us

ca
rp

io
Ic

ta
lu

ru
s

pu
nc

ta
tu

s

A
m

ei
ur

us
m

el
as

C
ar

as
si

us
au

ra
tu

s

C
ra

ss
os

tr
ea

vi
rg

in
ic

a

0.
01

0.
1

10
0

10
00

10
00

0
1

10
0.

0

0.
2

0.
8

0.
6

0.
4

1.
0

D
C

A
-f

hm

Cumulative probability

A
m

er
ic

am
ys

is
ba

hi
a

C
la

ss
en

ia
sa

ba
lo

sa
P

te
ro

na
rc

el
la

ba
di

a
G

am
m

ar
us

 p
se

ud
ol

im
na

eu
s

P
te

ro
na

rc
ys

ca
lif

or
ni

ca

O
nc

or
hy

nc
hu

s 
ki

su
tc

h
O

nc
or

hy
nc

hu
s 

cl
ar

ki

S
al

m
o 

tr
ut

ta

S
al

m
o 

sa
la

r
M

ic
ro

pt
er

us
sa

lm
oi

de
s

C
hi

ro
no

m
us

pl
um

os
us

E
co

sa
r

A
lg

ae

D
ap

hn
ia

 m
ag

na

S
al

ve
lin

us
na

m
ay

cu
sh

A
se

llu
s

br
ev

ic
au

du
s

P
al

ae
m

on
et

es
pu

gi
o

O
nc

or
hy

nc
hu

s 
m

yk
is

s
C

yp
rid

op
si

s
vi

du
a

P
er

ca
fla

ve
sc

en
s

Le
po

m
is

m
ac

ro
ch

iru
s

Le
po

m
is

cy
an

el
lu

s
C

yp
rin

od
on

 v
ar

ie
ga

tu
s

C
yp

rin
us

ca
rp

io
Ic

ta
lu

ru
s

pu
nc

ta
tu

s

A
m

ei
ur

us
m

el
as

C
ar

as
si

us
au

ra
tu

s

C
ra

ss
os

tr
ea

vi
rg

in
ic

a

0.
01

0.
1

10
0

10
00

10
00

0
1

10

D
C

A
-f

hm
e

E
co

sa
r

D
ap

hn
id

S
al

ve
lin

us
fo

nt
in

al
is

E
co

sa
r

F
is

h

A
m

er
ic

am
ys

is
ba

hi
a

C
la

ss
en

ia
sa

ba
lo

sa

P
te

ro
na

rc
el

la
ba

di
a

G
am

m
ar

us
 p

se
ud

ol
im

na
eu

s

P
te

ro
na

rc
ys

ca
lif

or
ni

ca

O
nc

or
hy

nc
hu

s 
ki

su
tc

h
O

nc
or

hy
nc

hu
s 

cl
ar

ki

S
al

m
o 

tr
ut

ta

S
al

m
o 

sa
la

r

M
ic

ro
pt

er
us

sa
lm

oi
de

s

C
hi

ro
no

m
us

pl
um

os
us

D
ap

hn
ia

 m
ag

na

S
al

ve
lin

us
na

m
ay

cu
sh

A
se

llu
s

br
ev

ic
au

du
s

P
al

ae
m

on
et

es
pu

gi
o

O
nc

or
hy

nc
hu

s 
m

yk
is

s

C
yp

rid
op

si
s

vi
du

a

P
er

ca
fla

ve
sc

en
s

Le
po

m
is

m
ac

ro
ch

iru
s

Le
po

m
is

cy
an

el
lu

s
C

yp
rin

od
on

 v
ar

ie
ga

tu
s

C
yp

rin
us

ca
rp

io

Ic
ta

lu
ru

s
pu

nc
ta

tu
s

A
m

ei
ur

us
m

el
as

C
ar

as
si

us
au

ra
tu

s

C
ra

ss
os

tr
ea

vi
rg

in
ic

a

0.
00

1
0.

01
10

10
0

10
00

0.
1

1

E
C

50
 (

m
g/

L)

0.
0

0.
2

0.
8

0.
6

0.
4

1.
0

LA
S

-f
hm

Cumulative probability

S
al

ve
lin

us
fo

nt
in

al
is

A
m

er
ic

am
ys

is
ba

hi
a

C
la

ss
en

ia
sa

ba
lo

sa

P
te

ro
na

rc
el

la
ba

di
a

G
am

m
ar

us
 p

se
ud

ol
im

na
eu

s

P
te

ro
na

rc
ys

ca
lif

or
ni

ca

O
nc

or
hy

nc
hu

s 
ki

su
tc

h
O

nc
or

hy
nc

hu
s 

cl
ar

ki

S
al

m
o 

tr
ut

ta

S
al

m
o 

sa
la

r

M
ic

ro
pt

er
u

s
sa

lm
oi

de
s

C
hi

ro
no

m
us

pl
um

os
us

D
ap

hn
ia

 m
ag

na

S
al

ve
lin

us
na

m
ay

cu
sh

A
se

llu
s

br
ev

ic
au

du
s

P
al

ae
m

on
et

es
pu

gi
o

O
nc

or
hy

nc
hu

s 
m

yk
is

s

C
yp

rid
op

si
s

vi
du

a

P
er

ca
fla

ve
sc

en
s

Le
po

m
is

m
ac

ro
ch

iru
s

Le
po

m
is

cy
an

el
lu

s
C

yp
rin

od
on

 v
ar

ie
ga

tu
s

C
yp

rin
us

ca
rp

io

Ic
ta

lu
ru

s
pu

nc
ta

tu
s

A
m

ei
ur

us
m

el
as

C
ar

as
si

us
au

ra
tu

s

C
ra

ss
os

tr
ea

vi
rg

in
ic

a

0.
00

1
0.

01
10

10
0

10
00

0.
1

1

E
C

50
 (

m
g/

L)

LA
S

-f
hm

e

S
al

ve
lin

us
fo

nt
in

al
is

E
co

sa
r

A
lg

ae

E
co

sa
r

F
is

h
E

co
sa

r
D

ap
hn

id

FI
g

u
r

e	
3.

3	
Sp

ec
ie

s	
se

ns
it

iv
it

y	
di

st
ri

bu
ti

on
s	

(S
SD

s)
	f

or
	 d

ic
hl

or
oa

ni
li

ne
	(

D
C

A
)	

an
d	

no
ny

lp
he

no
l	(

N
P)

	 u
si

ng
	fi

sh
	 e

st
im

at
es

	 f
ro

m
	E

C
O

SA
R

	a
nd

	 I
C

E
	

(A
sf

aw
	e

t	 a
l.	

20
04

)	
us

in
g	

fa
th

ea
d	

m
in

no
w

	 (f
hm

)	
as

	 th
e	

su
rr

og
at

e	
sp

ec
ie

s.
	 N

ot
e :

	S
SD

s	
no

t	 i
nc

lu
di

ng
	E

C
O

SA
R

	 v
al

ue
s	

fo
r	

fis
h,

	 d
ap

hn
id

s,
	a

nd
	 a

lg
ae

	a
re

	
no

te
d	

as
	“

-f
hm

,”
	w

he
re

as
	S

SD
s	

in
cl

ud
in

g	
th

es
e	

va
lu

es
	a

re
	n

ot
ed

	a
s	

“-
fh

m
e.

”	
So

ur
ce

:	A
sf

aw
	e

t	a
l.	

(2
00

4)
.

73907_C003.indd   94 4/23/08   12:02:38 PM



(Q)SAR and Extrapolation 95

A
m

er
ic

am
ys

is
ba

hi
aC
la

ss
en

ia
sa

ba
lo

sa

P
te

ro
na

rc
el

la
ba

di
a

G
am

m
ar

us
 p

se
ud

ol
im

na
eu

s

P
te

ro
na

rc
ys

ca
lif

or
ni

ca

O
nc

or
hy

nc
hu

s 
ki

su
tc

h
O

nc
or

hy
nc

hu
s 

cl
ar

ki

S
al

m
o 

tr
ut

ta
S

al
m

o 
sa

la
r

M
ic

ro
pt

er
us

sa
lm

oi
de

s

C
hi

ro
no

m
us

pl
um

os
us

D
ap

hn
ia

 m
ag

na

S
al

ve
lin

us
na

m
ay

cu
sh

A
se

llu
s

br
ev

ic
au

du
s

P
al

ae
m

on
et

es
pu

gi
o

O
nc

or
hy

nc
hu

s 
m

yk
is

s

C
yp

rid
op

si
s

vi
du

a

P
er

ca
fla

ve
sc

en
s

Le
po

m
is

m
ac

ro
ch

iru
s

Le
po

m
is

cy
an

el
lu

s
C

yp
rin

od
on

 v
ar

ie
ga

tu
s

C
yp

rin
us

ca
rp

io

Ic
ta

lu
ru

s
pu

nc
ta

tu
s

A
m

ei
ur

us
m

el
as

C
ar

as
si

us
au

ra
tu

s

C
ra

ss
os

tr
ea

vi
rg

in
ic

a

0.
00

1
0.

01
10

10
0

10
00

0.
1

1
0.

0

0.
2

0.
8

0.
6

0.
4

1.
0

P
C

P
-f

hm

Cumulative probability

S
al

ve
lin

us
fo

nt
in

al
is

A
m

er
ic

am
ys

is
ba

hi
aC
la

ss
en

ia
sa

ba
lo

sa

P
te

ro
na

rc
el

la
ba

di
a

G
am

m
ar

us
 p

se
ud

ol
im

na
eu

s

P
te

ro
na

rc
ys

ca
lif

or
ni

ca

O
nc

or
hy

nc
hu

s 
ki

su
tc

h
O

nc
or

hy
nc

hu
s 

cl
ar

ki

S
al

m
o 

tr
ut

ta
S

al
m

o 
sa

la
r

M
ic

ro
pt

er
us

sa
lm

oi
de

s

C
hi

ro
no

m
us

pl
um

os
us

D
ap

hn
ia

 m
ag

na

S
al

ve
lin

us
na

m
ay

cu
sh

A
se

llu
s

br
ev

ic
au

du
s

P
al

ae
m

on
et

es
pu

gi
o

O
nc

or
hy

nc
hu

s 
m

yk
is

s

C
yp

rid
op

si
s

vi
du

a

P
er

ca
fla

ve
sc

en
s

Le
po

m
is

m
ac

ro
ch

iru
s

Le
po

m
is

cy
an

el
lu

s
C

yp
rin

od
on

 v
ar

ie
ga

tu
s

C
yp

rin
us

ca
rp

io

Ic
ta

lu
ru

s
pu

nc
ta

tu
s

A
m

ei
ur

us
m

el
as

C
ar

as
si

us
au

ra
tu

s

C
ra

ss
os

tr
ea

vi
rg

in
ic

a

0.
00

1
0.

01
10

10
0

10
00

0.
1

1

P
C

P
-f

hm
e

S
al

ve
lin

us
fo

nt
in

al
is

E
co

sa
r

A
lg

ae

E
co

sa
r

F
is

h

E
co

sa
r

D
ap

hn
id

A
m

er
ic

am
ys

is
ba

hi
a

C
la

ss
en

ia
sa

ba
lo

sa

P
te

ro
na

rc
el

la
ba

di
a

G
am

m
ar

us
 p

se
ud

ol
im

na
eu

s

P
te

ro
na

rc
ys

ca
lif

or
ni

ca

O
nc

or
hy

nc
hu

s 
ki

su
tc

h
O

nc
or

hy
nc

hu
s 

cl
ar

ki

S
al

m
o 

tr
ut

ta
S

al
m

o 
sa

la
r

M
ic

ro
pt

er
us

sa
lm

oi
de

s

C
hi

ro
no

m
us

pl
um

os
us

D
ap

hn
ia

 m
ag

na

S
al

ve
lin

us
na

m
ay

cu
sh

A
se

llu
s

br
ev

ic
au

du
s

P
al

ae
m

on
et

es
pu

gi
o

O
nc

or
hy

nc
hu

s 
m

yk
is

s

C
yp

rid
op

si
s

vi
du

a

P
er

ca
fla

ve
sc

en
s

Le
po

m
is

m
ac

ro
ch

iru
s

Le
po

m
is

cy
an

el
lu

s
C

yp
rin

od
on

 v
ar

ie
ga

tu
s

C
yp

rin
us

ca
rp

io

Ic
ta

lu
ru

s
pu

nc
ta

tu
s

A
m

ei
ur

us
m

el
as

C
ar

as
si

us
au

ra
tu

s

C
ra

ss
os

tr
ea

vi
rg

in
ic

a

0.
00

1
0.

01
10

10
0

0.
1

1

E
C

50
 (

m
g/

L)

0.
0

0.
2

0.
8

0.
6

0.
4

1.
0

N
P

-f
hm

Cumulative probability

S
al

ve
lin

us
fo

nt
in

al
is

A
m

er
ic

am
ys

is
ba

hi
a

C
la

ss
en

ia
sa

ba
lo

sa

P
te

ro
na

rc
el

la
ba

di
a

G
am

m
ar

u
s 

ps
eu

do
lim

na
eu

s

P
te

ro
na

rc
ys

ca
lif

or
ni

ca

O
nc

or
hy

nc
hu

s 
ki

su
tc

h

O
nc

or
hy

nc
hu

s 
cl

ar
ki

S
al

m
o 

tr
ut

ta
S

al
m

o 
sa

la
r

M
ic

ro
pt

er
us

sa
lm

oi
de

s

C
hi

ro
no

m
us

pl
um

os
us

D
ap

hn
ia

 m
ag

na

S
al

ve
lin

us
na

m
ay

cu
sh

A
se

llu
s

br
ev

ic
au

du
s

P
al

ae
m

on
et

es
pu

gi
o

O
nc

or
hy

nc
hu

s 
m

yk
is

s

C
yp

rid
op

si
s

vi
du

a

P
er

ca
fla

ve
sc

en
s

Le
po

m
is

m
ac

ro
ch

iru
s

Le
po

m
is

cy
an

el
lu

s
C

yp
rin

od
on

 v
ar

ie
ga

tu
s

C
yp

rin
us

ca
rp

io

Ic
ta

lu
ru

s
pu

nc
ta

tu
s

A
m

ei
ur

us
m

el
as

C
ar

as
si

us
au

ra
tu

s

C
ra

ss
os

tr
ea

vi
rg

in
ic

a

0.
00

1
0.

01
10

10
0

0.
1

1

E
C

50
 (

m
g/

L)

N
P

-f
hm

e

S
al

ve
lin

us
fo

nt
in

al
is

E
co

sa
r

A
lg

aeE
co

sa
r

F
is

h

E
co

sa
r

D
ap

hn
id

FI
g

u
r

e	
3.

4	
Sp

ec
ie

s	
se

ns
it

iv
it

y	
di

st
ri

bu
ti

on
s	

(S
SD

s)
	fo

r	 p
en

ta
ch

lo
ro

ph
en

ol
	(

P
C

P)
	a

nd
	 C

12
	 li

ne
ar

	a
lk

yl
be

nz
en

e	
su

lf
on

at
e	

(L
A

S)
	u

si
ng

	 fi
sh

	 e
st

im
at

es
	

fr
om

	E
C

O
SA

R
	 a

nd
	IC

E
	 (A

sf
aw

	e
t	 a

l.	
20

04
)	 u

si
ng

	fa
th

ea
d	

m
in

no
w

	(f
hm

)	 a
s	

th
e	

su
rr

og
at

e	
sp

ec
ie

s.
	N

ot
e :

	S
SD

s	
no

t	i
nc

lu
di

ng
	 E

C
O

SA
R

	v
al

ue
s	

fo
r	 fi

sh
,	

da
ph

ni
ds

,	a
nd

	a
lg

ae
	a

re
	n

ot
ed

	a
s	

“-
fh

m
,”

	w
he

re
as

	S
SD

s	
in

cl
ud

in
g	

th
es

e	
va

lu
es

	a
re

	n
ot

ed
	a

s	
“-

fh
m

e.
”	

So
ur

ce
:	A

sf
aw

	e
t	a

l.	
(2

00
4)

.

73907_C003.indd   95 4/23/08   12:02:40 PM



96 Extrapolation Practice

concentration	protective	of	95%	of	aquatic	organisms	(HC5)	from	the	SSDs	for	DCA,	
NP,	PCP,	and	LAS	was	within	a	factor	of	2	of	published	HC5	values	(Table	3.4).	The	
addition	of	the	ECOSAR	species	had	little	effect	on	the	final	HC5	value	for	any	of	
the	compounds.

3.4.4	 examPle	discussion	and	conclusions

The	brief	analysis	of	extrapolating	 (Q)SARs	 to	species	sensitivity	distributions	 to	
derive	 aquatic	 community-based	 HC5s	 clearly	 indicated	 promise.	 The	 (Q)SAR-
derived	 HC5s	 ranged	 nearly	 3	 orders	 of	 magnitude,	 from	 0.006	 mg	 L-1	 (NP)	 to		
1.2	mg	L-1	 (DCA).	Despite	 the	wide	 range,	 the	 (Q)SAR-HC5s	were	within	a	 fac-
tor	 of	 2	 of	 published	 values.	 Perhaps	 this	 close	 comparison	 was	 serendipitous	 in	
that	3	of	 the	4	chemicals	evaluated	could	be	deemed	narcotic	acting	(nonpolar	or	
polar	narcosis),	and	only	one,	pentachlorophenol	(PCP),	was	of	a	different	mode	of	
action	(electron	transport	inhibitor).	In	order	to	expand	the	generality	of	our	analysis,	
further	evaluation	of	 this	methodology	should	be	conducted	with	more	chemicals	
predicted	 with	 different	 (Q)SARs	 and	 by	 using	 different	 surrogate	 species	 (other	
than,	for	example,	fish	=	fathead	minnow)	in	ICE.	The	generation	of	a	probabilis-
tic	hazard	concentration	value	from	structure-activity	relationships	raises	questions	
regarding	the	magnitude	of	current	assessment	factors.	The	EU	default	uncertainty	
factor	for	SSDs	of	1	to	5	assessed	by	a	case-by-case	basis	(European	Commission	
1996)	seems	in	this	example	to	be	conservative	even	when	the	data	used	to	construct	
the	SSD	are	without	direct	use	of	experimental	data	but	are	derived	from	ECOSAR	
and	extrapolated	using	ICE.

table	3.4
acute	species	sensitivity	distribution	data	from	the	eCosar	to	ICe	
extrapolation	exercise	and	published	HC5	values

material eCosar Intercept slope HC5	(mg	l-1)
Published	

HC5	(mg	l-1)

DCA No 2.3 0.71 1.270 0.507a

Yes 2.3 0.72 1.170
NP No -2.16 0.97 0.006 0.006;	0.0039	b

Yes -2.18 0.92 0.007

PCP No -0.54 0.79 0.056 0.028a

Yes -0.50 0.74 0.068

LAS No 0.39 0.74 0.168 0.245c

Yes 0.36 0.82 0.127

a	Wheeler	et	al.	(2002a),	freshwater	log	logistic	model.
b	Servos	(1999),	4	NP	final	NOECfish	=	0.006	mg	L-1,	NOECdaphnid	=	0.0039	mg	L-1.
c	Dyer	et	al.	(2003),	based	on	chronic	toxicity.
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3.5	 regulatorY	uses	oF	enVIronmental	(Q)sars

3.5.1	 oRganization	FoR	economic	cooPeRation	and	develoPment

The	 Organization	 for	 Economic	 Cooperation	 and	 Development	 (OECD)	 consists	
of	30	member	countries	 around	 the	world	 that	work	 together	 to	enhance	 interna-
tional	trade	by	minimizing	the	barriers	to	trade	between	countries.	One	part	is	by	
establishing	mutually	agreed	upon	common	standards	(e.g.,	testing	guidelines).	As	
many	 existing	 chemicals	 are	 international	 commodities,	 the	 OECD	 SIDS	 project	
was	jointly	undertaken	by	member	countries	in	the	late	1980s	to	“share	the	burden”		
in	evaluating	 the	safety	of	OECD	high-production	volume	(HPV)	chemicals	 (i.e.,	
those	manufactured	in	or	imported	into	any	one	member	country	in	excess	of	10	000	
tonnes	or	in	two	or	more	countries	in	excess	of	1000	tonnes).	This	led	to	the	HPV	
list	of	4843	chemicals	with	little	or	no	publicly	available	information,	which	would	
then	undergo	a	minimal	set	of	testing,	providing	an	initial	screening	of	their	hazards	
to	health	and	the	environment.	The	required	basic	information	consisted	of	the	fol-
lowing	6	categories:	chemical	identity,	physical–chemical	data,	sources	and	levels	
of	 exposure,	 environmental	 fate	 and	pathways,	 ecotoxicological	data,	 and	 toxico-
logical	 data	 (OECD	 n.d.-a).	 Compounds	 will	 be	 assigned	 hazard	 classification	 in	
accordance	with	the	United	Nations’	Globally	Harmonized	System	for	classification	
and	labeling	of	chemicals	(GHS)	(United	Nations	Economic	Commission	for	Europe	
2004).	When	no	information	is	available	for	a	given	data	element,	calculations	or	
estimates	derived	from	(Q)SAR	models	can	be	provided,	but	the	methods	and	their	
quality	 should	be	described	 (Zeeman	et	 al.	 1995).	The	OECD	 in	2001	 suggested	
that	although	experimentally	derived	 test	data	are	preferred,	when	no	experimen-
tal	data	are	available,	validated	(Q)SARs	for	aquatic	toxicity	and	log	KOW	may	be	
used	 in	 the	 classification	 process.	 Such	 validated	 (Q)SARs	 may	 be	 used	 without	
modification	to	the	agreed	criteria	if	they	are	restricted	to	chemicals	for	which	their	
mode	of	action	and	applicability	are	well	characterized	(OECD	2001).	The	OECD	
is	active	regarding	regulatory	uses	of	(Q)SARs	for	the	registration	of	chemicals,	due	
to	large	undertakings	in	Canada,	Japan,	the	United	States,	and	the	European	Union	
(Sanderson	and	Thomsen	2007).	It	is	proposed	that	general	guidance	for	decision	mak-
ing	based	on	(Q)SAR	results	is	not	practical,	but	that	identification	of	valid	(Q)SARs	
to	 avoid	unilateral	 development	 of	 national	 (Q)SARs,	 and	 their	 associated	uncer-
tainty,	is	considered	necessary.	Further,	acceptance	of	different	levels	of	uncertainty	
may	vary	depending	on	the	type	of	chemical,	endpoints,	whether	other	information	
is	available	or	not,	how	close	one	is	to	making	a	final	decision,	and	the	impacts	and	
consequences	(human	health,	environmental,	and	economic).	Consideration	of	the	
applicability	domain	is	of	specific	importance	because	it	constitutes	the	major	source	
of	uncertainty	at	all	levels.	Therefore,	it	is	suggested	that	a	case-by-case	uncertainty	
analysis	approach	is	required.	Target	values	for	a	maximum	acceptable	uncertainty	
cannot	be	set	specifically	by	the	OECD;	however,	limitations	to	(Q)SAR	estimates	
should	be	quantified	and	provided	as	to	prediction	uncertainty,	data	variability,	and	
model	structure	uncertainty.	The	objectives	of	the	OECD	program	are	threefold:	1)	
to	 further	 refine	 the	 general	 and	 specific	 development	 or	 calibration	 principles	
already	 proposed	 for	 the	 establishment	 of	 internationally	 agreed	 principles;	 2)	 to	
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provide	guidance	on	the	calibration	and	acceptability	of	(Q)SARs	to	different	audi-
ences	(e.g.,	developers,	calibration	bodies,	and	regulators);	and	3)	to	make	validated	
(Q)SARs	available	for	enhanced	and	more	harmonized	regulatory	use.	The	aims	of	
the	OECD	program	include	ensuring	harmonized	and	mutual	acceptance	of	predic-
tions,	and	derive	consensus	on	the	role	of	(Q)SARs	in	relation	to	the	classification	of	
untested	chemicals	(OECD	2003).	For	consideration	of	a	(Q)SAR	model	for	regula-
tory	purposes,	 the	OECD	program	should	apply	 these	agreed	upon	principles	 for	
(Q)SAR	model	validation:

Must	have	a	defined	endpoint:	This	is	to	ensure	clarity	and	identify	the	
experimental	system	that	is	being	modeled	by	the	(Q)SAR.
An	unambiguous	algorithm:	This	is	to	ensure	transparency	in	the	model	
algorithm.	Without	this	information,	the	performance	of	a	model	cannot	
be	 independently	 established,	 which	 is	 likely	 to	 represent	 a	 barrier	 for	
regulatory	acceptance.
A	defined	domain	of	applicability:	It	is	realized	that	(Q)SARs	are	reduc-
tionist	 models	 that	 inevitably	 have	 limitations	 in	 terms	 of	 the	 types	 of	
chemical	structures	that	can	be	predicted;	in	other	words,	define	the	appli-
cability	of	the	model	based	on	the	domain.
Appropriate	measures	of	goodness-of-fit,	robustness,	and	high	predictive	
capacity:	The	predictive	capacity	of	the	model	should	be	determined	by	
external	validation.	Further	work	is	recommended	to	determine	what	con-
stitutes	external	validation	of	(Q)SARs.
A	 mechanistic	 interpretation,	 if	 possible:	 Models	 without	 mechanistic	
interpretation	can	be	used	in	a	regulatory	context.	However,	consideration	
of	 the	 mechanistic	 association	 between	 descriptors	 used	 in	 the	 model	
and	 the	predicted	endpoint	 should	be	 sought	 to	 improve	 the	 regulatory	
applicability	of	the	(Q)SAR.	Guides	to	(Q)SARs	currently	used	in	OECD	
member	states	has	been	published	(OECD	2005a,	2005b).

The	 (Q)SAR	 toolbox	was	presented	 in	2007	 (OECD	2007)	 and	will	 serve	 as	
an	internationally	recommended	approach	to	comprehensively	assess	chemicals	and	
categories	of	chemicals	based	on	(Q)SARs.	It	is	expected	that	this	set	of	models	will	
be	widely	applied	in	relation	to	the	implementation	of	REACH.

3.5.2	 united	states

In	1979,	almost	62	000	chemical	substances	were	reported	to	be	in	commerce	in	the	
United	States,	 and	 these	were	 “grandfathered”	 into	 the	Toxic	Substances	Control	
Act’s	inventory	of	existing	industrial	chemicals.	Chemicals	not	in	this	list	were	to	be	
considered	new	substances,	and	more	than	43	000	new	chemical	notifications	have	
been	submitted	by	industry	for	assessment	since	July	1979.	Via	inclusion	of	about		
13	000	new	industrial	chemicals	that	have	been	assessed	for	risk	and	are	now	in	com-
merce,	the	TSCA	inventory	has	now	increased	to	more	than	75		000	substances,	with	
a	total	production	and	import	of	2.7	trillion	tonnes	per	year	in	1989.	However,	the	
total	produced	in	and/or	imported	into	the	United	States	in	1989	was	larger	than	this		

•

•

•

•

•
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estimate.	Approximately	25	000	existing	chemicals	were	not	reported	because	they	
did	not	reach	the	10	000	lbs.	per	site	per	year	(4.53	tonnes)	reporting	threshold	or	
because	they	were	inorganic	chemicals.	In	addition,	from	1989	to	1995,	the	produc-
tion	of	only	the	top	50	organic	and	inorganic	chemicals	in	the	United	States	increased	
33%	 and	 15%,	 respectively.	 Currently	 more	 than	 2200	 new	 chemical	 notices	 are	
submitted	to	the	USEPA	annually	(Zeeman	et	al.	1999).	Section	5	of	the	Toxic	Sub-
stances	Control	Act	 requires	manufacturers	and	 importers	of	“new”	chemicals	 to	
submit	 a	 Premanufacture	 Notification	 (PMN)	 to	 the	 USEPA	 90	 days	 before	 they	
intend	to	commence	manufacture	or	import	of	a	new	substance	(Auer	et	al.	1993).	In	
the	PMN,	the	only	information	required	is	as	follows:	chemical	identity;	molecular	
structure;	trade	name;	production	volume,	use,	and	amount	for	each	use;	by-products	
and	impurities;	human	exposure	estimates;	disposal	methods;	and	any	test	data	that	
the	submitter	may	have.	The	manufacturer	does	not	have	to	initiate	any	ecological	or	
human	health	testing	before	submitting	a	PMN.	Only	~5%	of	the	PMNs	contain	any	
chemical	fate	or	ecotoxicological	test	data	(Zeeman	et	al.	1999).	This	has	resulted	
in	the	development	and	use	of	general	(Q)SARs	for	estimating	a	chemical’s	phys-
iochemical	 properties;	 ability	 to	 degrade	 and	bioconcentrate;	 and	 toxicity	 to	fish,	
aquatic	invertebrates,	and	algae	(Auer	et	al.	1993),	as	described	in	the	EPI	Suite.

Uncertainty	 factors	 are	 used	 to	 compensate	 for	 lack	 of	 definitive	 data	 when	
comparing	effects	concentrations	with	exposure	levels	and	are	used	as	follows	for	
(Q)SARs	by	the	USEPA:	1)	1000	if	only	1	acute	value	(known	or	predicted)	is	avail-
able;	2)	100	applied	to	the	most	sensitive	species	when	the	environmental	base	set	of	
toxicity	data	is	available	(acute	fish,	daphnids,	and	algae,	known	or	predicted);	3)	10	
applied	to	the	lowest	ChV	(chronic	value)	when	base	set	data	are	available	(known	
or	predicted);	and	4)	one	applied	to	the	ChV	from	a	field	study	(e.g.,	pond)	or	from	
a	microcosm	study	(Zeeman	et	al.	1999).	Of	the	1500	to	2000	new	chemicals	the	
OPPT	receives,	~20%	are	regulated	on	(Q)SAR	predictions	alone.	In	practice,	the	
only	assessment	factor	used	by	the	USEPA	OPPT	is	10.	An	environmental	toxicity	
profile	 (fish	 96-hour	 EC50,	 daphnid	 48-hour	 EL50,	 green	 algal	 96-hour	 E(b)C50	
cells	mL–1,	fish	ChV,	daphnid	ChV,	and	algal	ChV)	for	all	chemicals	is	generated	and	
integrated	into	this	process	using	measured	ECs,	if	possible,	and	then	applied	with	
an	uncertainty	factor	of	10	to	the	lowest	chronic	value.	The	USEPA	has	to	assess	the	
risk	of	all	chemicals	submitted	for	notification	within	90	days,	and	unless	it	is	able	to	
do	this,	the	substance	will	automatically	be	transferred	to	chemical	inventory	with-
out	challenge.	The	requirement	for	further	experimental	toxicity	data	is	dependent	
on	the	EPI	Suite	screening,	where	risk	has	to	be	demonstrated.	Because	the	USEPA	
receives	chemicals	from	every	corner	of	the	chemical	universe,	the	(Q)SARs	have	to	
have	a	broad	domain	(personal	communication,	Nabholz	2003).	Like	the	OECD,	the	
USEPA	has	its	own	HPV	program	initiated	in	1998,	where	(Q)SAR	predictions	play	
a	significant	role	(USEPA	n.d.).

3.5.3	 euRoPean	union

As	of	1981,	when	the	European	chemicals	policy	was	implemented,	the	European		Union	
required	the	submission	of	base	set	test	data	for	physiochemical,	environmental	fate,		
toxicological	 properties	 and	 health	 effects,	 and	 ecotoxicity	 parameters	 for	 new		
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substances	marketed	in	volumes	>	1	tonne.	Depending	on	the	exposure–effect	ratio,	
there	will	be	an	assessment	of	whether	the	substance	presents	a	risk	to	humans	and/or	
the	environment,	or	 further	data	may	be	necessary	 to	clarify	a	concern.	When	the	
risk	assessor	considers	the	potential	need	for	further	(test)	data,	(Q)SARs	may	serve	
as	a	supporting	tool	in	making	this	decision.	If	further	testing	is	needed,	(Q)SARs	
may	 also	 be	 used	 to	 optimize	 the	 test	 strategies.	 Hence,	 estimates	 resulting	 from	
(Q)SAR	models	cannot	be	the	only	basis	for	preparing	a	risk	assessment	of	a	sub-
stance.	 (Q)SAR	 estimates	 should	 be	 seen	 as	 a	 complementary	 tool,	 which,	 when	
evaluated	together	with	test	results,	can	provide	a	more	complete	understanding	of	
the	physiochemical	and	ecotoxicological	characteristics	of	the	substance.	The	result	
of	a	(Q)SAR	should	thus	be	evaluated	for	consistency	in	light	of	available	experimen-
tal	data	and	validated	estimates	from	other	endpoints.	As	a	general	rule,	acceptable	
(Q)SAR	estimates	should	be	used	only	in	a	conservative	manner	in	the	risk	assess-
ment	process.	In	the	EU	particular	care	is	taken	to	exclude	the	possibility	of	reaching	
conclusions	on	 the	risk	 to	humans	and	environment	where	 those	conclusions	may	
have	been	markedly	influenced	toward	relatively	lower	risk	by	use	of	(Q)SAR	esti-
mates	(false	negatives;	European	Commission	1996).	Typically	a	maximum	default	
uncertainty	 factor	of	1000	 is	applied	 to	 (Q)SAR	predictions	 in	 the	EU	(European	
Commission	1996).	There	is	no	published	agreed	upon	methodology	on	how	the	EU	
will	use	(Q)SARs	in	the	REACH	program	under	the	new	chemicals	policy	that	was	
implemented	 in	 June	2007	 (European	Union	n.d.).	The	most	used	current	models	
are	the	European	Union	System	for	the	Evaluation	of	Substances	(EUSES)	models		
(European	 Chemicals	 Bureau	 2005),	 and	 the	 expected	 use	 of	 the	 OECD	 (Q)SAR	
toolbox.	Implementation	methodology	of	(Q)SARs	under	REACH	is	currently	being	
developed.	Further	details	about	EUSES	and	the	REACH	program’s	implementation	
of	EUSES	and	other	models	are	very	important	but	outside	the	scope	of	this	chapter.

Compounds	in	existence	before	September	18,	1981	are	listed	as	existing	com-
pounds	 on	 the	 EINECS	 list	 of	 nonassessed	 commercial	 chemicals	 comprising	
roughly	100	000	different	compounds.	These	compounds	are	now	subjected	to	risk	
assessment	under	the	new	chemicals	policy	in	the	EU,	where	(Q)SAR	models	will	
play	 a	 significant	 role.	 The	 exact	 procedure	 for	 using	 (Q)SARs	 in	 the	 European	
Union	after	implementation	of	the	new	chemicals	policy	is	still	unclear.	Currently	
the	 uncertainty	 of	 (Q)SARs	 for	 classification	 and	 labeling	 for	 human	 health	 and	
environmental	effects	 is	 limited,	on	a	case-by-case	basis,	where	sufficient	experi-
mental	data	are	lacking	(European	Commission	1996;	Carlsen	2003;	Walker	2003).	
One	distinct	difference	from	the	United	States	is	that	(Q)SARs	cannot	be	used	as	
surrogates	for	data	and	thus	cannot	acquit	compounds,	as	the	European	Union	has	
zero	tolerance	for	predicted	false	negatives.	The	subsequent	use	of	(Q)SARs	within	
member	states	of	the	European	Union	is	not	harmonized;	some	use	them	more	than	
others	in	concordance	with	EU	DIR	1488/94EEC.

Denmark,	and	the	Danish	Environmental	Protection	Agency	(DK-EPA),	is	one	
of	the	leading	countries	in	terms	of	considering	the	pros	and	cons	to	environmental	
(Q)SARs.	It	published	an	advisory	list	for	self-classification	of	potentially	hazardous	
substances	based	on	predictions	from	(Q)SAR	models	(among	these	the	EPI	Suite)	
on	hazards	to	the	aquatic	environments	and	human	health	risks.	A	total	of	46	707	
existing	substances	were	examined,	identifying	20	624	substances	that,	according	to	
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the	models,	required	1	or	more	of	the	selected	endpoints.	The	list	is	used	as	a	tool	for	
industry	in	their	assessment	of	the	dangerous	properties	of	chemicals	in	cases	with	
insufficient	or	no	data	 for	 the	 substance	 regarding	 the	 selected	classification	end-
points.	The	models	that	were	used	estimated	results	to	an	accuracy	of	approximately	
70%	to	85%	within	1	order	of	magnitude	of	measured	values	(Danish	Environmental	
Protection	Agency	2001).	The	European	approach	to	registration	of	new	substances	
is	 more	 resource	 intensive	 than	 that	 of	 the	 United	 States,	 which	 is	 also	 reflected	
in	 the	 number	 of	 notifications:	 on	 average,	 325	 new	 notifications	 per	 year	 versus	
2200	in	the	United	States.	The	single	largest	current	difference	between	the	US	and	
EU	approaches	to	new	chemicals	is	that	the	European	Union	requires	experimental	
ecotoxicological	data,	whereas	the	United	States	may	accept	or	acquit	a	compound	
based	on	(Q)SAR	predictions	alone.	The	European	Commission	and	several	member	
states	are	awaiting	 the	outcome	of	 the	OECD	ad	hoc	workgroup	conclusions	and	
guidelines	on	the	regulatory	use	of	(Q)SARs.	The	implementation	(Q)SARs	under	
REACH	is	currently	being	developed	as	the	new	EU	Chemicals	Agency	in	Helsinki,	
Finland	becomes	fully	operational	during	2008/9.

3.5.4	 canada

With	 the	 promulgation	 of	 the	 Canadian	 Environmental	 Protection	 Act	 of	 1999	
(CEPA),	the	minister	of	the	environment	and	the	minister	of	health	were	obligated	to	
categorize	approximately	23	000	substances	on	the	Domestic	Substances	List	(DSL)	
prior	to	September	2006	(Environment	Canada	2005,	n.d.).	New	substances	(after	
January	1,	1987)	produced	at	quantities	of	more	than	10	000	kg	per	year	or	that	exceed	
an	accumulated	total	of	50	000	kg	require	experimental	premarket	notification	data	
(acute	toxicity;	LC50	for	fish	and	daphnia).	The	DSL	includes	substances	that	were,	
in	 Canadian	 commerce	 (January	 1984	 to	 December	 1986),	 used	 for	 manufactur-
ing	purposes,	or	manufactured	in	or	imported	into	Canada	in	a	quantity	of	100	kg	
or	more	in	any	calendar	year.	It	consists	of	50%	organics,	10%	inorganics,	18%	poly-
mers,	2%	others,	and	20%	UVCBs	(complex	substances	of	variable	composition).	
Environment	Canada	is	responsible	for	categorizing	the	substances	on	the	DSL	as	
being	persistent	or	bioaccumulative	and	inherently	toxic	to	nonhuman	organisms.	In	
order	to	categorize	the	substances	on	the	DSL	within	the	mandated	time	frame	and	
prepare	screening	assessments	as	necessary,	it	is	recognized	that	(Q)SARs	will	be	
relied	upon	to	fill	data	gaps	expected	for	up	to	80%	of	the	DSL	substances.	Given	no	
experimental	data,	inherent	toxicity	will	be	predicted	using	the	following	(Q)SARs:	
ASTER,	OASIS-FORCASTING,	ECOSAR,	TOPKAT,	COREPA,	and	PNN	(proba-
bilistic	neural	network).	Exposure	assessment	will	primarily	rely	upon	EPIWIN	and	
level	II	fugacity	modeling.	The	potential	mode	of	action	(MOA;	reactive	or	nonre-
active	unknown	MOA)	will	 initially	be	determined	using	ASTER	and/or	OASIS-
FORCASTING.	If	the	MOA	is	reactive,	TOPKAT	or	PNN	will	primarily	be	used	
to	predict	toxicity.	If	the	MOA	is	nonreactive	or	unknown	(narcosis),	ECOSAR	will	
also	be	used.	Expert	judgment	will	often	guide	how	model-difficult	substances	are	
categorized,	and	the	closet	analogue	approach	may	be	used	in	place	of	unreliable	
predictions.	Environment	Canada	acknowledges	that	the	process	for	categorization	
is	not	without	inherent	uncertainty,	but	given	the	state	of	the	science,	this	uncertainty	

73907_C003.indd   101 4/23/08   12:02:43 PM



102 Extrapolation Practice

is	acceptable.	They	identify	the	following	primary	sources	of	uncertainty:	 lack	of	
data,	model	error	and	limited	training	sets,	uncertainty	associated	with	measured	
data	 in	 general,	 extrapolation	 of	 biodegradation	 estimates	 to	 multimedia	 half-life	
values,	use	of	worst-case	media-based	half-life	rather	than	overall	half-life,	bioac-
cumulation	versus	bioavailability,	unknown	MOAs,	and	toxicity	to	nonpelagic	spe-
cies	(Robinson	2003).	To	adjust	for	these	uncertainties,	assessment	factors	are	used.	
Narcosis	is	understood	to	be	the	mechanism	for	the	minimal	toxicity	of	a	substance.	
Therefore,	if	a	substance	is	thought	to	have	an	MOA	other	than	narcosis	but	is	not	
well	defined,	the	uncertainty	factor	will	serve	to	provide	an	extrapolation	from	the	
less	toxic	narcosis	MOA	to	a	more	toxic	MOA	under	worst-case	estimates	for	EC50s.	
Environment	Canada	uses	assessment	factors	ranging	from	1	to	10	000	according	to	
Verhaar	et	al.	(1992),	where	the	DSL	substances	are	placed	in	1	of	4	classes	depend-
ing	on	the	validity	of	available	(Q)SARs	and	the	amount	of	experimental	and	pre-
dicted	data	(Environment	Canada	2003).

3.6	 dIsCussIon	and	regulatorY	outlook

(Q)SARs	 are	 highly	 integrated	 into	 effects	 assessment	 approaches	 throughout	 the	
world	and	are	likely	to	be	increasingly	used	for	new	and	existing	chemical	use	and	
discharge	management	(OECD	2003).	A	key	message	from	a	stakeholder	workshop	
(held	 on	 March	 4–6,	 2003;	 hosted	 by	 the	 European	 Centre	 for	 Ecotoxicology	 and	
Toxicology	of	Chemicals;	 and	organized	by	 the	 International	Council	 of	Chemical	
Associations	[ICCA]	and	the	European	Chemical	Industry	Council	[CEFIC]	as	part	
of	their	long-range	research	initiative)	was	that	both	industry	and	regulatory	authori-
ties	 share	 the	 same	goal,	 that	 is,	 to	use	 (Q)SARs	 in	 a	much	broader	 scope	 than	 is	
currently	 practiced	 for	 safety	 evaluation	 and	 chemicals	 management	 (Jaworska		
et	al.	2003).	(Q)SARs	statistical	models	range	from	simple	linear	regressions	through	
highly	sophisticated	neural	networks	 to	multivariate	ordination	 techniques	 (Carlsen	
2003;	 Eriksson	 et	 al.	 2003).	 As	 more	 structure-activity	 relationships	 and	 complex	
models	are	established	and	make	their	way	into	decision	making	as	criteria,	there	will	
be	a	need	to	provide	new	and	existing	users	with	sufficient	education	to	ensure	that	
(Q)SARs	are	used	properly	and	not	as	a	“black	box.”	Computer	software	will	increas-
ingly	need	to	make	appropriate	selection	and	interpretation	criteria	transparent	to	the	
user	(OECD	2003).	For	example,	determination	of	structure	and	physical–chemical	
properties	is	integral	for	proper	chemical	class	selection,	hence	appropriate	(Q)SAR	
selection	in	the	software	program	is	needed.	The	extent	of	training	sets,	their	quality,	
and	 their	 level	of	calibration	will	need	 to	be	explicitly	 stated	 to	ensure	proper	use,	
avoiding	common	mistakes	such	as	extrapolation	beyond	the	domain	of	applicability.

Integrating	concentration-	and	effect-addition	principles	with	(Q)SAR	opens	
the	 door	 for	 (Q)SAR-based	 mixture	 assessments.	 As	 discussed	 above,	 linking	
interspecies	correlations	(Asfaw	et	al.	2004)	with	the	USEPA’s	ECOSAR	program	
allowed	 for	 the	 generation	 of	 species	 sensitivity	 distributions,	 hence	 a	 probabi-
listic	 estimate	 for	 aquatic	 community	 effects.	 Estimated	 HC5s	 for	 4	 chemicals	
were	within	a	factor	of	2	of	published	values,	suggesting	that	current	uncertainty	
factors	overestimate	NOECs	established	via	data-based	SSDs;	even	SSDs	derived	
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from	(Q)SARs	extrapolated	via	ICE	with	assessment	factors	ranging	from	1	to	5	
(European	 Commission	 1996)	 would	 be	 appropriate.	 This	 challenges	 the	 tradi-
tional	higher	confidence	in	measured	data	over	predicted	data.	Further	studies	are	
needed	to	evaluate	the	scientific	soundness	of	this	approach	with	other	chemicals,	
(Q)SAR	models,	and	surrogate	species	and	extrapolation	 tools.	The	relationship	
of	predicted	chemical	properties	with	predicted	chemical	fate	and	transport	end-
points	 can	 be	 validated	 with	 databases	 having	 measured	 chemical	 data	 in	 vari-
ous	environmental	media	and	exposure	regimes	(e.g.,	mixing	zones	of	municipal	
wastewater	treatment	plants).	Exposure	relationships	can	range	from	broad	parti-
tioning	approaches	(e.g.,	 fugacity)	 to	site-specific	models	(wastewater	discharge)	
and	 watersheds	 (e.g.,	 the	 EU	 GREAT-ER	 program;	 GREAT-ER	 2005)	 and	 the	
USEPA	P2	framework	models	(USEPA	2005).	Tying	in	effects	and	exposure	can	
be	 further	 evolved	 via	 physiologically	 based	 pharmacokinetic	 (PBPK),	 PB-TK,	
and/or	body-burden-based	toxicity	models.	Although	(Q)SARs	have	been	widely	
used	for	aquatic	effects,	exposure,	and	risk	assessment,	they	are	generally	lacking	
for	terrestrial	or	nonaquatic	assessments.

Previously,	 there	 was	 some	 reluctance	 toward	 (Q)SAR-based	 environmental	
risk	assessment	(OECD	2003),	but	(Q)SAR-derived	data	today	receive	a	Klimisch	
score	 of	 3	 whereas	 experimental	 data	 of	 low	 quality	 receive	 Klimisch	 scores	 of		
3	to	4.	In	such	cases	(Q)SAR-derived	data	will	and	should	be	used	in	order	to	obtain	
the	best	available	basis	for	decision	making.	The	significantly	different	approaches	
between	the	United	States	and	the	European	Union	relating	to	accepting	or	acquit-
ting	a	substance	on	(Q)SAR	alone	ignores	or	underestimates	the	risk	of	false	nega-
tives	from	experimental	data,	which,	due	to	the	design	of	the	experiment	and	misuse	
of	hypothesis	testing,	may	be	larger	than	those	generated	via	modeling	(Suter	1996).	
Ecotoxicological	data	are	not	without	variability.	For	example,	Persoone	and	Jansson	
(1994)	found	that	the	coefficient	of	variation	(CV	=	SD/mean)	usually	exceeded	25%	
for	single-species	laboratory	tests,	and	could	be	as	high	as	50%.	Warren-Hicks	and	
Parkhurst	(2003)	confirmed	these	findings	in	2003	with	CVs	of	48%	for	inter-	and	
intralaboratory	 tests.	Sanderson	(2002)	 found	 that	microcosm	data	had	an	overall	
mean	CV	of	45%.	Thus,	ecotoxicological	 results	within	1	order	of	magnitude	are	
believed	 to	be	equal	or	not	different	 (Carlsen	2003).	 In	order	 to	develop	or	select	
the	most	appropriate	model	for	a	given	purpose,	2	different	types	of	uncertainties	
have	to	be	considered:	1)	input	uncertainty	and	variability,	which	arise	from	missing	
information	about	actual	values	and	natural	variability	due	to	a	heterogeneous	envi-
ronment;	and	2)	structure	(model)	uncertainties	that	arise	from	the	fact	that	every	
model	is	a	simplification	of	reality	due	to	a	limited	systemic	knowledge.	The	first	
type	relates	to	descriptor	variability	as	well	as	endpoints,	whereas	the	second	is	asso-
ciated	with	the	actual	type	of	model	chosen	for	the	problem.	The	end	choice	will	aim	
at	reducing	the	combination (i.e.,	total	uncertainty;	Carlsen	2003).

In	 conclusion,	 as	 (Q)SARs	 are	 becoming	 more	 precise	 and	 accurate,	 and	 are	
combined	with	other	environmental-	and	chemical-relevant	software	(e.g.,	ICE)	and	
databases	(product	 registries),	and	as	both	regulatory	agencies	and	 industries	 rec-
ognize	that	they	will	increasingly	rely	upon	(Q)SAR	predictions	in	the	future,	dis-
crimination	between	measured	and	predicted	data	is	being	reconsidered	in	the	EU	
and	within	the	OECD.
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4.1	 IntRoDUCtIon

An	ecosystem,	as	defined	by	Odum	(1971),	includes	living	organisms	interacting	with	
each	other	and	with	the	abiotic	environment.	Within	the	ecosystem,	the	existence	and	
flow	 of	 energy	 and	 cycle	 of	 materials	 lead	 to	 the	 development	 of	 trophic	 structures		
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(food	webs),	biotic	diversity,	and	nutrient	
cycles.	 Odum	 further	 recognized	 hierar-
chical	 levels	 of	 organization	 within	 the	
ecosystem:	genes–cells–organs–organisms–	
populations	 (species)–communities	 (Fig-
ure	4.1).	A	key	corollary	of	this	concept	is	
that	 effects	 at	 a	 given	 level	 of	 ecological	
organization	can	propagate	to	higher	levels	
of	organization.

Environmental	 toxicology	 empha-
sizes	 the	 organism	 level	 of	 ecological	
organization	through	its	reliance	on	data	
generated	 from	 single-species	 toxicity	
tests.	 For	 most	 industrial	 chemicals,	
only	 toxicity	 data	 from	 single-species	
tests	 are	 available,	 yet	 the	 protection	
goals	 of	 legislation	 and	 regulatory	
authorities	 include	 the	 preservation	 of	

populations,	communities,	and	ecosystems	(European	Union	1997;	USEPA	1998).	
Although	the	need	to	evaluate	the	effects	of	chemicals	at	higher	levels	of	biologi-
cal	organization	is	acknowledged,	the	use	of	individual-based	endpoints	continues	
to	dominate	toxicological	assessments	in	ecotoxicology.	Establishing	methods	to	
bridge	 this	gap	has	constituted	a	 significant	 research	direction	 in	ecotoxicology	
in	 recent	years,	 and	considerable	 effort	 has	been	expended	 in	developing	quan-
titative	 relationships	 among	 endpoints	 across	 levels	 of	 biological	 organization	
(Figure	4.1).	These	kinds	of	correlations	do	not	prove	causation,	due	to	a	limited	
knowledge	 of	 biochemical	 processes	 and	 their	 consequences	 for	 individuals.	 In	
general,	examples	of	effects	propagating	from	subindividual	levels	to	higher	levels	
of	organization	are	few.	It	has	thus	been	a	common	practice	to	extrapolate	effects	
at	higher	levels	of	biological	complexity	from	information	derived	at	lower	levels.	
The	most	common	approaches	in	this	regard	are	the	application	of	extrapolation	
factors	and	models.

Although	it	is	tempting	to	conclude	from	Figure	4.1	that	the	ecological	signifi-
cance	 of	 any	 response	 becomes	 more	 significant	 in	 relation	 to	 its	 position	 in	 the	
hierarchy,	this	is	not	necessarily	the	case.	“Significance”	is	determined	by	the	ques-
tion	being	posed.	This	applies	to	effects	at	any	level	of	organization,	which	may	or	
may	not	propagate	to	higher	levels,	depending	on	the	state	of	the	biological	system	
being	studied.	Conversely,	it	is	not	necessarily	easier	to	detect	a	response	at	lower	
levels,	nor	is	it	easier	to	interpret	the	consequences	of	a	response	at	higher	levels.	
Experiments	and	observations	at	higher	levels	of	biological	organization	generally	
require	more	effort	and	hence	greater	cost.	This	has	led	to	the	extensive	application	
of	population	and	higher	tier	models	to	extrapolate	effects	measured	at	lower	levels	
of	 biological	 organization	 to	 higher	 levels	 of	 biological	 complexity.	 Examples	 of	
models	that	have	been	applied	in	this	type	of	extrapolation	practice	are	common,	and	
exhibit	a	wide	range	in	complexity,	reflecting,	in	essence,	the	complexity	of	the	level	
of	biological	organization	to	which	they	are	being	applied.	For	practical	reviews	of	
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FIgURe	4.1	 A	 hierarchical	 view	 of	 levels	
of	biological	organization.
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the	more	commonly	utilized	models	in	ecotoxicology,	see	Pastorok	et	al.	(2002)	and	
Bartell	et	al.	(2003).

At	the	present	time,	regulatory	authorities	rely	predominantly	on	the	use	of	simple	
models	that	use	data	from	toxic	effects	on	individuals	to	extrapolate	to	higher	levels	of	
biological	organization.	Complex	models,	such	as	ecosystem	simulation	models,	have	
not	been	used	extensively	because	large	numbers	of	explicit	and	implicit	assumptions	
are	needed	to	parameterize	these	models.	These	models	require	a	large	amount	of	data	
about	 the	 fate	and	effects	of	a	chemical	 in	an	ecosystem.	When	such	data	are	 lack-
ing,	assumptions	have	to	be	made	by	experts,	and	the	values	chosen	may	be	subject	to	
intense	debate.	Differences	between	the	normal	practices	of	experts	and	their	opinions	
may	lead	to	differences	in	simulation	model	outcomes	and	ultimately	to	legal	stalemate	
and	inaction	(Boesten	2000).	Thus,	the	simplest	way	to	extrapolate	from	the	organism	
level	 to	higher	 levels	of	ecological	organization	 is	 to	use	an	extrapolation	factor.	As	
discussed	in	Chapter	1,	extrapolation	factors	have	been	used	by	the	chemical	industry	
and	regulatory	authorities	for	more	than	30	years	and	are	known	by	a	variety	of	names:	
application	factors	by	some	research	toxicologists,	safety	factors	by	the	chemical	indus-
try,	assessment	factors	by	the	USEPA,	and	uncertainty	factors	(UFs)	by	the	European	
Union	(EU)	(see	Table	1.1	for	an	overview	of	UFs	used	by	different	bodies).

The	complexity	of	ecosystems	makes	it	difficult	to	develop	quantitative	cause–
effect	 relationships	across	 levels	of	biological	organization.	For	 this	 reason,	 there	
has	been	a	strong	tendency	among	risk	assessors	to	rely	on	extrapolation	procedures,	
including	the	application	of	UF,	to	assure	protection	of	the	ecosystem.	In	part,	this	
reflects	a	strong	reluctance	in	ecotoxicology	to	address	ecosystem	complexity	(Preston	
2001).	Cairns	(1990)	suggested	that	this	simplified	approach,	which	is	strongly	biased	
toward	convenience,	reflects	the	fact	that	ecotoxicology	has	evolved	from	a	founda-
tion	of	methodology	and	ideology	rather	than	the	application	of	sound	scientific	prin-
ciples.	Newman	(1996)	argued	that	ecotoxicology,	if	it	is	to	progress	as	a	science,	
must	behave	as	a	science	in	practice.	A	key	aspect	of	this	must	be	a	willingness	to	
embrace	 the	 inherent	 complexity	of	 ecosystems	and	a	desire	 to	move	beyond	 the	
use	of	simplified	conceptual	models	(Preston	2001).	It	is	important	to	point	out	that	
this	will	only	happen	if	there	is	much	greater	dialogue	and	collaboration	between	
ecologists,	who	directly	address	ecosystem	complexity,	and	ecotoxicologists,	who,	
as	 practitioners	 of	 ecological	 risk	 assessment	 (ERA),	 must	 manage	 the	 effects	 of	
stressors	on	these	complex	systems.

In	this	chapter	we	describe	methods	that	can	be	used	for	extrapolating	between	
levels	of	biological	organization,	examine	their	assumptions,	indicate	their	strengths	
and	weaknesses,	and	look	forward	to	new	directions	for	research	in	this	area.	We	
start	the	chapter	at	the	biochemical	level	and	move	upwards	toward	the	ecosystem	
and	landscape	levels.	Also,	a	few	special	cases	of	horizontal	extrapolation	are	dis-
cussed:	direct	versus	indirect	effects,	and	structure	versus	function.

4.2	 eXtRAPoLAtIng	to	InDIVIDUALs

Measurements	 on	 biochemical	 and	 physiological	 responses	 to	 environmental		
stressors	have	become	a	common	component	of	site-specific	risk	assessment,	even	
though	 they	 continue	 to	 stimulate	debate	 regarding	 their	 utility	 and	 functionality	
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(e.g.,	lack	of	cause–effect	between	exposure	and	responses	for	many	biomarkers).	As	
described	below,	much	of	this	debate	revolves	around	the	appropriateness	of	extrapo-
lating	responses	across	levels	of	biological	organization.

Biomarkers	are	most	commonly	applied	as	indicators	of	exposure	to	contami-
nants	at	the	biochemical	level;	however,	Adams	and	Rowland	(2003)	provided	exam-
ples	of	biomarkers	that	are	routinely	applied	at	all	levels	of	biological	organization.	
Although	there	is	some	inconsistency	in	the	manner	in	which	biomarkers	are	defined,	
in	general,	they	fall	into	2	categories	—	those	that	indicate	that	an	organism	has	been	
exposed	to	a	chemical	(biomarkers	of	exposure)	and	those	that	indicate	that	some	
type	of	effect	has	occurred	(biomarkers	of	effect).	Biomarkers	of	effect	that	can	be	
appropriately	correlated	or	causally	linked	to	effects	within	and	between	levels	of	
biological	organization	have	been	called	“bioindicators”	(McCarty	and	Munkittrick	
1996;	McCarty	et	al.	2002).	The	term	“bioindicator”	is	also	used	in	reference	to	the	
application	of	whole	organisms	or	other	biological	parameters	to	assess	the	degree	of	
contamination	or	relative	status	of	a	particular	species,	habitat,	or	ecosystem,	though	
their	use	in	this	context	could	include	biochemical	measurements	(Jamil	2001).	Most	
recently,	Melancon	(2003)	used	biomarkers	and	bioindicators	interchangeably	in	a	
review	of	biochemical,	 physiological,	 and	morphological	bioindicators	 as	 tools	 to	
monitor	exposure	and	effects	in	aquatic	environments.

The	number	of	biomarkers	that	have	been	developed	to	indicate	exposure	to,	or	
effects	from,	contaminants	is	large	and	continues	to	grow.	It	is	beyond	the	scope	of	
this	chapter	to	review	all	of	the	available	biomarkers,	and	the	reader	is	directed	to	sev-
eral	books	and	reviews	on	the	subject	(Huggett	et	al.	1992;	Peakall	1992;	McCarthy	
and	Shugart	1992;	Di	Giulio	et	al.	1995;	Jamil	2001;	Melancon	2003).	In	general,	
biomarkers	can	be	categorized	as	follows	(Huggett	et	al.	1992):

Physiological	(e.g.,	inhibition	of	acetylcholinesterase	or	delta-aminolevu-
linic	acid	dehydratase)
Metabolic	(e.g.,	metabolites	of	xenobiotics	and	endogenous	substrates)
Genetic	(e.g.,	genotoxic	effects	and	DNA	alterations)
Histopathological	(e.g.,	lesions)
Immunological	(e.g.,	leukocrit	values	and	blood	differential	counts)
Molecular	 (e.g.,	 activity	 of	 cytochrome	 P450	 or	 concentrations	 of	
metallothioneins)

An	important	characteristic	of	biomarkers	is	that	they	indicate	that	a	contami-
nant	(or	contaminants)	is	(are)	present	in	the	environment,	that	it	is	biologically	avail-
able,	and	that	it	has	reached	a	target	tissue	in	sufficient	quantity	and	duration	as	to	
elicit	the	observed	response	(Melancon	2003).	In	addition,	because	most	organisms	
are	exposed	to	multiple	stressors	over	time,	biomarkers	can	reflect	an	integrated	expo-
sure	of	cumulative,	synergistic,	or	antagonistic	effects	(Adams	and	Rowland	2003).

4.2.1	 Biomarkers	as	early	Warning	indicators

A	significant	factor	leading	to	the	popularity	of	biomarkers	in	toxicology	is	that	they	
reflect	 initial	 changes	 caused	by	 an	 interaction	between	a	 toxicant	 and	biological	

•
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receptor	and	thus	offer	the	diagnostic	potential	to	be	used	as	early	warning	indica-
tors	of	exposure	to	stressors.	If	the	specificity	of	response	and	duration	and	intensity	
of	exposure	are	sufficient,	interactions	at	the	biochemical	level	may	lead	to	a	cas-
cade	of	responses	(Carpenter	et	al.	1985)	that	eventually	are	reflected	by	measurable	
responses	at	higher	 levels	of	biological	organization	(Sibley	et	al.	2000;	De	Coen	
and	Janssen	2003;	Melancon	2003).	In	this	sense,	effects	that	are	more	commonly	
measured	in	laboratory	toxicity	tests	(e.g.,	survival,	growth,	and	reproduction)	can	
be	thought	of	as	representing	the	culmination	of	damage	that	initially	occurred	at	the	
suborganismal	level	(De	Coen	and	Janssen	2003),	although	this	may	not	be	true	for	
all	effect	types	(e.g.,	behavioral	effects	arising	from	avoidance).	Thus,	ideally,	bio-
markers	will	be	predictive	of	future	harm	(Melancon	2003),	but	one	of	the	criticisms	
consistently	levied	against	the	use	of	biomarkers	in	ERA	is	that	contaminant-induced	
effects	that	occur	at	the	biochemical	level	are	often	very	difficult	to	interpret	in	terms	
of	responses	that	occur	at	the	population	and	higher	levels	of	biological	organiza-
tion.	Indeed,	there	is	a	significant	degree	of	uncertainty	regarding	the	relevance	of	
extrapolating	biomarker-based	responses	to	higher	levels	of	biological	organization	
(McCarty	and	Munkittrick	1996;	McCarty	et	al.	2002).	McCarty	and	Munkittrick	
(1996)	argued	that	the	foundation	of	the	biomarker	approach	is	the	extrapolation	of	
a	scalar	value,	the	biomarker	itself,	to	a	multidimensional	dynamic	ecosystem.	Attril	
and	Depledge	(1997)	argued	that	responses	at	lower	levels	of	biological	organization	
can	be	validly	related	to	those	at	higher	levels	as	long	as	a	clear	understanding	of	
their	relationship	has	been	established	through	the	use	of	quantitative,	cause–effect	
investigations	rather	than	from	one	level	to	another	based	solely	on	statistical	cor-
relation,	assuming	that	a	single	effect	is	caused	by	a	single	substance.

4.2.2	 Predictive	value	of	Biomarker	resPonses

If	responses	at	higher	levels	of	biological	organization	do,	in	fact,	represent	a	cas-
cade	of	 responses	 initiated	by	 interactions	at	 the	biochemical	 level	 (De	Coen	and	
Janssen	2003),	it	should	be	possible	to	link	biochemical	responses	to	contaminant	
exposure	 to	 responses	 at	 higher	 levels	 of	 biological	 organization	 through	 experi-
ment,	as	suggested	by	Attril	and	Depledge	(1997).	Where	biomarkers	can	be	linked	
in	a	correlation	(or,	preferably,	a	cause–effect	or	dose–response	manner)	to	impair-
ment	at	higher	levels	of	biological	complexity,	the	diagnostic	potential	and	value	of	
the	biomarkers	may	be	greatly	enhanced.	 Indeed,	much	of	 the	recent	 research	on	
biomarkers	has	focused	on	establishing	correlations	that	will	reduce	the	uncertainty	
associated	with	statistical	extrapolation.	Most	of	this	research	has	focused	on	devel-
oping	quantitative	relationships	between	proximal	levels	of	biological	organization	
(e.g.,	 biochemical–physiological–individual).	 For	 example,	 considerable	 work	 has	
been	conducted	on	linking	acetylcholinesterase	inhibition,	a	biomarker	of	exposure	
to	organophosphorus	insecticides,	to	responses	at	the	individual	level	(Anderson	and	
Barton	1998;	Sibley	et	al.	2000).	Sibley	et	al.	(2000)	showed	that	acetylcholinesterase	
inhibition	 in	 fathead	minnows	 was	 a	 consistent	 and	 strong	predictor	 of	mortality	
(Figure	4.2).	More	recently,	several	biochemical	and	physiological	biomarkers	have	
been	 developed	 to	 assess	 exposure	 to	 endocrine-disrupting	 compounds	 (EDCs),	
and	assays	have	been	developed	to	relate	these	to	effects	on	reproduction	(e.g.,	egg		
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production)	and	development	 (e.g.,	 somatic	 responses	 indicated	by	gonadosomatic	
and	liver	somatic	indices).	For	example,	vitellogenin	has	been	used	as	a	biomarker	of	
exposure	and	effects	of	estrogenic	EDCs,	and	several	assays	have	been	developed	for	
use	in	various	organisms	(Sherry	et	al.	1999).	In	addition	to	being	highly	sensitive	to	
changes	that	occur	at	the	molecular	and	biochemical	levels,	many	of	the	biomarkers	
developed	for	EDCs	have	the	potential	to	be	predictive	of	responses	at	the	population	
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FIgURe	4.2	 Mortality	of	fathead	minnows	in	relation	to	acetylcholinesterase	activity.a

a As	measured	 in	 the	brain	 tissue	 following	 (A)	a	14-day	exposure	 to	a	 ternary	mixture	of	
azinphos-methyl,	 diazinon,	 and	 chlorpyrifos	 in	 a	 concentration-response	 study;	 and	 (B)	 a		
7-day	exposure	to	a	ternary	mixture	of	azinphos-methyl,	diazinon,	and	chlorpyrifos	applied	as	
equipotent	(toxic	equivalent	[TE])	mixtures.	Note:	Dashed	lines	correspond	to	50%	reduction	
in	AChE	activity;	the	dashed-dotted	line	corresponds	to	50%	mortality.	Source:	Redrawn	from	
Sibley	et	al.	(2000).
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and	possibly	higher	levels	of	biological	organization	(Gross	et	al.	2003),	though	little	
research	has	been	conducted	in	this	regard.

Empirical	studies	that	quantitatively	link	the	responses	to	stressors	at	the	bio-
chemical	 level	 with	 those	 at	 the	 population,	 community,	 and	 ecosystem	 levels	 of	
biological	organization	are	 few.	One	approach	 that	has	been	used	 is	 the	develop-
ment	of	dynamic	energy	budgets	 (DEB),	which	simulate	energy	flow	as	a	way	of	
linking	molecular	processes	 to	population	dynamics	and	higher	 levels	of	biologi-
cal	organization	(Nisbet	et	al.	2000).	For	some	organisms	(e.g.,	Daphnia magna),	
elaborate	DEB	models	have	been	constructed	to	relate	observed	patterns	of	growth,	
development,	reproduction,	and	mortality	to	energetic	information	such	as	feeding	
rates	and	maintenance	requirements	(Gurney	et	al.	1990;	McCauley	et	al.	1990;	Ross	
and	Nisbet	 1990;	 Kooijman	 and	Bedaux	1996).	 Although	 these	 studies	 tended	 to	
focus	on	energy	flow	between	proximal	levels	of	biological	organization,	it	has	been	
clearly	recognized	that	DEB	models	hold	strong	potential	to	relate	stressor-induced	
changes	 in	 the	energetic	profile	of	organisms	 to	 the	population	 level	of	biological	
organization.	Indeed,	Nisbet	et	al.	(2000)	provided	concrete	examples	of	studies	that	
have	attempted	to	do	so.	More	recently,	De	Coen	and	Janssen	(2003),	using	a	suite	
of	model	toxicants,	were	able	to	develop	relatively	strong	correlations	(R2	=	0.66	to	
0.77)	between	several	energy-related	biomarkers,	combined	with	parameters	related	
to	oxidative	stress	and	DNA	damage,	and	long-term	effects	at	the	population	level	
for	D. magna.

Although	significant	progress	has	been	made	with	respect	 to	 the	development	
and	validation	of	specific	biomarkers	of	exposure	and	effects	as	a	basis	for	under-
standing	interactions	of	contaminants	with	aquatic	organisms,	there	remains	consid-
erable	uncertainty	regarding	the	validity	and	ecological	relevance	of	extrapolating	
these	responses	across	levels	of	biological	organization.	The	role	of	biomarkers	in	
ecological	risk	assessment	is	perhaps	best	viewed	as	providing	supplemental	lines	
of	evidence	 that	can	be	used	 to	demonstrate	 links	between	sublethal	biochemical	
responses	 and	 adverse	 effects	 in	 natural	 populations	 in	 field	 studies	 (Hyne	 and	
Maher	2003).

4.3	 eXtRAPoLAtIng	to	PoPULAtIons

Population	simulation	models	typically	deal	with	the	dynamics	of	the	abundance	or	
distribution	of	a	single	species	(Pastorok	et	al.	2002)	and	are	increasingly	being	used	
to	predict	field-level	responses	from	laboratory	toxicity	data	and	life	cycle	character-
istics	of	a	species.	Population	models	(and	ecosystem	models;	see	Section	4.5.2)	serve	
an	important	role	in	ecological	risk	assessment	because	they	provide	information	that	
supports	the	goal	of	ERA,	which	is	often	the	protection	of	populations,	biodiversity,	
and	system	function,	rather	than	individuals.	The	main	focus	of	population	models	
is	to	estimate	the	response	dynamics,	particularly	recovery,	of	populations	follow-
ing	short-term	exposure	to	a	chemical	and	to	estimate	the	long-term	consequences	
of	sublethal	effects.	Depending	upon	the	class	of	organisms,	recovery	and	sublethal	
effects	 may	 be	 difficult	 to	 evaluate	 using	 current	 test	 methods,	 even	 in	 semifield	
experiments	(see	Section	4.5.1),	because	the	limited	time	span	of	most	studies	(typi-
cally	not	longer	than	a	year	and	often	much	shorter)	may	not	adequately	capture	life	
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history	dynamics.	Furthermore,	the	isolated	nature	of	microcosms	and	mesocosms	
may	not	present	the	same	opportunity	for	recovery	through	immigration	as	exists	in	
natural	habitats	(van	den	Brink	et	al.	1996).	For	some	fast-reproducing	species	that	do	
not	have	high	habitat	or	food	requirements,	like	algae	and	Daphnia,	population-level	
effects	can	be	evaluated	experimentally	(e.g.,	van	der	Hoeven	and	Gerritsen	1997).	
For	species	that	have	a	more	complex	life	cycle,	performing	population-level	experi-
ments	is	difficult,	and,	as	stated	above,	it	is	even	difficult	in	mesocosms.

4.3.1	 generic	PoPulation	models

In	ecotoxicology,	the	most	commonly	used	population	simulation	models	are	generic	
models	that	take	into	account	organism	life	history	characteristics	and	involve	sca-
lar	abundance,	such	as	 the	 logistic	growth	model	(Gotelli	2001)	or	 the	estimation	
of	a	direct	 inhibition	of	population	growth	rates	by	a	chemical	via	measurements	
of	 reproduction	 or	 mortality	 rates	 (Newman	 1995;	 Tanaka	 and	 Nakanishi	 2001).	
Outcomes	 in	 these	models	 include	density	and	growth	rate	estimations,	 the	prob-
ability	of	extinction,	and	time	to	recovery.	One	of	the	most	common	descriptors	in	
these	types	of	models	is	the	instantaneous	rate	of	increase	(ri)	or	the	intrinsic	rate	of	
increase	(rm).	The	intrinsic	rate	of	increase	measures	the	ability	of	a	population	to	
increase	exponentially	in	an	unlimited	environment	(Walthall	and	Stark	1997b)	and	
has	been	widely	applied	in	toxicological	studies	to	extrapolate	from	survivorship	and	
reproductive	data	(individual-level	information)	to	population-level	effects	(Walthall	
and	Stark	1997a,	1997b;	Forbes	and	Calow	1999).	The	instantaneous	rate	of	increase	
provides	ostensibly	similar	information	compared	to	that	provided	by	rm	but	requires	
fewer	resources	to	measure	as	it	is	calculated	from	the	number	of	individuals	in	a	
starting	and	ending	population	and	does	not	require	detailed	schedules	of	survivor-
ship	or	fecundity	(Walthall	and	Stark	1997b).	Forbes	and	Calow	(1999)	concluded	
that	 r	 is	 a	 better	 measure	 of	 responses	 to	 toxicants	 compared	 to	 individual-level	
effects	because	it	integrates	complex	interactions	among	life	history	traits	and	pro-
vides	a	more	realistic	measure	of	ecological	impact.	The	concept,	however,	suffers	
from	the	fact	that	any	effect	on	r	is	context	dependent,	and	thus	difficult	to	interpret	
ecologically	(e.g.,	see	Barata	et	al.	2002a).	Moreover,	it	is	often	estimated	using	data	
from	 laboratory-reared	 individuals,	 and	 thus	 ignores	 environmental	 externalities	
such	as	habitat	loss	and	extrinsic	mortality.

More	recently,	studies	have	applied	the	probability	of	extinction	as	an	endpoint	
to	extrapolate	short-term	effects	on	 long-term	population	consequences.	Based	on	
population	 viability	 analysis	 (Boyce	 1992;	 Groom	 and	 Pascual	 1997),	 population	
size	is	projected	into	the	future	using	demographic	rates	and	models	that	incorporate	
stochastic	effects	(Snell	and	Serra	2000).	In	practice,	it	would	be	difficult	to	deter-
mine	extinction	rates	experimentally	due	to	the	need	to	conduct	experiments	over	
multiple	generations.	Thus,	the	probability	of	extinction	is	typically	modeled	using	
the	instantaneous	rate	of	increase	(Snell	and	Serra	2000).

Another	simple	approach	to	predict	effects	at	higher	levels	of	biological	orga-
nization	through	extrapolation	is	the	HERBEST	model	(van	den	Brink	and	Kuyper	
2001).	HERBEST	 estimates	 direct	 effects	 and	 potential	 recovery	of	 field	popula-
tions	 of	 aquatic	 organisms	 from	 predicted	 or	 measured	 pesticide	 concentrations,	
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laboratory	 toxicity	data,	 and	 life	history	characteristics.	 It	 is	 important	 to	 realize	
that	simple	population	models	do	not	incorporate	potentially	important	aspects	of	
population	dynamics	such	as	age	structure	(stage	specificity)	and	therefore	often	lack	
realism	(Caswell	1996;	Sauer	and	Pendleton	2003;	Barnthouse	2004).	However,	one	
of	the	main	uses	of	simple	models	is	for	screening	assessments	of	the	ecological	risks	
of	chemicals,	and,	because	such	assessments	are	often	conducted	in	the	absence	of	
high-quality	data,	scalar	models	may	be	highly	appropriate	(Ferson	2002).

4.3.2	 comPlex	PoPulation	models

A	reduction	 in	uncertainty	associated	with	extrapolation	between	 individuals	and	
populations	can	be	achieved	by	using	more	sophisticated	(and	often	more	complex)	
population	models.	Population	models	based	on	life	history	characteristics	defined	
in	 terms	of	 age	or	 stage	have	become	 increasingly	popular	 in	 recent	years	 (Klok	
and	De	Roos	1996;	Caswell	2001;	Kuhn	et	al.	2001;	Newman	2001;	Carroll	2002a).	
Because	these	size-structured	matrix	models	track	characteristics	of	organisms	as	a	
function	of	age	or	stage,	unlike	the	simple	scalar	models,	they	provide	enhanced	bio-
logical	realism.	These	models,	which	may	be	deterministic	or	stochastic,	incorporate	
information	 such	 as	 survivorship	 and	 fecundity	 defined	by	 size	or	morphological	
state	(e.g.,	stage)	or	age	(Carroll	2002a).

Individual-based	 population	 models	 have	 also	 become	 increasingly	 prevalent	
in	recent	years.	Examples	of	this	class	of	model	are	dynamic	energy	budget	mod-
els	 such	as	 those	developed	by	Gurney	et	al.	 (1990),	McCauley	et	al.	 (1990),	and	
Kooijman	and	Bedaux	(1996).	This	class	of	models	 incorporates	 the	variation	 that	
typically	exists	among	individuals	of	a	population	by	dividing	the	entire	population	
into	subsets	of	individuals	with	similar	attributes	(Maltby	et	al.	2001;	Regan	2002).	
Such	models	can	also	include	migration	and	dispersal	patterns	and	therefore	be	highly	
complex.	Examples	of	the	latter	are	the	terrestrial	ALMaSS	model	(Topping	1997;	
Topping	et	al.	2003)	and	the	aquatic	MASTEP	model	(van	den	Brink	et	al.	2007).

A	metapopulation	is	a	group	of	several	local	populations	in	the	same	geographi-
cal	area	that	are	linked	by	immigration	and	emigration	(Gotelli	2001;	Akcakaya	and	
Regan	2002).	Metapopulation	models	 can	model	 both	population	persistence	 and	
population	abundance.	In	the	context	of	persistence,	a	population	either	is	present	
(locally	persistent)	 in	an	area	or	 is	not	(extinct).	Although	metapopulation	models	
have	been	used	widely	in	ecological	circles	for	almost	2	decades,	their	application	in	
ecotoxicology	has	been	far	less	common	(Sherratt	and	Jepson	1993;	Mauer	and	Holt	
1996;	Spromberg	et	al.	1998).

Each	of	the	classes	of	models	discussed	above	can	be	used	for	different	kinds	of	
extrapolations,	including	extrapolation	of	biochemical	or	mortality	effects	observed	
in	individuals	to	effects	at	the	population	level,	extrapolation	of	results	obtained	from	
semifield	experiments	to	the	real	field,	and	integration	of	population	and	landscape	
characteristics	 to	 landscape-level	 population	 consequences	 of	 chemical	 stressors.	
For	 additional	 information	 on	 population	 models	 and	 their	 use	 in	 ecological	 risk	
assessment,	 the	 reader	 is	 directed	 to	 the	 reviews	 found	 in	 Sauer	 (1995),	 Caswell	
(1996),	ECOFRAM	(1999),	Newman	(2001),	Pastorok	et	al.	(2002),	Regan	(2002),	
Bartell	et	al.	(2003),		and	Sauer	and	Pendleton	(1995;	2003).
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4.4	 eXtRAPoLAtIon	to	CoMMUnItIes

In	ecological	risk	assessment,	the	target	for	protection	may	often	be	the	community.	
It	is	recognized	that	not	all	populations	can	be	tested	and	protected,	and	by	main-
taining	biodiversity	at	the	community	level	it	is	assumed	that	ecosystem	structure	
and	function	are	maintained.	A	community	is,	however,	more	than	an	agglomera-
tion	of	species,	but	is	defined	in	terms	of	the	species	present	and	their	interactions.		
Abercrombie	et	al.	(1973,	70	p)	defined	“community”	as	an	“ecological	term	for	any	
naturally	occurring	group	of	different	organisms	inhabiting	a	common	environment,	
interacting	with	each	other	especially	through	food	relationships,	and	relatively	inde-
pendent	of	other	groups.”

4.4.1	 exPerimental	aPProaches

Aquatic	microcosms	and	mesocosms	offer	the	ideal	situation	to	investigate	popula-
tions	of	species	interacting	in	their	natural	environment	(i.e.,	to	study	communities	
stressed	in	structured	systems;	see	Section	4.5.1).	It	is,	however,	only	recently	that	
these	experiments	have	been	analyzed	at	the	community	level	(Van	Wijngaarden	et	
al.	1995;	Sparks	et	al.	1999;	van	den	Brink	and	Ter	Braak	1999).	Until	10	years	ago,	
experiments	were	evaluated	at	the	population	level,	largely	ignoring	species	interac-
tions	and	energy	flows	 in	 the	systems.	The	development	of	community-level	end-
points	offered	the	possibility	to	evaluate	the	experiments	on	a	community	level	(i.e.,	
they	offered	the	opportunity	to	scale	up	the	level	of	evaluation;	Kedwards	et	al.	1999).	
Summary	community-level	 endpoints	 calculated	 from	 the	 results	of	 these	 experi-
ments	are	mostly	structural	ones:	measures	of	diversity	(e.g.	numbers	of	species,	and	
the	Shannon-Weaver	diversity	index)	and	similarity	of	the	treated	systems	compared	
to	 the	untreated	controls	 (e.g.,	 the	principal	 response	curves	method,	Bray-Curtis	
dissimilarity,	 or	 Stander’s	 index;	 see	 van	 den	 Brink	 and	 Ter	 Braak	 1998	 for	 a	
comparison).

For	example,	Sibley	et	al.	(2001a)	summarized	the	effects	of	creosote	on	the	zoo-
plankton	community	in	1	diagram	using	the	principal	response	curves	(PRC)	method	
(Figure	4.3).	Instead	of	showing	the	response	of	the	86	individual	zooplankton	taxa	
that	were	identified,	their	response	is	captured	in	a	single	diagram.	It	must	be	noted	
that	other	measures	of	diversity	or	similarity	can	be	used,	but	these	are	generally	less	
sensitive	and	do	not	offer	the	possibility	to	go	directly	back	to	the	species	level	(van	
den	Brink	and	Ter	Braak	1998;	Smit	et	al.	2002;	van	den	Brink	et	al.	2003).	Measures	
of	diversity	and	similarity,	like	principal	response	curves,	offer	the	possibility	to	evalu-
ate	changes	in	the	structure	of	the	community,	although	they	also	can	be	applied	to	
functional	parameters	(van	den	Brink	and	Ter	Braak	1999).	The	main	disadvantage	of	
community-level	endpoints	is	that	they	do	not	explicitly	capture	species	interactions	
and	interdependence	among	species.	PRC	diagrams,	however,	do	offer	the	possibility	
to	develop	hypotheses	concerning	such	interactions,	and	can	be	used	as	aids	to	inves-
tigate	hypothesized	cause–effect	relationships.

Microcosms	 and	 mesocosms	 are	 relatively	 expensive	 and	 time-consuming	
approaches,	and	 thus	may	not	always	be	appropriate	 to	evaluate	effects	 for	many	
chemicals.	 Often,	 the	 only	 effects	 data	 that	 exist	 for	 a	 chemical	 are	 results	 from	
standardized	laboratory	single-species	toxicity	tests.	In	criteria	setting	there	are	2		
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methods	to	extrapolate	these	values	to	the	community	level,	the	use	of	uncertainty	
factors	 and	 the	 use	 of	 probabilistic	 methods.	 There	 is	 an	 extensive	 literature	 on	
comparing	the	2	approaches,	and	the	reader	is	referred	to	Scheringer	et	al.	(2002),	
Volosin	and	Cardwell	(2002),	Crane	et	al.	(2003),	and	Brock	et	al.	(2004)	for	exam-
ples.	Microcosms	and	mesocosms	are	designed	to	mimic	the	field	but	are	not	rep-
resentative	for	all	ecosystems	present	in	nature.	Therefore,	extrapolation	from	one	
ecosystem	type	(e.g.,	a	macrophyte-dominated	aquatic	ecosystem)	to	another	eco-
system	type	(e.g.,	a	plankton-dominated	aquatic	ecosystem)	might	still	be	needed.	
Recent	 reviews,	however,	 indicated	 that	 for	compounds	 for	which	multiple	meso-
cosm	tests	were	available,	variation	of	the	safe	threshold	value	was	relatively	low,	
but	 effects	observed	at	 concentrations	higher	 than	 the	 threshold	value	may	differ	
substantially	(van	Wijngaarden	et	al.	2005b;	Brock	et	al.	2006;	and	see	Chapter	7).	
Section	4.5.1	provides	more	information	on	how	microcosms	and	mesocosms	can	be	
used	to	assess	the	ecosystem	level.
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FIgURe	4.3	 Principal	response	curves	and	species	weights	(bk)	of	zooplankton	exposed	to	
liquid	creosote	in	aquatic	microcosms.	Note:	Of	all	the	variances,	32%	could	be	attributed	to	
the	sampling	date;	this	is	displayed	on	the	horizontal	axis.	Sixty-five	percent	of	all	variance	
could	be	attributed	 to	 treatment	 level.	Of	 this	variance,	22%	are	displayed	on	 the	vertical		
axis.	The	lines	represent	the	course	of	the	treatment	levels	in	time.	The	species	weight	(bk)		
can	be	interpreted	as	the	affinity	of	the	taxon	with	the	principal	response	curves	(cdt).	Only	
species	comprising	greater	than	5%	of	the	zooplankton	community	at	any	point	in	time,	or	
that	occurred	in	more	than	75%	of	samples,	are	presented	in	the	species	weight	line	graph.	
For	clarity,	the	graph	is	divided	into	low	(A)	and	high	(B)	concentrations.	Cl	=	Cladocera;	
Co	=	Copepoda;	and	R	=	Rotifera.	Source:	Redrawn	from	data	from	Sibley	et	al.	(2001a).
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4.4.2	 sPecies	sensitivity	distriBution	concePt

On	 the	probabilistic	 side,	 the	species	 sensitivity	distribution	 (SSD)	concept	offers	
the	 possibility	 to	 predict	 effects	 at	 the	 community	 level	 using	 all	 available	 data		
(Posthuma	 et	 al.	 2002b).	 SSD	 is	 defined	 as	 a	 probability	 density	 function	 of	 the	
cumulative	 distribution	 function	 of	 the	 toxicity	 of	 a	 certain	 compound	 or	 mix-
ture	 to	a	set	of	species	 that	may	be	defined	as	a	 taxon	assemblage	or	community		
(Figure	4.4).	 In	 the	 United	 States	 and	 European	 Union,	 the	 SSD	 concept	 has	 been	
used	during	 the	 last	 10	years	 to	 set	water	 quality	 criteria	 and	 estimate	 risks	based	
on	results	of	water	quality-monitoring	programs	(Knoben	et	al.	1998;		Stephan	2002;	
van	Straalen	and	van	Leeuwen	2002;	Preston	and	Shackelford	2002).	To	estimate	a	
concentration	below	which	the	fraction	of	species	exposed	above	their	no-effect	level	
is	considered	acceptably	small,	a	cutoff	value	of	the	distribution	must	be	chosen.	Usu-
ally	a	cutoff	value	of	5%	or	10%	is	chosen,	and	their	corresponding	concentrations	are	
named	HC5	and	HC10	(hazardous	concentration	of	5%	or	10%).	The	use	of	the	SSD	
concept	in	ecological	risk	assessment	is	based	on	some	assumptions	(Versteeg	et	al.	
1999;	Forbes	and	Calow	2002),	some	of	which	conflict	with	the	definition	of	a	com-
munity	stated	above.	These	assumptions,	discussed	in	detail	below,	are	as	follows:

	 1)	 The	sample	of	 the	species	on	which	 the	SSD	is	based	 is	a	 random	selec-
tion	of	 the	community	of	 concern,	 and	 is	herewith	 representative	 for	 this	
community.

	 2)	 Interactions	among	species	do	not	influence	the	sensitivity	distribution.
	 3)	Because	functional	endpoints	are	normally	not	incorporated	in	the	SSD,	

community	structure	is	the	target	of	concern.
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FIgURe	4.4	 Species	 sensitivity	 distribution	 (SSD)	 curves	 for	 different	 aquatic	 species	
groups	for	the	insecticide	chlorpyrifos.	Note:	Shown	are	the	toxicity	data	of	arthropods,	other	
invertebrates,	fish,	and	algae.	Results	of	the	logistic	regression	on	these	data	are	represented	
by	lines.	Source:	Data	were	obtained	from	ECOTOX	(USEPA	2001).
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	 4)	The	laboratory	sensitivity	of	a	species	approximates	its	field	sensitivity.
	 5)	The	endpoints	measured	in	the	toxicity	tests	on	which	the	SSD	is	based	

are	ecologically	relevant.
	 6)	Because	in	SSD	all	species	have	equal	weight,	it	is	assumed	that	all	spe-

cies	are	equally	important	for	the	structure	and	functioning	of	the	ecosys-
tem	of	concern.

	 7)	The	real	distribution	of	the	sensitivity	of	the	community	is	well	modeled	
by	the	selected	statistical	distribution.

	 8)	The	number	of	species	data	used	to	fit	the	distribution	is	adequate	from	
a	statistical,	ecological,	and	animal	welfare	point	of	view	to	describe	the	
real	distribution	of	the	sensitivity	of	the	community.

	 9)	The	protection	of	the	prescribed	fraction	of	species	ensures	an	“appropri-
ate”	protection	of	field	ecosystems.

Unlike	the	definition	of	a	community	that	is	provided	above,	the	toxicity	data	
used	to	construct	an	SSD	normally	are	not	derived	from	species	in	the	community	
of	concern	(Assumption	1).	So	the	SSD	does	not	represent	a	known	community,	but	
is	often	interpreted	as	if	it	does	(Forbes	and	Calow	2002).	When	used	for	criteria	
setting,	this	is	less	problematic	because	one	does	not	have	a	particular	community	
in	mind	 but	wishes	 to	 protect	 a	 generic	 community,	 like	 “the	 arthropods”	 (Suter	
et	al.	1993).	The	most	simple	and	inexpensive	way	of	constructing	an	SSD	for	this	
purpose	is	to	use	(Q)SAR	to	predict	toxicity	(e.g.,	Chapter	2)	and	construct	an	SSD	
using	these	predicted	toxicity	data.	If	needed,	information	on	slope	and	placement	of	
species	within	the	SSD	can	be	derived	from	other	chemicals	(De	Zwart	2002).

A	 second	 assumption	 inherent	 in	 applying	 SSDs	 to	 predict	 community-level	
effects	is	that	ecological	interactions	among	species	—	so-called	“indirect	effects”	—		
are	 absent	 or	 insignificant	 (see	 Section	 4.5.2,	 Assumption	 2,	 below;	 Wagner	 and	
Løkke	1991).	Indirect	effects	are	not	necessarily	linked	to	a	certain	centile	of	the	
SSD	curve	(for	example,	 they	could	occur	at	 the	HC10	or	HC90	 level);	 therefore,	
values	higher	than	HC5	may	not	correspond	to	a	certain	overall	effect	(direct	and	
indirect	 effects	 together;	 van	 den	 Brink	 et	 al.	 2002a).	 Food-web	 models	 that	 are	
discussed	later	in	this	chapter	(Section	4.5.4)	can	be	used	to	extrapolate	from	popula-
tions	to	communities	taking	indirect	effects	into	account.

It	 is	 assumed	 that	 by	 protecting	 the	 structure	 of	 a	 community,	 its	 functions,	
including	energy	flows	within	food	webs,	are	also	protected	(Assumption	3).	How-
ever,	the	validity	of	this	assumption	is	questionable;	for	example,	Brock	et	al.	(2000a)	
showed	that	photosynthesis-inhibiting	herbicides	affect	ecosystem	functions	such	as	
community	metabolism	at	lower	concentrations	than	structure.	It	should	be	noted,	
however,	that	this	could	also	be	a	result	of	the	higher	accuracy	of	measurement	and	
the	lower	natural	variability	of	functional	parameters	compared	to	structural	ones.	
Also,	the	extent	of	the	difference	is	rather	small;	slight	changes	in	structural	param-
eters	were	generally	observed	at	concentrations	1.6	times	greater	than	those	at	which	
slight	effects	on	functional	parameters	were	found	(Brock	et	al.	2000a).	For	an	over-
view	of	how	to	incorporate	species	interactions	and	functional	parameters	into	the	
risk	assessment,	the	reader	is	referred	to	Kersting	(1994)	and	to	Sections	4.5.2	and	
4.5.3.	In	principle,	by	combining	ecological	(food-web)	simulation	models	to	define	
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the	ecological	interactions	with	the	SSD	concept	to	define	the	toxicology	component,	
it	is	possible	to	address	this	problem	(Brix	et	al.	2001;	Solomon	and	Takacs	2002).	
This	can	be	done	by	assigning	a	distribution	of	values	to	functional	groups	rather	
than	 a	 single	 sensitivity	value.	By	 running	multiple	 simulations,	 a	 distribution	 of	
outcomes	is	obtained	that	also	reflects	uncertainty	regarding	the	sensitivity	of	func-
tional	groups.

There	is	an	extensive	literature	on	the	comparison	between	laboratory	and	field	
sensitivity	of	species	(Assumption	4).	The	general	conclusion	of	these	comparisons	
is	that,	when	exposure	is	comparable,	the	laboratory	sensitivity	of	a	species	to	cer-
tain	chemicals	is	representative	of	its	field	sensitivity.	On	an	SSD	level	(i.e.,	compar-
ing	 the	 laboratory	and	field	sensitivities	of	agglomerations	of	species),	only	a	few	
examples	 are	 available.	 van	 den	 Brink	 et	 al.	 (2002a),	 Schroer	 et	 al.	 (2004b),	 and	
Hose	and	van	den	Brink	(2004)	used	microcosm	and	mesocosm	experiments	(see	
Section	4.5.1)	performed	with	the	insecticides	chlorpyrifos,	lambda-cyhalothrin,	and	
endosulfan	to	calculate	acute	field	EC50s	for	species	inhabiting	the	systems.	They	
compared	the	SSD	based	on	these	values	(field-SSD)	with	an	SSD	based	on	results	
from	standard	laboratory	experiments	(lab-SSD).	van	den	Brink	et	al.	(2002a)	and	
Schroer	et	al.	(2004b)	found	an	exact	match	between	the	two	when	both	SSDs	were	
based	on	sensitive	groups	(in	these	cases,	arthropods)	and	the	lab-SSD	was	based	on	
the	same	concentration	range	used	in	the	field	experiment.	Hose	and	van	den	Brink	
(2004)	found	a	difference	of	a	factor	of	three	between	lab-SSD-	and	field-SSD-based	
HC5	values,	although	the	confidence	intervals	overlapped.	The	HC5	value	derived	
from	laboratory	data	was	less	than	that	derived	from	the	mesocosm	data	and	was	
thus	protective	of	 those	populations.	The	findings	of	 these	studies	suggest	 that,	at	
least	for	these	insecticides,	the	exclusion	of	natural	environmental	factors	(such	as	
light,	temperature,	habitat	suitability,	and	shelter)	in	laboratory	tests	did	not	signifi-
cantly	change	the	results	of	the	sensitivity	distribution	of	the	arthropods.

Assumption	5	states	that	the	endpoints	measured	in	the	toxicity	tests	on	which	
the	SSD	is	based	must	be	ecologically	relevant.	Mortality	is	the	most	frequently	stud-
ied	endpoint	in	laboratory	tests.	In	chronic	tests,	endpoints	such	as	reproduction	and	
inhibition	of	growth	are	also	studied.	Forbes	et	al.	(2001a)	argued	that	individual-	
level	 endpoints	 like	 survival,	 fecundity,	 and	growth	may	not	 reflect	 effects	 at	 the	
population	level	(Assumption	5).	They	recommended	that	additional	consideration	
be	given	to	the	relative	frequency	of	different	life	cycle	types,	to	the	proportion	of	
sensitive	and	insensitive	taxonomic	groups	in	communities,	and	to	the	role	of	density-
dependent	influences	on	population	dynamics	(see	also	Forbes	and	Calow	2002).

For	 the	 SSD	 concept,	 all	 species	 are	 considered	 to	 be	 equal	 (Assumption	 6),	
although	 we	 know	 that	 some	 species	 are	 more	 important	 for	 the	 functioning	 of	
ecosystems	than	others,	for	example,	the	role	of	earthworms	as	allogenic	engineers	
in	soil	ecosystems	(Lavelle	et	al.	1997)	and	macrophytes	as	autogenic	engineers	in	
the	aquatic	environment	(Jones	et	al.	1994).	Also,	the	concept	of	keystone	species	
(i.e.,	species	that	have	effects	on	ecosystems	that	are	disproportionate	to	their	relative	
abundance)	acknowledges	that	not	all	species	are	equal.	It	is	possible	to	weight	spe-
cies	in	an	SSD	based	on	their	importance	for	the	ecosystem.	There	is,	however,	no	
consensus	in	the	field	of	ecology	on	what	to	measure	as	an	indicator	of	the	importance	
of	a	species	to	an	ecosystem,	nor	does	such	a	consensus	seem	likely	(Bond	2001).		
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Most	ecologists,	however,	now	agree	that	we	need	to	focus	on	2	categories:	domi-
nants	(those	abundant	species	 that	play	a	key	role	 in	ecosystem	function,	e.g.,	 the	
crustacean	detritivore	Gammarus pulex;	Maltby	et	al.	2002)	and	keystone	species.	
What	is	rare	now	may	become	important	or	dominant	later	due	to	phenomena	such	
as	climate	change.	Hence,	 there	 is	merit	 in	protecting	and	studying	 less	common	
species	also,	a	point	that	has	been	recognized	by	ecologists	in	the	form	of	the	biodi-
versity	insurance	hypothesis	(Naeem	1998;	Yachi	and	Loreau	1999).

When	choosing	a	model	to	fit	the	distribution	(Assumption	7),	one	can	choose	
between	distribution-free	and	distribution-based	methods	(Jagoe	and	Newman	1997;	
Grist	 et	 al.	 2002),	 and	 between	 methods	 based	on	 classical	 or	 Bayesian	 statistics	
(Aldenberg	and	Jaworska	2000).	The	most	popular	are	those	based	on	the	logistic	
(Aldenberg	 and	 Slob	 1993)	 and	 log-normal	 (Aldenberg	 et	 al.	 2002)	 distributions,	
because	they	require	less	data	than	distribution-free	methods	and	are	relatively	easy	
to	fit	with	standard	statistical	software.	A	few	authors	compared	 the	outcomes	of	
logistic	 and	 log-normal	 distribution	 fitting.	 Forbes	 and	 Calow	 (2002)	 found	 that	
logistic	HC5s	were	always	 lower	 than	 log-normal	HC5s.	Grist	et	al.	 (2002)	 found	
the	opposite:	log-normal	HC5s	were	always	lower	than	logistic	HC5s.	Wheeler	et	al.	
(2002a)	came	to	the	same	conclusion	as	Grist	et	al.	(2002),	but	their	assessment	was	
partly	based	on	the	same	data.	Newman	et	al.	(2000)	compared	log-normal	models		
with	a	distribution-free	bootstrapping	method	using	30	data	sets	of	metals	and	pesti-
cides.	They	reported	that	half	of	the	data	sets	failed	the	test	on	log-normality,	which	
could	be	a	result	of	the	multimodality	of	the	data	due	to	the	inclusion	of	sensitive	and	
insensitive	species.	They	concluded	that	the	distribution-free	method	performed	bet-
ter	but	needed	much	more	data.	Verdonck	et	al.	(2001)	compared	bootstrap,	maximum	
likelihood	estimation,	and	Bayesian	approaches	and	concluded	that	the	Bayesian	and	
maximum	likelihood	estimation	methods	are	superior	to	parametric	bootstrapping	
because	they	are	easier	to	use	and	not	so	computationally	intensive.	Jagoe	and	New-
man	(1997)	also	concluded	that	distribution-based	parametric	methods	appeared	to	
have	higher	precision	compared	to	distribution-free	methods,	but	the	estimate	does	
not	reflect	the	actual	value	with	95%	confidence	if	the	real	distribution	of	the	data	
deviates	 from	 log-normal.	 In	order	 to	meet	 the	assumption	of	normality,	van	den	
Brink	et	al.	(2002a)	and	Maltby	et	al.	(2005)	noted	the	importance	of	considering	the	
SSDs	for	taxonomic	groups	separately	when	a	specific	mode	of	action	for	the	toxi-
cant	is	known.	Figure	4.4,	for	example,	shows	that	for	insecticides,	separate	SSDs	
for	 vertebrates,	 arthropods,	 nonarthropod	 invertebrates,	 and	 primary	 producers		
should	be	constructed.	Median	HC5	values	derived	from	arthropod	SSDs	were	sig-
nificantly	 lower	 than	 those	 derived	 from	 vertebrates	 and	 nonarthropods	 (Maltby	
et	al.	2005).	van	Straalen	(2002)	evaluated	4	distributions	—	uniform,	 triangular,	
exponential,	and	Weibull	—	to	determine	a	finite	lower	threshold	(an	HC0)	to	over-
come	the	problem	of	choosing	arbitrary	cutoff	values	(e.g.,	the	5%	centile	being	the	
HC5)	and	the	associated	problem	of	communicating	the	chosen	level	of	protection	
to	the	general	public.

The	adequate	number	of	data	points	needed	to	construct	an	SSD	depends	on	the	
method	 used	 (Assumption	 8).	 Generally	 distribution-free	 methods	 need	 more	 data	
points	(30	or	more)	than	distribution-based	methods	(Newman	et	al.	2000).	Crane	et	al.		
(2003)	 stated	 that,	 for	 chlorpyrifos,	 species	 sensitivity	 followed	 a	 log-normal		
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distribution	when	fitted	 to	all	available	aquatic	(in)vertebrate	data	and	to	arthropod	
data	alone.	The	quantity	of	toxicity	data	had	little	influence	on	species	sensitivity	dis-
tribution	when	fitted	to	all	data,	when	n	was	greater	than	10	species.	Unfortunately	this	
exercise	was	not	repeated	for	arthropod	taxa	alone.	It	might	be	expected	that	arthropod	
data	alone	will	fit	a	log-normal	distribution	better	because	nonarthropods	have	a	low	
susceptibility	to	chlorpyrifos,	and	inclusion	of	these	data	can	lead	to	the	combination	
of	2	different	distributions.	Suter	et	al.	(2002)	reviewed	the	literature	on	this	matter	and	
found	numbers	that	were	considered	adequate	between	3	and	30.	Eight	species	from	
different	families	are	required	by	the	USEPA	(1995b).	The	Higher	Tier	Aquatic	Risk	
Assessment	for	Pesticides	(HARAP;	Campbell	et	al.	1999)	workshop	recommended	
the	inclusion	of	8	relevant	species	and	5	vertebrate	fish	species	when	SSDs	are	used	
in	the	admission	procedure	of	pesticides.	For	example,	for	insecticides,	arthropods	are	
considered	relevant,	whereas	for	herbicides,	relevant	organisms	for	SSD	construction	
belong	to	primary	producers.	This	number	is	based	not	only	on	statistical	examination	
but	also	on	practical,	ethical,	and	economic	arguments	and	expert	knowledge.

More	 and	more	 studies	 evaluating	whether	 the	HC5	values	 are	protective	 for	
ecosystem	 structure	 and	 function	 are	 becoming	 available	 (Assumption	 9;	 Emans	
et	al.	1993;	Solomon	et	al.	1996;	Versteeg	et	al.	1999;	Smit	et	al.	2002;	Selck	et	al.	
2002;	van	den	Brink	et	al.	2002a;	Brock	et	al.	2004;	Hose	and	Van	den	Brink	2004;	
Maltby	et	al.	2005).	In	general,	all	authors	concluded	that	the	SSD	concept	(in	the	
form	of	an	HC5)	can	provide	a	cost-effective	risk	evaluation	to	establish	“acceptable	
concentrations”	to	set	targets	for	pesticides	in	the	aquatic	environment	(see	Figure	4.5		
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FIgURe	4.5	 Single-species	distribution	for	copper	based	on	acute	invertebrate	toxicity	data.
Note:	Arrows	denote	model	ecosystem	NOECs	for	studies	performed	in	Virginia	and	Ohio,	
United	States;	the	United	Kingdom;	and	Germany.	Single-species	data	are	taken	from	Brix		
et	 al.	 (2001),	 and	 model	 ecosystem	 data	 from	 Versteeg	 et	 al.	 (1999).	 All	 data	 have	 been	
adjusted	 to	a	hardness	of	50	mg/L	CaCO3.	Median	HC5	 is	5.8	μg/L	copper	 (indicated	by	
broken	line),	and	mean	ecosystem	NOEC	is	4.1	μg/L.
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as	an	example	for	copper).	Although	the	literature	seems	extensive,	large	data	and	
theory	gaps	on	the	verification	of	the	concept	exist	for	the	terrestrial	environment	
and	for	compounds	other	than	pesticides.	For	the	terrestrial	compartment,	achieving	
this	verification	is	more	complicated;	that	is,	more	well-designed	field	experiments	
are	needed,	 including	an	estimation	of	 the	bioavailable	 fraction	of	 the	compound	
and	the	spatial	heterogeneity	of	this	fraction	(van	den	Brink	et	al.	2002a).	Solomon	
and	Takacs	(2002)	argued	that	 the	HC5	could	be	protective	for	ecosystems.	They	
stated	 that	 laboratory-based	risk	assessment	overestimates	 risks	at	 low	concentra-
tions	 because	 of	 the	 presence	 of	 community	 resilience,	 species	 redundancy,	 and	
adaptation	in	the	field	and	underestimates	risks	at	high	concentrations	because	of	the	
presence	of	 interaction	between	species	 that	 leads	 to	 indirect	effects.	These	argu-
ments,	however,	are	at	variance	with	the	precautionary	principle,	so	more	validation	
of	a	protective	percentage	and	insight	into	effects	of	low	concentrations	of	chemicals	
are	needed.

Besides	meeting	its	assumptions,	other	problems	in	the	application	of	SSD	in	risk	
assessment	to	extrapolate	from	the	population	level	to	the	community	level	also	exist.	
First,	when	use	is	made	of	databases	(such	as	ECOTOX;	USEPA	2001)	from	which	
it	is	difficult	to	check	the	validity	of	the	data,	one	does	not	know	what	is	modeled.		
In	practice,	a	combination	of	differences	between	laboratories,	between	endpoints,	
between	test	durations,	between	test	conditions,	between	genotypes,	between	phe-
notypes,	and	eventually	between	species	is	modeled.	Another	issue	is	the	ambigu-
ous	integration	of	SSD	with	exposure	distribution	to	calculate	risk	(Verdonck	et	al.	
2003).	They	showed	that,	in	order	to	be	able	to	set	threshold	levels	using	probabilistic	
risk	assessment	and	interpret	the	risk	associated	with	a	given	exposure	concentra-
tion	distribution	and	SSD,	the	spatial	and	temporal	interpretations	of	the	exposure	
concentration	distribution	must	be	known.

4.5	 eXtRAPoLAtIng	to	LAnDsCAPes	AnD	eCosYsteMs

4.5.1	 semifield	tests	for	extraPolation

Semifield	tests,	sensu	stricto,	are	experimental	ecosystems	that	run	under	fieldlike	
outdoor	conditions.	Aquatic	micro-	and	mesocosms	have	been	widely	used	in	assess-
ing	effects	of	substances	under	semifield	conditions	(Stephenson	et	al.	1986;	Arnold	
et	al.	1991;	Hill	et	al.	1994;	van	den	Brink	et	al.	1996;	Kennedy	et	al.	1999;	van	den	
Brink	and	Ter	Braak	1999;	Culp	et	al.	2000a,	2000b;	Sibley	et	al.	2001a,	2001b,	and	
many	others).	Also,	terrestrial	model	ecosystems	(TMEs)	have	been	developed	that	
are,	in	contrast	to	the	use	of	field	plots,	separated	from	their	source	site	and	run	under	
laboratory	conditions	(Knacker	et	al.	2004).	Because	experience	is	limited,	they	will	
be	considered	here	only	marginally.

Because	semifield	tests	are	used	for	extrapolation	between	laboratory	and	field	
(i.e.,	 to	 extrapolate	 from	 individuals	 and	 populations	 to	 communities	 and	 ecosys-
tems),	 it	 is	 important	 that	 semifield	 tests	 are	 representative	of	natural	 ecosystems.	
Besides	field	experiments,	aquatic	semifield	tests	are	seen	as	the	closest	approxima-
tion	to	natural	aquatic	communities	of	the	real	world.	As	a	rule,	soon	after	installa-
tion	a	semifield	test	exhibits	many	features	of	a	natural	ecosystem,	such	as	a	dynamic	
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assemblage	of	organisms	(primary	producers,	consumers,	and	decomposers),	material	
cycling	and	energy	flow,	and	assimilation	and	decomposition	of	biomass.	It	becomes	
a	sustainable	system	(see	Section	1.4.1	in	Chapter	1)	for	a	limited	period;	only	occa-
sionally	some	modifications	are	necessary	such	as	adjusting	the	water	level	to	ensure	
definite	toxicant-concentration	relations,	or	some	watering	to	prevent	a	terrestrial	sys-
tem	from	damage	by	drought	(Frampton	et	al.	2000).	However,	it	should	be	noted	that	
ecosystems	established	in	semifield	tests	are	more	representative	of	ephemeral	eco-
systems,	such	as	temporary	ponds,	rather	than	established	ecosystems,	and	are	largely	
composed	of	 species	with	good	colonizing	ability	or	other	 invasive	characteristics.	
Our	ability	to	extrapolate	from	such	a	biased	subset	of	natural	ecosystems	is	there-
fore	somewhat	constrained.	Moreover,	the	conclusions	drawn	from	such	experiments	
should	be	interpreted	with	caution,	particularly	when	applying	the	findings	to	systems	
possessing	long-lived	fauna	or	highly	evolved	mutual	dependencies	among	species.

Semifield	tests	offer	the	ability	to	observe	or	measure	a	suite	of	biological	and	
physicochemical	variables,	as	with	the	analysis	of	natural	ecosystems.	Usually,	the	
focus	is	on	structural	measures	such	as	the	number	of	species	and	number	of	indi-
viduals	per	population	(often	lumped	into	higher	taxonomic	units),	physicochemical	
parameters	(e.g.,	dissolved	oxygen,	and	pH	including	toxicant	residues),	and	some	
microclimate	parameters	(e.g.,	evaporation	in	TMEs).

Stagnant	ponds	 and	 lakes	 are	more	 separated	 entities.	Although	 they	may	be	
linked	with	adjacent	terrestrial	landscapes,	they	can	be	viewed	as	relatively	closed	
systems	with	distinct	communities,	material	cycling,	and	energy	flow.	Their	ecosys-
tem	properties	are	more	easily	studied,	and	much	of	the	knowledge	on	interactions	
of	 species	 populations	 and	 ecosystem	 functional	 processes	 stems	 from	 the	 study	
of	 lakes.	 Freshwater	 outdoor	 mesocosms	 (van	 den	 Brink	 et	 al.	 1996),	 laboratory	
generic	freshwater	microcosms	(Nabholz	et	al.	1997;	USEPA	2002b,	2002c;	Daam	
and	van	den	Brink	2003),	and	site-specific	aquatic	microcosms	(Sibley	et	al.	2001a)	
are	artificial	ecosystems	that	develop	communities	and	ecosystem	functions	closely	
corresponding	to	those	of	natural	ponds	(but	see	also	above).	They	have	become	an	
important	tool	for	studying	the	fate	and	effects	of	toxic	substances	to	communities.

If	we	compare	the	physical	surfaces	in	aquatic	model	ecosystems,	which	could	
affect	the	fate	of	the	chemical	under	investigation,	there	is	a	high	agreement	between	
the	 model	 and	 natural	 system.	 In	 both	 types	 of	 systems,	 all	 surfaces,	 except	 the	
water	surface,	are	covered	by	a	biological	layer	(e.g.,	periphyton	or	biofilm)	or	are	
part	of	 the	sediment	surface.	Therefore,	adsorption	and	desorption	processes	will	
take	place	in	the	same	manner	as	in	natural	systems.	Likewise,	in	outdoor	systems,	
degradation	processes	such	as	photolysis	can	take	place.	Although	fate	processes	in	
aquatic	systems	appear	quite	easy	to	extrapolate,	the	situation	in	a	terrestrial	system	
is	much	more	complex	due	to	the	high	spatial	heterogeneity,	the	size	of	the	systems,	
and	the	lack	of	distinct	boundaries.	The	distribution	and	dissipation	of	compounds	
here	are	influenced	by	a	number	of	factors	not	easy	to	control	in	a	model	system.	
Among	these	factors	are	many	microclimate	factors	such	as	humidity,	temperature,	
protection	from	wind	and	exposure	to	sunlight,	and	so	on.	Terrestrial	model	ecosys-
tems,	such	as	the	soil-core	microcosm	(Nabholz	et	al.	1997;	USEPA	2002a;	Knacker		
et	al.	2004),	are	appropriate	to	model	parts	of	a	natural	terrestrial	ecosystem	such	
as	a	column	of	soil	including	the	soil	fauna	and	flora,	or	some	weed	plants	together	
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with	their	herbivores	and	predators.	Also,	with	the	use	of	plots	in	a	natural	field	site,	
only	a	small	part	of	a	terrestrial	ecosystem	or	a	definite	function	of	the	system	can	
be	studied.	In	terrestrial	systems,	therefore,	the	method	of	choice	may	be	to	conduct	
a	(bio)monitoring	program	after	a	toxicant	application.

Belanger	(1997)	quantitatively	reviewed	the	relationship	between	the	structure,	
size,	and	various	experimental	design	attributes	of	flowing	model	ecosystem	stud-
ies	as	they	affected	biological	complexity.	There	was	no	apparent	influence	of	test	
system	size	on	biological	complexity,	and	it	was	apparent	that	most	investigators	take	
caution	in	designing	systems	of	sufficient	complexity	to	test	the	influence	of	stressors	
on	complex	species	assemblages.

A	number	of	studies	have	been	conducted	to	characterize	the	community	struc-
ture	and	function	of	model	ecosystems.	Some	examples	are	presented	below,	provid-
ing	weight	of	evidence	that	some	systems	correspond	closely	to	(parts	of)	natural	
field	communities.

Williams	et	al.	(2002)	compared	the	plant	and	macroinvertebrate	communities	
of	small	microcosms	to	those	of	natural	ponds	in	Britain.	Using	multivariate	analy-
ses,	 they	showed	 that	 the	 fauna	of	 the	microcosms	were	most	 similar	 to	 those	of	
less	common	deep	circumneutral	ponds	and	did	not	closely	mimic	more	commonly	
occurring	 shallow	 ponds.	 The	 microcosms	 lacked	 a	 wide	 variety	 of	 invertebrate	
groups	and	plants	typical	of	shallow	natural	ponds	that	possess	a	littoral	zone.

Eckert	 (2000)	 compared	 the	 communities	 of	 stagnant	 5000–L	 freshwater	
mesocosms	with	10	natural	ponds	located	around	the	mesocosm	facility	(Aachen,		
Germany).	A	littoral	zone	was	 lacking,	and	 the	model	system	represented	pelagic	
and	benthic	assemblages	rather	than	littoral	ones.	This	type	of	mesocosm	is	charac-
terized	by	a	rich	assemblage	of	phytoplankton	and	zooplankton	as	well	as	benthic	
invertebrates	settling	on	the	wall	of	the	artificial	pond	and	sediment	surface,	includ-
ing	chironomids,	which	fed	on	the	periphyton,	and	the	predatory	midge	larvae	of	
Chaoborus	 spp.	 It	 turned	out	 that	only	4	of	 the	27	chironomid	 taxa	 found	 in	 the	
natural	ponds	were	found	in	the	mesocosms.	The	same	occurred	in	2	of	the	natural	
ponds	located	in	the	pastureland.	The	communities	here	appeared	to	be	degraded,	
and	macrophytes	were	lacking.	The	emerging	insects	and	the	zooplankton	assem-
blages	of	these	2	natural	ponds	showed	the	highest	degree	of	correspondence	with	
the	mesocosms.	The	emergent	insect	species	belonged	to	ubiquitous	species	groups	
and	were	found	in	almost	all	of	the	remaining	natural	ponds.	The	majority	of	the	
natural	ponds	contained	a	more	diverse	insect	community	(including	mayflies,	cad-
disflies,	and	odonates)	and	vertebrates.

Dyer	and	Belanger	(Dyer	and	Belanger	1999;	Belanger	2003)	presented	 infor-
mation	on	the	relationship	between	a	specific	flowing	model	ecosystem	located	in	
Ohio	and	its	parent	or	source	river.	The	system	was	rich	in	macroinvertebrates	with	
several	 hundred	 taxa	 represented	 in	 the	 model	 ecosystem.	 Direct	 comparisons	 of	
assemblages	sampled	at	the	same	time	in	both	the	model	and	the	natural	river	dem-
onstrated	that	there	was	a	community	similarity	of	75%	to	80%	and	that	there	were	
no	statistically	discernible	differences	detected	from	comparisons	spanning	over	a	
decade.

The	time	schedule	of	aquatic	model	ecosystem	experiments	and	the	size	of	the	
system	itself	favor	population	growth	of	small	organisms	with	short	generation	times	
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(r-selected	species)	such	as	algae,	protozoans,	rotifers,	small	crustaceans,	and	ben-
thic	invertebrates	with	more	than	1	generation	per	year.	Macrophytes	and	longer	gen-
eration	species	(e.g.,	odonate	larvae,	water	beetle	larvae,	amphibians,	and	fish)	are	
sometimes	lacking,	although	it	is	recommended	to	add	macrophytes	to	microcosms	
and	mesocosms	(Giddings	et	al.	2002).	Because	r-selected	species	are	more	com-
mon	in	these	aquatic	model	ecosystems,	the	study	of	recovery	from	toxicant	effects	
is	 limited	to	species	groups	exhibiting	this	 type	of	 life	history	strategy.	Emergent	
insects	from	control	ponds	or	neighboring	natural	ponds	can	easily	deposit	eggs	on	
previously	treated	ponds,	initiating	a	complete	recovery	of	the	populations	(allogenic	
recovery)	when	the	toxicant	residues	fall	below	the	critical	threshold.	Zooplankton		
and	phytoplankton	species	can	build	up	new	populations	from	resting	stages	in	the	
sediment	(autogenic	recovery).	K-selected	macroinvertebrate	species	(1	or	fewer	gen-
erations	per	season)	can	easily	be	introduced	into	the	model	systems,	but	if	they	have	
emerged	 or	 been	 damaged	 by	 the	 toxicant,	 they	 are	 unlikely	 to	 contribute	 to	 the	
recovery	process.

Another	 type	of	comparison	can	be	based	on	functional	processes	(e.g.,	com-
paring	process	rates	of	primary	production,	consumption,	or	decomposition).	Func-
tional	processes	related	to	community	metabolism	are	often	measured	in	model	and	
natural	systems.	If	functional	redundancy	exists	within	the	model	ecosystem	com-
munity,	an	extrapolation	of	toxicant	effects	is	straightforward.	This	has	been	corrob-
orated	by	studies	of	Peterson	et	al.	(2001)	on	nitrogen	export	and	processing	within	
small	 streams	 using	 N-tracer	 additions.	 Eleven	 headwater	 streams	 representing	 a	
wide	array	of	biomass	throughout	North	America	and	one	model	ecosystem	from	
Ohio	were	studied	to	determine	nitrate	and	ammonium	uptake	and	export.	The	driv-
ing	force	dictating	nitrogen	uptake	length	in	all	streams,	including	the	model	eco-
system,	was	stream	discharge	and	the	river	from	which	the	model	ecosystem	drew	
water.	Further	analysis	of	this	data	set	by	Dodds	et	al.	(2002)	indicated	ammonium	
uptake	rates	were	universally	higher	than	expected	and	were	not	saturated	at	even	
high	concentrations.	The	model	ecosystem	fit	well	within	the	boundaries	established	
by	the	natural	streams	in	the	data	set,	strongly	supporting	that	universal	ecosystem	
functions	can	be	extrapolated.

4.5.2	 indirect	effects

Ecosystems	are	inherently	complex,	and	a	fundamental	source	of	this	complexity	is	
the	interactions	that	occur	between	organisms	within	and	between	different	trophic	
levels.	In	this	chapter	we	define	complexity	in	the	sense	of	“architectural	complexity,”	
referring	to	the	product	of	species	diversity	and	species	connectance.	Indirect	effects	
are	“changes	in	abundance	of	a	population	resulting	not	directly	from	the	action	of	
a	causal	agent	(such	as	a	 toxicant)	but	 indirectly	 through	the	effects	of	 the	causal	
agent	on	other	species”	(DeAngelis	1996,	25	p).	The	basic	concept	is	illustrated	in	
Figure	4.6,	based	on	Van	den	Brink	et	al.	(2002b).

Extrapolation	between	the	population	and	community	levels	of	biological	orga-
nization	and	between	community	and	ecosystem	levels	may	be	greatly	confounded	
by	the	occurrence	of	contaminant-induced	indirect	interactions	between	organisms,		
leading	 to	 a	high	 level	 of	 uncertainty	 in	model	 predictions.	 In	practice,	 the	most		
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common	approach	to	address	this	uncertainty	has	been	to	conduct	semifield	experi-
ments	(see	Section	4.5.1).	Indeed,	the	ecotoxicology	literature	is	replete	with	exam-
ples	 of	 indirect	 effects	 caused	 by	 chemicals,	 with	 the	 most	 common	 examples	
occurring	 in	micro-	or	mesocosm	studies	 (Brock	and	Budde	1994).	For	example,	
herbicides	 directly	 affect	 the	 biomass	 or	 abundance	 of	 phytoplankton	 or	 plants,	
which	may	cause	 indirect	declines	 in	zooplankton	abundance	because	 the	phyto-
plankton	serves	as	a	food	source	for	the	zooplankton	(Jenkins	and	Buikema	1990;	
Kasai	and	Hanazato	1995a;	Cuppen	et	al.	1997;	Wellman	et	al.	1998).	This	in	turn	
may	 cause	 an	 increase	 of	 insensitive	 grazers	 (Figure	4.6).	 It	 can	 be	 easily	 calcu-
lated	by	a	mathematical	model	that	top	carnivores,	even	if	not	studied	in	the	model	
system,	will	become	extinct	because	not	enough	energy	reaches	 this	 trophic	 level		
(Hommen	 1998).	 Functional	 redundancy	 (less	 sensitive	 algal	 or	 plant	 species	 in	
higher	numbers)	could	prevent	or	reduce	this	effect	in	the	natural	system.	Conversely,	
a	chemical	that	directly	affects	zooplankton	populations	often	results	in	increases	
in	phytoplankton	populations	because	grazing	pressure	declines	(Brock	et	al.	1992;	
Webber	 et	 al.	 1992;	Boyle	 et	 al.	 1996;	Sibley	 et	 al.	 2001a,	2001b;	van	den	Brink	
et	al.	2002a;	Wendt-Rasch	et	al.	2003;	Friberg-Jensen	et	al.	2003).	Also	here,	due	
to	the	higher	functional	redundancy	in	the	natural	system,	the	effect	in	the	natural		
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FIgURe	4.6	 Schematic	overview	of	direct	(solid	arrow)	and	indirect	(dashed	arrow)	effects	
of	toxicants	on	an	aquatic	ecosystem.	Source:	Redrawn	from	van	den	Brink	et	al.	(2002b).
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system	might	be	 smaller.	Kersting	and	van	den	Brink	 (1997),	 for	 instance,	 found	
much	smaller	indirect	effects	on	physicochemical	parameters	of	similar	concentra-
tions	of	the	insecticide	chlorpyrifos	in	outdoor	mesocosms	compared	to	Brock	et	al.	
(1993)	in	indoor	microcosms.

Theoretically,	indirect	effects	could	be	manifest	in	a	cascade	effect	across	sev-
eral	trophic	levels,	reflecting	changes	in	both	the	abiotic	and	biotic	components	of	the	
ecosystem.	Such	cascades	may	occur	via	top-down	or	bottom-up	manipulations	or	
changes	to	the	ecosystem.	Hambright	(1994)	conducted	a	top-down	biomanipulation	
experiment	in	a	lake	in	which	piscivorious	fish	were	introduced	into	a	lake	that	reduced	
the	smaller	planktivorous	fish,	which,	in	turn,	led	to	an	increase	of	zooplankton.	The	
increase	in	grazing	pressure	of	zooplankton	led	to	decreased	chlorophyll-a.	A	bottom-	
up	example	is	often	observed	in	microcosm	studies	when	herbicides	or	nutrients	are	
administered.	In	the	case	of	herbicides,	the	decrease	of	macrophytes	may	lead	to	an	
increase	of	 less	sensitive	or	adapted	phytoplankton	and	a	decrease	of	macroinver-
tebrates	due	to	habitat	 loss	(Cuppen	et	al.	1997;	van	den	Brink	et	al.	1997).	How-
ever,	interactions	across	more	than	2	trophic	levels	are	rarely	evaluated	in	micro	and	
meso-cosm	studies,	which	probably	contributes	a	significant	amount	of	the	uncer-
tainty	associated	with	extrapolating	effects	across	levels	of	biological	organization.

In	a	metapopulation-modeling	exercise,	Spromberg	et	al.	(1998)	found	that	pertur-
bations	that	directly	affect	a	given	population	may	spread	to	populations	that	were	never	
exposed	to	the	chemical.	They	termed	this	“action	at	a	distance,”	which	they	defined	
as	the	process	by	which	impacts	on	a	population	in	a	given	area	can	be	transmitted	by	
emigration	from	the	contaminated	patch	to	other	patches	within	the	metapopulation.	
The	results	of	this	study	have	2	potentially	important	implications	for	the	risk	assess-
ment	process.	First,	from	a	practical	standpoint,	based	on	the	potential	for	connectivity	
between	the	impacted	and	adjacent	or	nearby	reference	sites,	these	authors	concluded	
that,	ideally,	reference	sites	should	not	be	connected	in	any	manner	to	test	sites.	This	
problem	could	be	overcome	by	using	a	before–after	control	 impact	 (BACI)	design,	
although	this	approach	has	been	criticized	because	it	typically	includes	few	reference	
sites	(Underwood	1992).	Spromberg	et	al.	 (1998)	also	suggested	that	reference	sites	
established	too	far	away	from	the	test	site	would	be	unlikely	to	bear	much	physical	or	
biological	similarity	to	the	test	site	and	would	thus	also	be	inappropriate.	In	reality,	the	
latter	may	or	may	not	be	true	and	could	potentially	be	overcome	by	using	approaches	
such	as	the	multivariate	reference	condition	in	which	multiple	reference	sites	are	char-
acterized	and	against	which	the	impaired	site	is	compared	(Reynoldson	and	Rodriguez	
1998;	Bailey	 et	 al.	 2004).	At	 a	minimum,	 it	 clearly	underscores	 the	 importance	of	
being	judicious	in	the	selection	of	references	sites.	Second,	in	terms	of	extrapolation	
practice,	the	results	suggest	that,	if	ecologically	relevant	predictions	of	risk	to	a	species	
or	assemblage	of	species	are	to	be	made,	sole	consideration	of	individual	tolerances	
and/or	responses	may	not	be	sufficient	(Preston	2002).

4.5.3	 extraPolating	from	effects	on	structure	to	effects	on	function

The	relationship	between	structure	 (the	composition	and	abundance	of	ecosystem	
components)	 and	 function	 (the	 processing	 of	 materials	 and	 energy	 flow)	 in	 eco-
systems	has	constituted	a	central	 focus	of	ecological	 research	 for	several	decades	
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(Tilman	et	al.	1997;	Naeem	1998;	Hector	et	al.	1999).	Despite	these	investigations,	
our	understanding	of	the	structure–function	relationship	today	remains	rudimentary,	
especially	with	respect	 to	 the	response	of	ecosystems	to	natural	or	anthropogenic	
disturbances.	Empirical	investigations	attempting	to	assess	the	relationship	between	
structure	and	function	are	difficult,	so	it	is	not	surprising	that	there	is	considerable	
uncertainty	associated	with	extrapolations	between	 these	2	entities.	A	key	 reason	
why	structure–function	relationships	have	not	been	adequately	addressed	is	because	
experimentation	rarely	incorporates	a	sufficiently	long	temporal	component.	Func-
tional	responses	often	occur	over	much	longer	time	scales	than	do	structural	end-
points	(e.g.,	Kersting	and	van	den	Brink	1997),	and	the	relation	between	responses	in	
structural	and	functional	endpoints	is	not	linear.	For	the	purposes	of	risk	assessment,	
structural	attributes	have	long	been	used	as	the	primary	measurement	endpoints	to	
assess	 ecosystem	 quality	 even	 though	 systems	 ecologists	 have	 studied	 functional	
aspects	of	ecosystems	for	more	than	half	a	century	(Pratt	and	Bowers	1992).	This	
is	clearly	reflected	by	the	dominance	of	structure-based	endpoints	in	most	standard	
test	methods	(e.g.,	USEPA	2000b;	ASTM	2003).	The	predominant	use	of	structural	
endpoints	 reflects	 the	 prevailing	 philosophy	 among	 ecotoxicologists	 that	 initial	
signs	of	environmental	stress	are	usually	observed	at	the	population	level,	affecting	
especially	sensitive	species	(Odum	1992),	and,	conversely,	that	functional	(process-	
oriented)	 endpoints	 are	 likely	 to	 respond	 only	 after	 damage	 to	 an	 ecosystem	 has	
already	been	sustained	(Pratt	and	Cairns	1996).	Pragmatically,	structural	endpoints	
are	also	generally	easier	to	measure.	This	has	resulted	in	widespread	implicit	accep-
tance	among	risk	assessors	that	protecting	the	structural	components	of	an	ecosys-
tem	will	protect	its	functional	capacity.	There	is,	of	course,	much	debate	about	the	
scientific	validity	of	this	assumption.

The	most	accepted	relationship	between	structure	and	function	is,	however,	that	
structure	is	more	sensitive	than	function.	This	hypothesis	has	considerable	empirical	
support	and	is	explained	by	the	occurrence	of	functional	redundancy,	 the	 idea	 that	
many	species	perform	similar	functions	such	that	the	loss	of	1	or	a	few	does	not	impair	
the	overall	functional	 integrity	of	 the	ecosystem	(Walker	1991;	Tilman	et	al.	1997;	
Naeem	1998;	Hector	et	al.	1999).	This	hypothesis	has	its	origin	in	ecosystem	theory,	
which	suggests	that	structural	components	of	an	ecosystem	will	exhibit	departures	from	
dynamic	equilibrium	conditions	before	functional	measures,	reflecting	the	inherent		
functional	redundancy	that	exists	within	an	ecosystem	(Tilman	et	al.	1997).	It	must	be	
noted	that	the	recovery	can	take	place	to	a	stable	state	that	is	very	different	from	the	
original	one,	depending	on	the	original	state	of	the	system	and	the	type	and	strength	
of	the	stressor	(Scheffer	et	al.	2003).	In	the	context	of	risk	assessment,	therefore,	func-
tional	endpoints	could	provide	a	stronger	and	more	practical	basis	upon	which	to	mon-
itor	changes	associated	with	ecosystem	recovery	following	perturbation.

Opposing	the	view	is	the	idea	that	function	is	more	sensitive,	or	at	least	responds	
earlier,	 to	 perturbation	 than	 structure.	 Although	 there	 is	 less	 evidence	 to	 support	
this	 hypothesis,	 one	 can	 imagine	 situations	 in	 which	 the	 collective	 physiological	
capacity	 (function)	 of	 species	 within	 the	 ecosystem	 is	 impaired	 without	 a	 corre-
sponding	 elimination	 of	 species	 (e.g.,	 structure)	 per	 se	 (Pratt	 and	 Cairns	 1996).	
For	 example,	 as	 described	 earlier,	 van	 den	 Brink	 et	 al.	 (1997)	 and	 Cuppen	 et	 al.	
(1997)	found	that	community	metabolism	responded	more	clearly	in	response	to	a		
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photosynthetic-inhibiting	herbicide	 in	aquatic	microcosms	compared	 to	 structural	
parameters.	 The	 principal	 response	 curves	 diagram	 (see	 van	 den	 Brink	 and	 Ter	
Braak	[1999]	for	details),	as	shown	in	Figure	4.7A,	shows	that	the	structure	of	the	
phytoplankton	community	was	affected	at	the	two	highest	treatments	levels.	After	2	
weeks	of	exposure,	the	highest	concentration	starts	to	diverge	from	the	control;	after	
3	weeks	also	the	second	highest	treatment	also	begins	to	diverge.	Several	species	are	
indicated	to	have	suffered	from	the	treatment	(they	have	a	positive	weight	with	the	
diagram),	and	an	increase	was	indicated	for	Chlamydomonas	sp.	(it	has	a	negative	
weight	 in	Figure	4.7A).	Macrophyte	biomass	was	also	significantly	affected	at	 the	
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FIgURe	4.7	 Figures	showing	the	effect	of	a	chronic	application	of	the	herbicide	linuron	on	
structural	(A)	and	functional	(B	and	C)	parameters.	Note:	Figure	A	shows	the	principal	response	
curves	 resulting	 from	 the	 analysis	 of	 the	 phytoplankton	 data	 set.	 Of	 all	 the	 variances,	
47%	could	be	attributed	to	the	sampling	date;	this	is	displayed	on	the	horizontal	axis.	Thirty	
percent	of	all	variances	could	be	attributed	to	the	treatment	level.	Of	this	variance,	23%	are	
displayed	on	the	vertical	axis.	The	lines	represent	the	course	of	the	treatment	levels	in	time.	
The	 species	 weight	 (bk)	 can	 be	 interpreted	 as	 the	 affinity	 of	 the	 taxon	 with	 the	 principal	
response	curves	(cdt).	Taxa	with	a	species	weight	between	0.25	and	–0.25	are	not	shown.	A	
Monte	Carlo	permutation	test	indicated	that	a	significant	amount	of	the	variance	explained	by	
treatment	is	displayed	in	the	diagram	(P	=	0.034).	Figures	B	and	C	show	the	changes	in	DO	
and	pH	in	the	different	treatments	in	time.	Source:	Redrawn	from	data	from	van	den	Brink	
et	al.	(1997).
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two	highest	concentrations	(van	den	Brink	et	al.	1997).	The	functional	parameters,	
however,	were	affected	at	the	4	highest	concentrations	(Figures	4.7B	and	4.7C).	So	the	
reduced	photosynthesis	at	the	intermediate	concentrations	did	not	result	in	significant	
changes	in	macrophyte	biomass	or	the	structure	of	the	phytoplankton	community.

A	third	relationship	may	be	that	structure	and	function	are	so	intimately	related	
that	a	change	in	1	will,	in	an	approximately	proportional	fashion,	lead	to	a	change	
in	 the	other.	This	 is	 the	premise	of	 the	 “rivet-popping”	hypothesis	 introduced	by	
Ehrlich	and	Ehrlich	(1981),	which	proposes	that	the	structural	components	of	an	eco-
system	can	be	compared	to	the	rivets	of	a	plane;	much	in	the	same	way	that	a	gradual	
loss	of	rivets	from	a	plane	may	weaken	its	structure,	the	gradual	loss	of	species	from	
an	ecosystem	gradually	weakens	its	function,	leading	to	reduced	performance	and,	
with	 sufficient	 perturbation,	 eventual	 failure.	 This	 view	 is	 supported,	 in	 part,	 by	
Ghilarov	(2000,	408	p),	who	defined	ecosystem	function	as	“the	energy	transforma-
tion	and	matter	cycling	resulting	from	the	combined	activity	of	living	organisms.”	
He	argued	that	ecosystem	function	varies	directly	as	a	function	of	species	diversity	
and	that	the	latter	cannot	be	diminished	without	a	corresponding	loss	in	ecosystem	
function.	This	 statement	 is,	however,	not	 supported	by	experimental	observations	
(i.e.,	it	depends	on	what	species	are	affected	first).	So	species	identity	is	key	in	this	
context,	with	mesocosms	offering	the	possibility	to	study	them	jointly.

A	final	relationship	has	been	suggested	by	Finlay	et	al.	(1997),	who	argued	that,	
in	 the	case	of	microbial	diversity,	 there	 is	no	discrete	 relationship	between	struc-
ture	 and	 ecosystem	 function.	 They	 found	 that	 microbial	 activity	 and	 diversity	 in	
ponds	are	both	a	part	of,	and	inseparable	from,	ecosystem	function	and	suggested	
that	concepts	such	as	redundancy	of	microbial	species	and	the	value	of	conserving	
biodiversity	at	 the	microbial	 level	have	little	meaning.	Finlay	et	al.	 (1997)	argued	
that	ecosystem	functions	such	as	carbon	fixation	and	nutrient	cycling	are	governed	
by	complex	reciprocal	 interactions	between	chemical,	physical,	and	microbiologi-
cal	factors.	For	microbial	communities,	these	interactions	continuously	create	new	
microbial	niches	that	are	quickly	occupied	by	microbes	originating	from	the	resident	
pool	of	rare	or	cryptic	microbial	species.	In	this	sense,	the	microbial	ecologist	is	not	
necessarily	concerned	about	species	diversity	per	se	because	most	groups	of	bacte-
ria	can	be	found	in	most	environments	as	long	as	the	environmental	conditions	and	
resources	are	appropriate	 (Ghilarov	2000).	Finlay	et	al.	 (1997)	 suggested	 that	 the	
microbial	diversity	 in	an	ecosystem	is	never	so	impoverished	(e.g.,	 infinite	redun-
dancy),	even	in	 the	face	of	extreme	changes	in	environmental	conditions,	 that	 the	
microbial	community	cannot	play	a	full	role	in	biogeochemical	cycles.

Evidence	 suggests	 that	 structure	 and	 function	 are	 intimately	 related,	 but	 the	
precise	 nature	 of	 the	 relationship	 remains	 to	 be	 fully	 elucidated.	 Although	 some	
research	clearly	shows	that	structure	responds	before	function	to	perturbation,	other	
evidence	indicates	that	the	functional	group	component	of	an	ecosystem	(grassland	
and	plant	systems)	may	be	a	greater	determinant	of	ecosystem	processes	than	the	spe-
cies	component	of	diversity	(Tilman	et	al.	1996,	1997).	They	conducted	experiments	
in	which	species	diversity	 (number	of	plant	species),	 functional	diversity	 (number	
of	functional	groups),	and	functional	composition	(different	combinations	of	func-
tional	groups)	of	various	plant	species	were	manipulated	in	experimental	field	plots		
(Tilman	 et	 al.	 1996,	 1997).	They	 found	 that	 the	number	of	 functionally	different	
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roles	 represented	 in	 an	 ecosystem	 was	 a	 stronger	 determinant	 of	 ecosystem	 pro-
cesses	than	the	total	number	of	species	per	se.	Importantly,	these	authors	concluded	
that	 factors	 that	produce	changes	 in	ecosystem	composition	are	 likely	 to	 strongly	
affect	ecosystem	processes	and	that	the	loss	of	species	with	certain	functional	traits	
may	have	a	greater	impact	on	ecosystem	processes	than	the	loss	of	other,	less	func-
tionally	important	species.

A	significant	source	of	uncertainty	in	relating	structure	and	function,	and	hence	
in	extrapolating	between	each,	is	the	notion	of	hidden	treatments	(Huston	1997).	In	
this	context	—	experimental	manipulations	that	have	multiple	components,	but	only	
1	or	2	are	identified	as	an	experimental	treatment	—	the	probability	that	incorrect	
conclusions	regarding	cause	and	effect	will	be	drawn	increases	because	the	actual	
cause	of	the	response	is	unknown	or	ignored.	Sources	of	error	may	result	from	the	
interaction	of	undefined	biotic	and	abiotic	variables,	thus	complicating	the	interpre-
tation	of	ecological	experiments	(Huston	1997).	In	addition,	indirect	effects	(actions	
at	a	distance)	of	stressors	on	either	structure	or	function	can	obfuscate	specific	rela-
tionships	that	may	be	under	investigation,	increasing	prediction	uncertainty.

Reliance	on	structural	endpoints	has	been	criticized	as	lacking	ecological	rel-
evance,	in	part	because	of	the	incongruity	between	the	scale	at	which	the	variables	
are	typically	measured	(e.g.,	subcellular	to	organism)	and	that	at	which	the	entities	
to	be	protected	occur	(e.g.,	populations	and	communities).	Although	functional	end-
points	can	be	less	responsive	and	practical	to	measure,	they	provide	key	information	
on	ecosystem-level	processes	that	may	be	manifested	across	all	levels	of	structural	
complexity.	Thus,	to	enhance	ecological	relevance	in	the	ecological	risk	assessment	
process,	and	reduce	uncertainty	 in	 the	practice	of	extrapolation,	some	have	advo-
cated	 that	greater	effort	must	be	directed	 toward	developing	 functional	endpoints	
and	evaluating	their	performance	in	the	context	of	changes	in	structure-based	end-
points	(Cairns	et	al.	1992;	Pratt	and	Cairns	1996;	Clements	1997).

4.5.4	 community,	ecosystem,	and	landscaPe	models

Community	and	ecosystem	models	are	mathematical	expressions	that	are	intended	to	
describe	ecological	systems	composed	of	interacting	species.	Such	models	are	typi-
cally	spatially	aggregated	(include	a	minimum	number	of	large	habitat	components	
within	which	the	model	assumes	a	homogeneous	distribution	of	state	variables)	and	
represent	biotic	and	abiotic	structures	in	combination	with	physical,	chemical,	and	
ecological	processes	in	aquatic	or	terrestrial	systems	(Bartell	2002).	In	ecotoxicol-
ogy,	they	are	often	used	to	model	bioaccumulation	in	food	chains	and	to	estimate	the	
consequences	of	chemical	stress	on	food	webs,	including	indirect	effects	(Koelmans	
et	al.	2001;	Carroll	2002b).	The	advantage	of	these	models	over	simpler	ones	is	that	
they	enable	the	integration	of	fate,	bioaccumulation,	and	effects	of	chemicals	at	the	
ecosystem	level	in	conjunction	with	information	on	food-web	characteristics	such	as	
biomass,	abundance	and	richness	of	component	species,	trophic	structure,	species	
interactions,	 and	nutrient	 cycling.	 In	 this	way,	 it	 is	 possible	 to	 extrapolate	 effects	
observed	on	populations	to	the	community	or	ecosystem	level.

Food-web	modeling	holds	great	promise	in	analyzing	and	predicting	effects	of	
chemical	 stressors	 (Baird	et	al.	2001)	and	has	been	developed	 for	both	 terrestrial		
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(De	Ruiter	et	al.	1994)	and	aquatic	systems	(Park	1999	[AQUATOX];	Traas	et	al.	
1998,	2004	[C-COSM]).	Food-web	modeling	also	enables	a	direct	way	of	 linking	
structure	and	function.	There	is	a	large	number	of	food-web	models	describing	the	
flow	of	energy,	carbon,	or	nutrients	and	their	interactions	in	ecosystems	(De	Ruiter	
et	al.	1995;	Ågren	and	Bosatta	1998).	Application	of	such	models	to	ERA	has	taken	
very	different	routes.	Whereas	De	Ruiter	et	al.	(1995)	applied	classical	stability	anal-
ysis	of	food-web	matrices	(in	the	sense	of	May	1974b),	a	different	approach	is	taken	
with	dynamic	food-web	models	to	predict	the	time	dependence	of	toxicant	effects.	A	
coupled	differential	equation	model	for	pesticide	effects	in	microcosms	adequately	
described	the	dynamics	of	some	primary	and	secondary	effects	(Traas	et	al.	1998),	
although	 this	 required	 considerable	 effort	 for	parameter	 estimation.	Besides	 their	
integrative	nature,	they	force	conceptual	thinking	and,	as	such,	greatly	transcend	the	
information	and	predictions	derived	from	models	based	on	individual	experiments	
and	information	derived	from	lower	levels	of	biological	organization.	The	primary	
disadvantage	of	ecosystem-based	models	is	their	complexity	and	associated	uncer-
tainty.	In	addition,	they	are	poorly	amenable	to	validation	(Baird	et	al.	2001),	often	
lack	sufficient	data,	and	may	not	account	for	a	wide	range	of	nonmodeled	interactions	
(e.g.,	those	resulting	from	pheromonal,	gustatory,	olfactory,	physical,	mechanical,	or	
behavioral	interactions)	in	the	real	world	(Health	Council	of	The	Netherlands	1997).	
These	kinds	of	 approaches	are	part	of	 the	broader	 “ecological	network	analysis.”	
Ecological	network	analysis	 is	based	on	input	models	of	energy	or	material	flows	
(e.g.,	carbon	compound	flows)	through	a	trophic	network	(e.g.,	a	food	web	describ-
ing	which	species	eat	which	other	species;	Johnson	et	al.	2003).	Two	main	software	
packages	have	been	developed	to	perform	ecological	network	analysis:	NETWRK4	
(Ulanowicz	1987)	and	ECOPATH	(Christensen	and	Pauly	1992).	These	tools	offer	
approaches	to	assess	the	effects	of	perturbations	across	levels	of	organization	on	a	
functional	level	(e.g.,	nutrient	and	energy	flows;	Johnson	et	al.	2003).

A	number	of	community	and	ecosystem	models	can	be	adapted	for	application	
at	the	landscape	level;	however,	there	are	also	a	number	of	landscape	models	whose	
specific	purpose	is	 to	model	ecological	phenomena,	 including	effects	of	stressors,	
across	 landscapes	 (Mackay	 and	 Pastorok	 2002).	 Landscape	 models	 are	 spatially	
explicit	(i.e.,	they	provide	detailed	information	on	the	locations	of	organisms	or	the	
pattern	of	a	landscape),	may	include	information	from	several	ecosystems,	and	typi-
cally	use	endpoints	such	as	the	spatial	distribution	of	species,	individual	abundance	
of	 species	 within	 trophic	 levels	 or	 guilds,	 biomass	 and	 productivity,	 and	 trophic	
structure	(Mackay	and	Pastorok	2002).	Although	predominantly	applied	in	relation	
to	ecological	disturbance	(e.g.,	forest	succession	and	hydrologic	changes),	landscape	
models	have	been	developed	for	the	assessment	of	chemicals	and	watershed	and	land	
use	disturbance	(Kelley	and	Spofford	1977;	Voinov	et	al.	1999;	Nestler	and	Goodwin	
2000).

Most	recently,	a	new	perspective	on	complex	systems,	one	that	recognizes	the	
important	role	of	thermodynamics	in	understanding	the	structure,	function,	and	flow	
of	energy	through	ecosystems,	has	begun	to	emerge	(Nielsen	1992).	A	key	feature	of	
a	thermodynamic	perspective	of	ecosystem	function	that	has	potentially	important	
implications	for	risk	assessment	is	the	principle	of	exergy.	Exergy	is	a	measure	of	
the	maximum	capacity	of	the	energy	content	of	a	system	to	perform	useful	work	as	
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it	proceeds	 to	equilibrium	with	 its	 surroundings.	 In	other	words,	 it	 represents	 the	
quality	of	energy,	measuring	the	distance	between	a	system	and	its	environment	with	
respect	to	the	entropy	state	of	a	system	(Nielsen	1992).	The	ability	to	calculate	and	
model	exergy	today	can	be	traced	back	to	the	founding	work	of	Boltzmann	(1981),	
who	 investigated	 entropy	 as	 a	 function	 of	 microstates	 using	 statistical	 thermody-
namics.	Exergy	can	be	used	to	explain	differences	between	and	within	several	levels	
of	biological	organization,	 structure,	 and	order.	Exergy	can	also	be	analyzed	and	
seen	as	the	mechanism	behind	the	self-organizing	properties	of	ecosystems	(Nielsen	
1992).	The	computational	models	behind	exergy	are	derived	from	cybernetics	and	
economic	models.

The	application	of	thermodynamic	principles	as	a	basis	for	understanding	eco-
system	dynamics	has	been	restricted	primarily	to	ecological	studies	(Ray	et	al.	2001;	
Jorgensen	2002;	Jorgensen	et	al.	2002;	Ludovisi	and	Poletti	2003;	Zhang	et	al.	2003).	
This	approach	has	been	applied	in	a	very	limited	capacity	in	the	area	of	environmen-
tal	toxicology	(Xu	et	al.	2002)	and	will	require	considerable	scientific	scrutiny,	and	
the	full	force	of	falsification	(Popper	1959),	before	it	can	be	applied	as	an	interpretive	
and	regulatory	tool	in	ecological	risk	assessment.

4.6	 DIsCUssIon

In	recent	years,	considerable	effort	has	been	expended	on	developing	predictive	(cor-
relation	and/or	cause–effect)	relationships	between	levels	of	biological	organization	
as	a	basis	for	reducing	extrapolation	uncertainty	in	ecological	risk	assessment.	Most	
of	this	work	has	focused	on	relationships	between	proximal	levels	of	organization	
because	 these	 are	 easier	 to	 measure.	 If	 uncertainty	 associated	 with	 extrapolation	
between	levels	of	biological	organization	is	to	be	reduced,	along	with	the	existing	
heavy	reliance	on	the	use	of	uncertainty	factors	by	regulatory	agencies	to	ensure	that	
the	protection	goals	of	 legislation	and	regulatory	authorities	are	achieved,	greater	
effort	 must	 be	 directed	 toward	 developing	 quantitative	 relationships	 between	 less	
proximal	levels	of	biological	organization	(Attril	and	Depledge	1997).

Biomarkers	are	used	to	detect	exposure	to	chemicals,	and	observed	responses	can	
often	readily	be	explained	from	environmental	concentrations	of	chemicals.	How-
ever,	their	predictive	value	for	higher	levels	of	organization	is	poor.	Although	actual	
biomarker	effects	are	measured	on	a	biochemical	or	physiological	level,	these	effects	
can	only	be	extrapolated	as	potential	effects	at	the	individual	level.	To	date,	biomarkers		
have	failed	to	realize	their	early	promise	because	many	are	not	truly	diagnostic	of	
single	stressors,	and	few	studies	have	been	able	to	demonstrate	unequivocal	ecologi-
cal	consequences	arising	when	biomarkers	are	induced.

On	a	higher	level,	laboratory	single-species	tests	can	provide	useful	information	
to	 predict	 effects	 on	 natural	 populations	 because	 they	 describe	 how	 toxicological	
effects	are	translated	into	ecological	currency	(maturation,	reproduction,	and	mortal-
ity).	Many	major	taxa,	however,	remain	poorly	studied	(e.g.,	soil	fauna	and	snails),	and	
the	role	of	tested	species	for	the	ecosystems	to	be	protected	is	generally	unknown.

Population	models	can	be	a	valuable	tool	to	extrapolate	data	obtained	from	lab	exper-
iments	to	the	field,	but	they	are	difficult	to	apply	without	context	(i.e.,	the	consequences	
of	a	stressor	are	contingent	on	local	conditions	and	depend	on	population	state).
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Micro-	and	mesocosms	offer	the	possibility	to	study	effects	on	populations	and	
communities	 (including	 indirect	 effects),	 as	well	 as	on	 some	ecosystem	functions	
(van	den	Brink	and	Ter	Braak	1999),	although	complex	food	webs	are	difficult	to	cre-
ate	in	experimental	systems,	due	to	spatial	and	temporal	constraints.	This	suggests	a	
requirement	for	some	spatial-scaling	experiments	to	improve	the	robustness	of	such	
approaches.	Similar	arguments	can	be	made	regarding	temporal	constraints.	On	the	
modeling	 side,	 food-web	 models	 are	 often	 found	 to	 be	 too	 complex	 and	 cumber-
some,	and	their	results	are	too	difficult	 to	communicate	for	application	in	generic	
risk	assessment.	Developing	models	that	are	complex	enough	to	incorporate	realistic	
food-web	relations	and	simple	enough	to	be	manageable	and	communicable	would	
be	needed	for	 their	 incorporation.	The	construction	of	a	generic	“risk	assessment	
ecosystem”	is,	however,	a	difficult	task.	The	development	of	“risk	assessment	sce-
narios”	 covering	 a	 variety	 of	 ecosystems	 possibly	 at	 risk	 may	 be	 a	 step	 forward.	
Also,	site-specific	food-web	models	should	not	be	too	complex;	they	should	at	least	
represent	the	actual	ecosystem	present	at	the	site	rather	than	a	generic	one	(Traas		
et	al.	2004).

Evidence	from	recent	studies	in	ecology	suggest	that	functional	redundancy	exists	
within	some	natural	communities,	but	the	relative	contribution	of	different	species	
to	specific	functions	is	far	from	equal,	and	the	disappearance	of	certain	species	(i.e., 
dominants	and	keystone	species)	can	have	disproportionately	large	effects	on	overall	
system	function	and	the	occurrence	of	other	species.	For	this	reason,	the	precaution-
ary	principle	advises	that	species	loss	be	considered	at	least	as	a	cause	of	incremental	
damage.	Landscape-level	models	offer	the	possibility	to	improve	our	interpretation	
of	local	phenomena	(e.g.,	species	disappearance)	in	a	wider	spatial	context.

In	 essence,	 successful	 extrapolation	 is	 linked	 to	 a	 mechanistic	 understanding	
of	system	structure	and	function,	where	one	can	have	confidence	 in	 the	existence	
and	importance	of	causal	structures.	However,	there	is	always	a	temptation	to	base	
approaches	on	untested	assumptions	(e.g.,	species	equivalence	in	SSDs).	For	exam-
ple,	 simply	because	A	 influences	B	does	not	mean	 that	B	will	 always	 respond	 to	
a	change	 in	A.	We	still	 lack	a	coherent	 framework	 in	ecotoxicology	 that	 suitably	
integrates	ecological	theory.	Although	a	clear	understanding	of	toxicological	effects	
(e.g.,	mode	of	action)	 is	 important	 for	developing	a	mechanistic	understanding	of	
ecological	 responses,	 the	primary	domain	of	ecotoxicologists	should	be	 to	under-
stand	their	ecological	consequences.
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5.1	 IntroduCtIon

Organisms	in	the	environment	are	rarely	exposed	to	single	stressors.	However,	most	
toxicological	and	ecotoxicological	studies	 focus	on	exposure	and	effects	of	single	
compounds	(Yang	1994a;	Krishnan	et	al.	1997).	Consequently,	most	environmental	
regulations	are	based	on	single-substance	data,	with	 the	exception	of	effect-based	
diagnostic	bioassay	tools	such	as	the	whole-effluent	toxicity	(WET)	approach.	Quan-
titative	data	on	mixture	toxicity	for	relevant	assessment	endpoints	(exposed	target	
species	or	species	assemblages)	are	needed	to	assess	risks	and	to	support	regulation	
and	risk	management	of	chemical	mixtures.	With	little	data	and	numerous	mixture	
possibilities,	however,	regulators	have	to	make	decisions	based	on	single-substance	
data	in	combination	with	mixture	extrapolation	techniques.

Methods	 to	 extrapolate	 both	 exposure	 and	 effects	 data	 of	 chemical	 mixtures	
are	applied	for	many	reasons	in	risk	assessment.	These	range	from	basic	research	
questions	to	regulatory	actions	for	mixtures	of	known	and	unknown	compositions	
(Table	5.1).	In	this	context,	one	may	distinguish	2	basic	objectives	when	examining	
mixture	effects:

A	 mechanistic,	 analytic,	 and	 experimental	 focus	 with	 the	 intention	 of	
understanding
A	prognostic	focus,	with	 the	 intention	of	developing	methods	for	effect	
and	risk	prediction

The	 objective	 of	 experiment-based	 mixture	 studies	 is	 to	 understand	 organism	
or	community	responses	when	there	is	exposure	to	complex	mixtures.	This	chapter	
reviews	the	results	of	such	studies,	and	discusses	practical	implications	for	risk	pre-
diction.	Using	the	set	of	experiment	findings,	there	are	2	forms	of	utilization	for	risk	
assessment	and	management.	For	prognosis,	the	emphasis	is	on	deriving	environmental	
quality	criteria	(EQC)	for	mixtures	that	occur	frequently	in	the	same	composition	(e.g.,	
mixtures	of	PCBs	or	PAHs),	and	the	prediction	of	mixture	toxicity	before	chemicals	
are	released	(Vouk	et	al.	1987).	Both	require	making	a	purely	predictive	assessment	of	
mixture	toxicity.	For	diagnostic	or	retrospective	risk	assessment,	emphasis	is	on	site-
specific	assessment	of	spills	and	of	otherwise	multiple	contaminated	ecosystems	for	
evaluation	of	remediation	priorities	or	risk	management	decisions.

Mixture	extrapolation	is	used	to	protect	specific	target	species.	Mixture	extrapo-
lation	 includes	 laboratory-to-field	extrapolation,	extrapolation	 from	 test	 species	 to	
target	species,	extrapolation	between	different	matrices,	and	extrapolation	from	mix-
ture	A	to	mixture	B.	Mixture	extrapolation	is	also	used	to	protect	specific	ecological	
communities	(species	assemblages)	and	may	be	applied	in	the	diagnostic	sense.	The	
latter	involves	extrapolations	for	the	species	as	well	as	extrapolations	across	levels	of	
biological	organization	(i.e.,	from	species	test	data	to	the	species	assemblage	level).

•

•
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Most	regulatory	methods	for	the	management	of	chemical	compounds	are	based	
on	 single-substance	 risk	evaluations,	but	 this	 information,	when	used	 in	conjunc-
tion	with	 some	basic	 toxicological	noninteraction	models	 (Loewe	and	Muischnek	
1926b;	Bliss	1939;	Plackett	and	Hewlett	1952),	may	also	be	used	to	predict	the	joint	
effect	of	chemical	mixtures	on	a	single	species.	The	models	in	question	have	been	
rigorously	tested	at	the	species	level	(see	Deneer	2000;	Warne	2003)	and	are	gener-
ally	 found	 to	 yield	 reliable	 descriptions	 of	 test	 results	 for	 mixture	 studies	 testing	
high	 doses	 of	 a	 few	 constituents.	 However,	 most	 real-world	 environmental	 expo-
sures	 involve	 low	concentrations	 and	 a	more	 complex	 range	of	 chemicals	 than	 is	
usually	investigated	in	the	laboratory	(Groten	et	al.	2001).	Extrapolation	from	single-	
species	mixture	toxicity	to	in	situ	risk	for	an	assemblage	of	species	adds	complexity.	
The	nature	of	the	chemicals	in	the	mixture,	the	variability	of	exposure	routes,	and	

table	5.1
objectives	of	environmental	mixture	studies

objective Focus Intention

understanding
Analysis	of	joint	action Exposure	interactions Characterization	of	joint	exposure	

scenario
Toxicant–target	interactions Characterization	of	biological	sites	

of	action
Toxicant–co-solute	interactions Characterization	of	toxicological	

modes	of	action
Species	level	experimentation Understanding	mixture	responses	

in	species
Community-level	

experimentation
Understanding	mixture	responses	
in	communities

risk	assessment	—	prognostic
Predicting	exposure Site-specific	exposure	levels Exposure	aspects	of	mixture	risk
Description	of	joint	effect Joint	effects	assessment Effects	aspects	of	mixture	risk
Quantifying	joint	risk Safe	ambient	concentrations Derivation	of	environmental	quality	

criteria	for	mixtures

Decisions	on	release	of	new	
compounds	on	market

risk	management	—	diagnostic	or	retrospective
Quantifying	site	risk Calculation	of	exposure	and	

effect
Knowing	risk	levels	for	targets	
1,	2,	and	3

1)	Ranking	components Effective	contributions Prioritization	of	chemicals
2)	Ranking	sites Expected	site	damage Prioritization	of	site	cleanup	or	

prevention
3)	Ranking	species Expected	species	group	damage Planning	species	protection	

measures
Quantifying	site	effects Effects	measurement	of,	for	

example,	wastewater
Effects	reduction
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the	ranges	of	sensitivities	of	the	receptor	organisms	are	all	crucial	factors	that	may	
determine	the	type	and	intensity	of	responses.	The	theoretical	developments	for	mul-
tiple-species	 risk	assessment	are	weak,	and	 the	collection	of	experimental	data	 is	
even	 weaker.	 The	 development	 of	 validated	 methods	 for	 mixture	 risk	 assessment	
for	species	assemblages	might	be	beyond	the	reach	of	current	research	capabilities.	
However,	a	relative	ranking	of	contaminated	sites	and	of	the	most	affected	group	of	
species,	as	well	as	identification	of	the	most	hazardous	compounds,	can	be	sufficient	
for	informed	risk	management	decisions.

In	view	of	 the	assessment	problems	and	 the	 limitations	mentioned	above,	 the	
aims	of	this	chapter	are	to	introduce,	explain,	and	evaluate	mixture	toxicity	extrapo-
lation	techniques	at	 the	species	 level	and	for	species	assemblages.	These	extrapo-
lation	techniques	are	discussed,	their	mechanistic	and	methodological	foundations	
considered,	and	the	quality	of	the	data	that	support	them	assessed.	Existing	reviews	
on	species-level	mixture	studies	were	used	as	a	basis	on	which	to	address	the	quan-
titative	aspects	of	mixture	extrapolation,	 and	 to	derive	 species-level	 extrapolation	
protocols.	Species-level	data	and	a	novel	combination	of	conceptual	and	pragmatic	
views	 are	 combined	 to	 explore,	 discuss,	 and	define	 technical	 procedures	 for	 esti-
mating	the	risks	of	complex	toxicant	mixtures	for	multispecies	biological	systems.	
Protocols	for	mixture	toxicity	extrapolations	are	provided.	Limitations,	uncertainty	
issues,	technical	feasibility	(input	data),	and	options	for	validation	are	explored.	It	is	
assumed	that	the	reader	has	a	broad	knowledge	of	concepts,	approaches,	outcomes,	
and	interpretations	of	mixture	toxicity	studies	in	ecotoxicology.

5.2	 ConCepts	For	MIxture	extrapolatIons

Any	attempt	to	extrapolate	the	toxicity	of	a	mixture	has	to	address	exposure,	matrix,	
and	effect	issues.	For	exposure,	the	main	question	is	whether	the	contributing	compo-
nents	are	known	or	not,	which	in	the	following	text	we	will	call	a	defined	or	an	unde-
fined	mixture,	respectively.	Matrix	and	media	issues	are	treated	in	detail	in	Chapter	2	
of	this	book.	The	focus	in	this	chapter	is	thus	restricted	to	combined	effects.

Predicting	the	combined	effects	of	a	mixture	from	knowledge	of	the	effects	of	its	
components	 requires	 a	 reference	model	of	what	 to	expect	 for	 a	mixture.	Reference	
models	used	in	mixture	extrapolation	practice	are	typically	based	on	pharmacodynamic	
assumptions	on	the	type	of	interaction	between	a	chemical	and	a	biological	system.

5.2.1	 Pharmacodynamic	concePts	for	mixture	extraPolation

The	expectation	of	combined	effects	from	mixture	exposure	is	most	often	founded	in	
the	basic	principles	of	toxicology	and	pharmacology	(Loewe	and	Muischnek	1926a;	
Bliss	1939;	Plackett	and	Hewlett	1952).	The	first	strictly	pharmacological	 ideas	for-
mulated	(Loewe	and	Muischnek	1926a)	were	supplemented	by	biometrical	consider-
ations.	Later,	Bliss	(1939),	a	biologist	and	a	biometrician,	provided	the	first	consistent	
framework,	as	depicted	in	Table	5.2	(Plackett	and	Hewlett	1952).	In	this	framework,	
the	main	ideas	focused	on	the	presence	or	absence	of	interactions	(commonly	referred	
to	as	interactive	and	noninteractive	joint	action)	with	respect	to	responses	observed	in	
test	organisms,	and	the	presence	of	the	same	or	a	different	mode	of	action.
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For	noninteractive	types	of	joint	action,	it	is	assumed	that	the	chemicals	in	the	
mixture	do	not	affect	the	toxicity	of	one	another.	Two	different	reference	models	are	
available	for	the	analysis	of	noninteractive	joint	action,	depending	on	the	mode	of	
action	of	the	chemicals	in	the	mixture.	The	modeling	approach	commonly	known	
as	concentration	addition	(CA)	is	used	for	mixtures	with	2	or	more	compounds	with	
a	similar	mode	of	action.	The	modeling	approach	called	response	addition	(RA)	is	
used	for	mixtures	with	2	or	more	compounds	with	different	modes	of	action.

For	the	analysis	of	interactive	joint	action	(for	either	similar	or	dissimilar	modes	
of	action),	no	general	models	are	available,	but	empirical	descriptions	may	be	used.	
The	concentration	addition	and	response	addition	models	are	often	used	in	the	analy-
sis	of	experimental	data	from	mixtures	with	compounds	having	known	but	different	
modes	of	action.

Various	 techniques,	 such	as	graphic	 illustrations	 (e.g.,	 isobolograms),	mixture	
toxicity	indices	(e.g.,	an	additivity	index),	formulas,	or	fully	parameterized	models,	
exist	for	predicting	an	expected	combined	effect	based	on	concentration	addition	or	
response	addition	 (for	 review,	 see	Bödeker	et	al.	1990).	The	quantitative	 relation-
ship	between	 the	expected	combined	effect	calculated	according	 to	concentration	
addition	or	response	addition	depends	(in	addition	to	other	factors)	primarily	on	the	
steepness	of	 the	concentration	response	relationship	of	 the	 individual	components	
(Drescher	and	Bödeker	1995).	Concentration	addition	predicts	a	higher	combined	
effect	as	compared	to	response	addition	when	the	mixture	components	have	steep	
concentration	response	relationships,	whereas	the	opposite	is	true	for	flat	concentra-
tion	response	relationships	of	the	mixture	components.

In	single-species	risk	prediction	for	individual	toxicants	and	toxicant	mixtures,	
the	effect	is	expressed	as	the	proportion	of	an	exposed	population	that	is	likely	to	
be	somehow	affected	by	toxic	action	(quantal	responses),	or	as	a	reduction	in	per-
formance	parameters	such	as	growth,	clutch	size,	and	juvenile	period	(continuous	
responses).	 Both	 concentration	 addition–	 and	 response	 addition–based	 methods	
are	 commonly	 applied	 for	 both	 response	 types.	 Assemblage-level	 risk	 prediction	
has	only	been	introduced	more	recently	(e.g.,	De	Zwart	and	Posthuma	2005)	and	is	
founded	on	similar	principles	while	focusing	on	the	fraction	of	species	that	are	likely	
affected	by	mixture	exposure.

table	5.2
Four	possible	mechanisms	of	joint	action	for	mixtures		
as	defined	by	plackett	and	Hewlett	(1952),	with	associated	
models

Mode	of	action

effect similar dissimilar

Noninteractive
Simple	similar	action Simple	independent	action

Model:	concentration	addition Model:	response	addition

Interactive
Complex	similar	action Dependent	action
Model:	empirical Model:	empirical
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5.2.2	 concePtual	limitations	and	solutions

When	 a	 model	 (e.g.,	 concentration	 addition	 or	 response	 addition)	 is	 considered	
appropriate	for	describing	the	mixture	effects	observed	in	experiments,	it	can	serve	
predictive	purposes	(such	as	formulating	a	scientific	null	hypothesis	for	an	experi-
ment),	 or	 for	 practical	 extrapolation	 and	 for	 risk	 assessment.	 There	 are,	 however,	
limitations	associated	with	the	concepts	and	the	associated	models	based	on	phar-
macodynamic	 reasoning.	 These	 limitations	 were	 first	 recognized	 by	 Plackett	 and	
Hewlett	 (1952),	 yet	 have	 mainly	 gone	 unnoticed	 by	 followers	 of	 the	 mechanistic	
school	of	mixture	toxicity.	Three	main	limitations	are	identified,	and	extrapolation	
solutions	are	provided.

First,	the	4	options	of	Table	5.2	can	only	be	distinct	for	a	limited	set	of	mixture	
types,	 that	 is,	 mainly	 binary	 mixtures	 or	 mixtures	 for	 which	 the	 assumptions	 of	
either	the	concentration	addition	or	the	response	addition	model	are	valid.	However,	
mixtures	occurring	in	the	environment	are	usually	more	complex	in	the	sense	that	
they	contain	groups	of	compounds	that	share	the	same	mode	of	action	and	groups	
of	 compounds	 with	 different	 modes	 of	 action.	 Only	 recently	 have	 experimenters	
and	theory	developers	started	to	investigate	how	this	may	be	combined	(known	as	
conceptual	“mixed	models”)	to	facilitate	the	analysis	of	complex	mixtures	(Ankley	
and	Mount	1996;	Posthuma	et	al.	2002a;	Traas	et	al.	2002;	Altenburger	et	al.	2005).	
Also,	the	question	of	what	pharmacological	or	toxicological	information	exactly	is	
necessary	to	define	the	mode	of	action	of	mixture	components	as	similar	or	dissimi-
lar	and	therefore	to	decide	which	concepts	should	be	used	is	under	debate	(Grimme	
et	al.	1996;	USEPA	2000d;	Borgert	et	al.	2004).

Second,	interactive	mixture	toxicity	is	currently	not	predictable	by	the	available	
mixture	models.	Various	levels	of	possible	interactions	may	be	distinguished:

Chemical–chemical	 interactions	 (e.g.,	 reaction	 or	 precipitation)	 during	
mixture	exposure
Chemical	 interactions	at	 the	uptake,	distribution,	metabolism,	or	excre-
tion	levels	in	the	organism
Chemical–biological	receptor	interactions
Biological	interactions	during	propagation	processes

Most	 of	 these	 interactions	 are	 not	 clearly	 distinguishable	 in	 ecotoxicological	
studies,	because	the	investigations	do	not	focus	on	molecular	targets,	as	in	toxicology	
and	pharmacology,	but	rather	on	whole	 individuals	or	species	 in	ecosystems.	The	
ecotoxicological	response	in	organism	or	assemblage	studies	is	often	the	outcome	
of	an	array	of	interactions	of	compounds	in	various	organs	and	tissues	within	indi-
vidual	organisms,	and	of	interactions	amongst	organisms	in	assemblages.	The	diffi-
culty	arises	in	trying	to	determine	which	interactions	are	present,	and	how	to	address	
these	extra	interactions	in	experimental	analyses	and	extrapolation.

Ashford	(1981)	developed	ideas	for	mixtures	in	the	framework	of	human	phar-
macology,	 which	 can	 be	 applied	 to	 ecotoxicological	 problems.	 Ashford	 focused	
on	 both	 the	 effects	 that	 modulate	 exposure	 as	 well	 as	 the	 factors	 that	 eventually	
determine	the	overall	observed	response.	In	his	original	work,	Ashford	proposed	to	

•

•

•
•
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study	subsystems	(e.g.,	separate	organs)	within	the	study	entities	(individuals).	This	
implies	that	a	set	of	mathematical	formulae	can	be	envisaged,	based	on	the	number	
of	components	in	the	mixture,	the	number	of	subsystems,	and	the	number	of	sites	of	
action.	Physiologically	based	pharmacokinetic	(PBPK)	models	have	tried	to	address	
some	of	these	aspects	by	mathematically	calculating	organ	and	target	available	con-
centrations	of	compounds	(Yang	1994b;	Haddad	and	Krishnan	1998;	Andersen	and	
Dennison	2004).	General	applicability	of	all	the	approaches	has	been	rather	low	and	
has	been	restricted	to	human	toxicology,	due	to	the	high	level	of	data	requirements.

A	third	limitation	of	the	mechanistic	approach	is	associated	with	the	fact	that	
observed	effects	in	ecotoxicological	studies	are	often	composed	of	(unknown)	sets	
of	 target-receptor	responses,	 (1981).	Consequently,	experimental	observations	are	
often	misinterpreted.	For	example,	many	authors	have	declared	that	compound	mix-
tures	(mechanistically)	act	in	a	concentration-	or	response-additive	manner	(imply-
ing	simple	similar	action	or	simple	independent	action	as	molecular	mechanisms),	
whereas	the	results	were	merely	numerically	similar	to	predictions	from	either	of	
the	2	models.	Rarely	do	ecotoxicological	studies	show	the	primary	molecular	inter-
actions	that	occur	at	the	target	sites	of	intoxication.	This	implies	that	results	of	such	
studies	can	only	be	given	in	terms	of	statements	like	“The	response	is	more	than	
expected	from	concentration	addition”	or	“The	response	is	less	than	expected	from	
concentration	addition”	rather	than	in	absolute	terms	of	“synergistic”	or	“antagonis-
tic,”	respectively.	Thus,	for	most	ecotoxicological	studies,	the	experimental	data	do	
not	provide	scientific	proof	to	support	mechanistic	claims	in	explaining	the	experi-
mental	data.

5.2.3	 Quality	issues

Many	studies	offer	extrapolation	approaches	when	addressing	the	issue	of	mixtures.	
However,	when	evaluating	mixture	papers	for	their	support	for	mixture	extrapola-
tion	procedures,	study	quality	is	a	critical	consideration.	A	set	of	criteria	applies	to	
evaluate	the	quality	of	the	data	(Altenburger	et	al.	1990),	and	these	criteria	can	be	
applied	to	estimate	whether	and	to	what	extent	the	data	support	the	chosen	extrapola-
tion	option.

First,	there	are	experiment	requirements.	Organization	of	treatments	is	a	major	
critical	element	of	any	mixture	experiment,	as	mixture	design	will	necessarily	rely	on	
previous	experiments	and	may	therefore	be	prone	to	error.	An	example	is	running	the	
control	group	of	a	single-compound	toxicity	test	asynchronous	to	the	test	exposure,	
which	is	a	violation	of	a	basic	experiment	design	rule.	Previous	experiments	should	
not	be	used,	unless	sufficient	care	is	taken	to	randomize	or	control	error	sources.	The	
type	and	quality	of	data	that	are	used	in	a	mixture	assessment	model	are	critical.	For	
example,	index-based	approaches	such	as	the	toxic	unit	approach,	or	the	use	of	toxic	
equivalence	quotients,	reduce	full	dose	response	curves	to	just	1	point	each	(e.g.,	the	
EC50),	obviating	the	utility	of	other	effect	levels.	The	findings	of	a	study	may	or	may	
not	be	applicable	to	other	exposure	and/or	effect	levels,	especially	when	the	interest	
is	in	the	“tails”	of	the	curves	(protection	target),	whereas	experimental	data	pertain	
to	EC50	levels.	It	is	crucial	to	clarify	the	objectives	of	the	study	(mechanistic	under-
standing,	testing	quantitative	prediction	accuracy	of	models,	etc.)	and	to	design	the	
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study	in	such	a	way	that	these	targets	are	reached.	For	example,	if	one	wants	better	
mechanistic	 understanding,	 one	 should	 measure	 target	 concentrations	 rather	 than	
ambient	exposure	concentrations.

Second,	there	are	biometrical	requirements.	Various	exposure	response	models	
may	be	used	and	compared.	The	models	need	to	be	clearly	defined,	and	goodness	
of	fit	should	be	reported,	both	for	the	separate	exposures	as	well	as	for	the	mixtures.	
Concentration	addition,	 response	addition,	 and	mixed-model	 results	may	be	com-
pared	as	possible	alternatives,	especially	when	underpinning	of	mechanistic	assump-
tions	is	weak.	Results	at	one	exposure	level	(e.g.,	EC50)	do	not	necessarily	predict	
results	at	other	exposure	levels	due	to	different	slopes	and	positions	of	the	curves	for	
separate	compounds	and	the	mixtures.	Statistical	tests	should	be	executed	properly	to	
compare	predicted	and	observed	responses.	If	any	statements	about	the	significance	
of	results	are	made,	the	methods	of	dose–response	analysis	need	to	be	reported.

Third,	 sensitivity	 should	 be	 considered.	 In	 principle,	 all	 models	 allow	 for	 the	
detection	of	significant	differences	through	the	calculation	of	confidence	intervals.	In	
practice,	however,	there	are	few	examples	where	specific	mixture	models	have	actu-
ally	been	demonstrated	to	apply	(amongst	other	options)	by	this	means	(Altenburger	
et	al.	1990;	Chen	et	al.	2005).	Most	statements	of	significant	difference	are	based	on	
implicit	assumptions	about	variances.	Precise	data	collection	and	manipulation	are	
needed	to	avoid	false	interpretation	that	mixture	effects	are	interpreted	as	“signifi-
cant.”	Models	chosen	should	be	pharmacologically	adequate	for	the	quantification	of	
nonadditive	types	of	effects.	The	experimental	design	should	have	observations	near	
the	concentration	level	of	interest	to	maximize	sensitivity	for	the	region	of	interest.

Fourth,	there	is	the	issue	of	specificity.	The	capacity	to	differentiate	between	dif-
ferent	types	of	combined	effects	can	be	achieved	by	all	models	after	statistical	and	
mechanistic	validation.	For	general	 application	 in	ecotoxicology,	we	propose	 that	
combined	effects	be	differentiated	only	with	clear	reference	to	the	additivity	concept	
of	the	model	used.

Fifth,	approaches	are	 limited	 regarding	 inferences	 that	can	be	made.	Evidence	
supporting	combination	effects	for	a	given	mixture	is	often	limited	for	many	models.	
It	must	be	emphasized	that	an	interpretation	of	the	results	using	point-estimate-based	
models	 is	 restricted	 to	 mixture	 ratios	 that	 have	 been	 investigated	 experimentally.	
Extrapolations	used	to	address	a	more	general	issue	such	as	“global	additivity”	are	
plausible	but	not	statistically	defensible.	Overcoming	such	limitations	would	require	
the	 employment	 of	 parametric	 models.	 Most	 often,	 rather	 than	 using	 the	 terms	
“antagonism”	and	“synergism,”	it	should	be	considered	to	use	the	terms	“more	than”	
or	“less	than”	when	referring	to	concentration	addition	or	response	addition,	respec-
tively,	because	the	latter	terms	better	define	the	test	criteria	by	specification	of	a	null	
model.

Sixth,	approaches	should	be	introduced	with	pharmacological	transparency.	A	
clear	understanding	of	the	researcher’s	biometrical	approach	(mechanistic	assump-
tion)	is	essential	if	confusion	in	mixture	toxicology	terminology	is	to	be	eliminated.	
The	concept	of	additivity	as	a	basis	for	an	evaluation	should	be	explicitly	described	
as	concentration	addition,	response	addition,	or	another	(new)	concept,	but	should	
not	be	undefined.	We	recommend	models	that	facilitate	clear	interpretation	of	effects	
and	explicit	critical	judgment	during	the	processing	of	data.
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Many	studies	(an	inventory	is	given	in	Section	5.3.1)	do	not	unanimously	pass	
all	of	these	quality	criteria.	For	example,	mixture	studies	do	not	usually	show	sig-
nificance	testing	of	the	observations.	That	is,	the	observed	mixture	effect	concentra-
tion	(a	mixture	concentration	that	causes	a	certain	response)	is	usually	compared	to	
the	mixture	concentration	that	is	predicted	to	yield	that	response.	Thereby,	the	fact	
that	single-compound	test	results	as	well	as	mixture	test	results	encompass	natural	
variation	often	is	neglected.	When	the	observed	mixture	effect	is	found	at	concen-
trations	of	1.2	times	the	predicted	concentration,	this	absolute	comparison	of	values	
(1.2	observed	versus	1.0	expected)	suggests	less	than	concentration-additive	effects.	
However,	when	both	are	estimated	with	error,	this	could	show	that	this	difference	
is	not	significant	(e.g.,	observed	and	predicted	effects	of	1.2	±	0.15	and	1.0	±	0.15,	
respectively,	are	not	significantly	different).	Note	that	these	methods	still	do	not	pro-
vide	mechanistic	proof.	Some	examples	of	statistical	testing	strategies	are	given	in	
terrestrial	mixture	studies	(see	Section	5.3.1).

To	address	the	quality	limitations	for	extrapolation,	the	available	experimental	
data	on	observed	mixture	effects	were	evaluated	with	care,	and	a	pragmatic	approach	
for	mixture	extrapolation	was	 followed.	Although	mechanistic	understanding	was	
often	not	the	purpose	of	the	experiments,	the	extrapolation	approach	is	based	upon	
mechanistic	principles,	that	is,	regarding	the	choice	between	mixture	toxicity	mod-
els.	 Conceptual	 considerations	 on	 biases	 and	 mathematical	 characteristics	 of	 the	
models	were	included	(see	Section	5.3.3).

5.3	 data	For	MIxture	extrapolatIon

5.3.1	 reviews	on	exPerimental	evidence

A	short	review	of	mixture	data,	mostly	taken	from	reviews	on	mixtures	in	aquatic	sys-
tems	(due	to	their	prevalence	versus	those	regarding	terrestrial	systems),	was	executed	
to	test	the	appropriateness	of	models	in	describing	experiment	data.	That	is,	we	tested	
whether	the	models	(despite	the	fact	that	there	is	no	proof	that	the	underlying	mechanisms	
are	applicable)	accurately	described	the	observations	in	the	mixture	experiments.

5.3.1.1	 aquatic	data

The	 European	 Inland	 Fisheries	 Advisory	 Commission	 (EIFAC;	 1980)	 reviewed	
the	 toxicity	of	76	binary	mixtures	of	common	effluent	pollutants	 to	fish.	Mixture	
effects	 occurred	 at	 0.4	 to	 26	 times	 the	 exposure	 concentration	 expected	 under	
concentration-additive	 toxicity,	 with	 87%	 of	 the	 data	 ranging	 between	 0.5	 and	
1.5	 times	 this	 concentration.	Substances	with	 concentrations	 lower	 than	0.2	 toxic	
units	 (TU)	appeared	not	 to	 contribute	 to	 the	 toxicity	of	 the	mixtures.	 In	 contrast	
to	 the	 apparent	 lack	 of	 effects	 at	 low	 mixture	 concentrations,	 subsequent	 papers		
(Könemann	1981;	Hermens	et	al.	1985;	Deneer	et	al.	1988)	showed	that	apparently	
equitoxic	mixtures	containing	8,	9,	11,	24,	33,	and	50	organic	chemicals	at	concen-
trations	that	were	only	small	fractions	of	the	individual	EC50	values	were	indeed	
able	to	induce	responses	that	agreed	with	the	concentration-addition	models.	These	
formed	the	basis	of	an	updated	report	(EIFAC	1987).
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Wang	(1987)	reviewed	the	toxicity	of	heavy	metal	mixtures	and	concluded	that	
combined	 toxicity	 cannot	 be	 readily	 predicted.	 However,	 21	 out	 of	 37	 mixtures	
showed	an	effect	as	expected	under	concentration	addition,	or	an	effect	slightly	less	
than	concentration	additive.	Similar	conclusions	were	reached	in	a	review	by	ECE-
TOC	(2001)	for	the	chronic	toxicity	of	metal	mixtures.	The	relative	degree	of	unpre-
dictability	of	the	mixture	response	was	attributed	to	the	different	modes	of	action	
of	the	metals.	It	was	therefore	recommended	that	concentration	additivity	should	be	
assumed	as	the	most	balanced	choice	for	a	null	model	in	mixture	assessment,	unless	
proven	differently.

Deneer	(2000)	reviewed	acute	toxicity	in	aquatic	organisms	for	about	200	pes-
ticide	mixtures	with	diverse	modes	of	action.	He	found	 that	combined	 toxicity	 in	
90%	of	 the	cases	differed	from	concentration	additivity	within	a	factor	of	2.	Two	
large	studies	on	the	chronic	toxicity	of	binary	pesticide	mixtures	(Faust	et	al.	1994;		
Altenburger	 et	 al.	 1996)	demonstrated	 that,	 in	most	 cases	 (>	60%),	 the	best	fit	of	
observed	mixture	effects	was	to	the	concentration	addition	model.

The	largest	reviews	of	mixture	toxicity	data	conducted	to	date	(Ross	1996;	Ross	
and	Warne	1997)	examined	the	toxicity	of	approximately	1000	predominantly	binary,	
tertiary,	and	quaternary	mixtures.	This	analysis	revealed	that	between	75%	and	80%	
of	the	mixtures	acted	according	to	the	concentration-addition	model,	10%	to	15%	
showed	less	response	 than	expected	under	 this	model,	and	10%	to	15%	showed	a	
higher	response	than	expected.	Five	percent	of	the	mixtures	had	toxicity	values	that	
differed	from	concentration	additivity	by	a	factor	greater	 than	2.5,	and	1%	of	 the	
mixtures	had	toxicity	values	that	differed	by	more	than	a	factor	of	5.

In	the	vast	majority	of	aquatic	ecotoxicology	mixture	research,	as	indicated	by	
the	data	in	the	compiled	studies,	the	toxicity	of	the	mixtures	is	compared	only	to	the	
toxicity	predicted	by	the	concentration-addition	model,	irrespective	of	the	(assumed)	
mode	of	action	of	the	compounds	in	the	mixture.	More	recently,	however,	authors	
have	investigated	whether	the	effects	could	be	described	by	alternative	models.	For	
example,	Altenburger	et	al.	(2000)	and	Faust	et	al.	(2001)	clearly	demonstrated	that	
the	 toxicity	of	complex	mixtures	with	assumed	similarly	acting	chemicals,	 tested	
with	luminescent	bacteria	and	algae,	was	highly	predictable	with	the	concentration-	
addition	model,	which	 is	 in	agreement	with	 the	 reviewed	studies.	However,	using	
the	same	toxicity	tests	with	complex	mixtures	of	assumed	purely	dissimilarly	acting	
chemicals,	it	was	shown	that	the	response	addition	model	produced	the	best	predic-
tion	(Backhaus	et	al.	2000).	These	authors	found	that	concentration	addition	under-
estimated	the	median	effective	concentration	(EC50;	i.e.,	it	overestimated	toxicity)	
of	these	mixtures	by	a	factor	of	less	than	3.	From	the	recent	studies	that	have	com-
pared	 concentration	 addition	 and	 response	 addition,	 it	 is	 concluded	 that	 the	most	
predictive	mixture	extrapolation	model	(concentration	addition	or	response	addition)	
can	 likely	 be	 chosen	 on	 the	 basis	 of	 mode-of-action	 considerations,	 even	 though	
exact	mechanisms	of	toxic	action	are	not	entirely	known.

Finally,	 there	 is	 a	 debate	 as	 to	 whether	 combined	 effects	 are	 to	 be	 expected	
from	low	doses	of	mixture	components.	Evidence	in	ecotoxicological	effect	systems	
challenges	 the	 widespread	 notion	 that	 combined	 effects	 do	 not	 occur	 for	 compo-
nents	 occurring	 below	 certain	 effect	 concentrations.	 Studies	 with	 narcotics	 (non-
specifically	acting	compounds,	typically	chemicals	used	as	solvents)	indicated	that		
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concentrations	of	multiple	components	individually	equivalent	to	5%	(Broderius	and	
Kahl	1985;	Xu	and	Nirmalakhandan	1998),	2%	(Könemann	1980;	Hermens	et	al.	
1984),	and	even	as	low	as	0.25%	of	the	individual	EC50	(Deneer	et	al.	1988)	still	pro-
duced	a	significant	mixture	effect.	For	specifically	and	similarly	acting	compounds	
such	as	photosystem	II–inhibiting	herbicides	(Faust	et	al.	2001)	and	chemicals	that	
are	able	to	disturb	endocrine	function	(Silva	et	al.	2002),	it	has	been	demonstrated	that	
individual	concentrations	clearly	below	detectable	individual-effect	concentrations	
can	produce	predictable	and	significant	combined	effects.	Even	sediment	pollutants	
with	diverse	modes	of	action	in	mixtures	containing	no-observed-effect	concentra-
tions	(NOECs)	of	the	components	induced	significant	combined	effects	(Walter	et	al.		
2002).

5.3.1.2	 terrestrial	data

The	amount	of	ecotoxicity	data	for	 terrestrial	systems	is	substantially	more	 lim-
ited	 compared	 to	 that	 for	 aquatic	 systems.	 Posthuma	 et	 al.	 (1996)	 provided	 an	
overview	 of	 the	 limited	 set	 of	 other	 literature	 sources	 on	 terrestrial	 test	 results,	
which	included	the	studies	of	van	Gestel	and	Hensbergen	(1997),	Sharma	Shanti	
et	al.	(1999),	and	Weltje	(1998).	Jonker	(2003)	published	a	PhD	thesis	on	mixture	
toxicity	in	the	terrestrial	environment.	Korthals	et	al.	(2000)	reported	that	the	joint	
effects	of	metals	on	a	nematode	community	in	soil	could	be	predicted	by	mixture	
modeling.	Mesman	and	Posthuma	(2003)	published	a	report	on	applying	general-
ized	mixture	 extrapolation	 rules,	 as	 derived	 from	 the	 available	 literature,	 in	 ter-
restrial	ecotoxicology.	In	a	numerical	sense,	the	findings	of	these	terrestrial	studies	
corroborated	the	findings	of	the	aquatic	reviews.	That	is,	many	studies	with	species	
such	 as	 earthworms,	 enchytraeids,	 nematodes,	 and	 plants	 showed	 that	 observed	
mixture	responses	were	near	the	prediction	of	concentration	additivity.	Mechanisti-
cally,	however,	terrestrial	ecotoxicologists	commented	explicitly	(such	as	Ashford	
1981)	on	the	existence	of	multiple	interaction	levels.	Pleas	were	made	by	Mesman	
and	Posthuma	(2003)	for	specific	attention	to	mechanistic	processes	other	than	the	
compound–target	interaction	(e.g.,	sorption	to	the	matrix)	and	to	the	above-men-
tioned	criteria	to	describe	study	quality.	Finally,	an	extended	array	of	mathematical	
models	to	statistically	test	whether	mixture	responses	significantly	differ	from	the	
responses	expected	under	the	null	model	of	concentration	additivity	has	been	devel-
oped	in	terrestrial	studies	(e.g.,	Posthuma	et	al.	1997;	van	Gestel	and	Hensbergen		
1997;	Jonker	2003).

5.3.2	 mixture	extraPolation	is	Justified	by	the	data

Given	the	reviewed	data,	the	first	issue	relevant	for	mixture	extrapolation	is	whether	
extrapolation	can	be	justified	at	all	over	no	mixture	extrapolation,	in	which	separate	
responses	only	are	assumed.	In	our	opinion,	the	single-species	test	data	are	suf-
ficiently	clear	to	suggest	that	mixture	extrapolation	is	preferred	over	no	extrapola-
tion.	Although	some	exceptions	exist	(e.g.,	low	effect	range	and	specific	compound	
mixtures),	 the	 majority	 of	 studies	 (aquatic	 and	 terrestrial)	 generally	 concluded	
that	concentration	addition	is	a	reasonable	conservative	approximation	of	mixture	
responses.	 Indeed,	 the	species-level	experimental	data	we	have	reviewed	clearly	
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suggest	 that	 the	 observed	 responses	 occur	 at	 a	 mixture	 concentration	 approxi-
mately	 equivalent	 to	 one	 expected	 from	 concentration-addition	 modeling.	 Nei-
ther	half	the	expected	concentration	(which	would	indicate	some	mechanism	that	
induces	 more	 effects	 than	 expected)	 nor	 doubled	 or	 higher	 concentration	 levels	
(which	would	indicate	less	effects	than	expected)	occurred	to	a	significant	degree.	
When	mixture	issues	do	not	play	a	role,	the	observed	response	should	always	be	
equal	 to	the	response	predicted	from	the	toxicity	curve	of	 the	most	potent	com-
pound.	This	would	imply	that	mixture	effects	would	occur	at	twice	the	expected	
concentration	for	binary	mixtures	with	both	compounds	present	at	concentrations	
of	equal	 toxicity	 (equitoxic	mixtures),	 triple	 the	expected	 level	 for	 tertiary	mix-
tures,	and	n	times	the	expected	level	for	n compound	mixtures.	The	data	show	that	
this	is	clearly	not	the	case.

In	light	of	the	large	number	of	interaction	levels	that	may	influence	the	mixture	
toxicity	response	at	the	sites	of	toxic	action,	especially	in	terrestrial	systems,	it	may	
come	as	a	surprise	that	we	are	able	to	draw	the	conclusion	that	mixture	extrapola-
tions	appear	to	be	justified	by	the	data.	Although	the	interactions	may	all	be	relevant	
and	may	all	require	extrapolations	according	to	the	methods	explained	in	the	other	
chapters	of	this	book,	the	net	effect	is	apparently,	and	often	relatively	well,	predicted	
by	concentration	addition.

In	our	opinion,	 the	data	are	 sufficiently	clear	 to	 suggest	 that	when	 it	 is	not	
feasible	 to	 test	 the	 mixture	 in	 question,	 mixture	 extrapolation	 is	 the	 preferred	
option	compared	to	no	extrapolation.	Indeed,	all	literature	observations	suggest	
that	applying	mixture	extrapolation	is	to	be	preferred	over	not	applying	mixture	
extrapolation.	 Technical	 options	 for	 extrapolation	 are	 concentration	 addition,	
response	addition,	and	the	mixed-model	approach,	of	which	concentration	addi-
tion	is	most	often	applied.	Exceptions	may	apply	in	cases	that	are	more	specific.	
For	 example,	 when	 it	 is	 clear	 that	 2	 compounds	 precipitate	 (a	 situation	 of	 “no	
exposure”	due	to	chemical	interactions	in	the	environment),	one	should	acknowl-
edge	this	prior	 to	assessing	mixture	risks	by	mixture	extrapolation	approaches.	
When	 the	data	of	a	 study	allow,	 refined	conclusions	are	possible.	For	example,	
when	 the	 study	 design	 is	 appropriate	 and	 the	 mathematical	 models	 are	 appro-
priate,	 researchers	are	able	 to	discriminate	between	concentration	addition	and	
response	addition,	and	(with	sufficient	experiment	efforts)	between	these	models	
and	the	mixed-model	approach.

5.3.3	 considering	bias	in	extraPolation	is	imPortant

The	different	models	 show	bias.	Concentration	addition	 implies	 that	 effects	 always	
increase	 with	 each	 additional	 compound	 (even	 when	 present	 at	 extremely	 low	
concentrations),	and	there	is	clear	evidence	that	this	occurs	with	similarly	acting	com-
pounds,	but	 it	 is	not	yet	 clarified	with	dissimilarly	acting	compounds	 (see	 reviews,	
above).	Thus,	applying	concentration	addition	to	mixtures	of	dissimilarly	acting	com-
pounds	might	overestimate	effects	and	risks,	and	this	may	be	an	undesired	feature	for	
various	risk	assessments	(e.g.,	for	retrospective,	diagnostic	risk	assessments).	Response	
addition	implies	 that	mixture	effects	only	occur	when	at	 least	1	compound	induces	
toxic	effects.	However,	as	cited	 in	 the	 review	of	data	 (Section	5.3.1),	mixtures	with	
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the	same	mode	of	action	can	induce	toxic	effects	even	when	the	separate	compounds	
do	not.	These	biases	imply	that	the	mixed-model	approach	is	conceptually	sound	in	
the	sense	that	application	of	this	model	reduces	both	sources	of	bias.	Thus,	mixture		
extrapolation	 can	 be	 conducted	 using	 any	 one	 of	 the	 models	 (concentration	 addi-
tion,	response	addition,	or	the	mixed-model	approach).	The	final	model	choice	for	an	
assessment	could	differ	depending	on	acceptance	of	bias	in	relation	to	the	assessment	
target.

5.4	 General	protoCol	For	MIxture	extrapolatIon

Mixture	extrapolation	can	be	complex	due	to	the	variety	of	model	approaches,	the	
optional	 tiers,	 and	 the	 different	 extrapolation	 targets.	 Therefore,	 apart	 from	 the	
technical	mixture	extrapolation	protocols	sensu	stricto,	a	general	stepwise	protocol	
should	be	followed.	Here,	we	propose	a	protocol	of	5	steps.

5.4.1	 first	steP:	defining	the	assessment	Problem

The	first	step	in	mixture	extrapolation	for	mixtures	of	known	composition	is	the	defi-
nition	of	the	assessment	problem.	What	exactly	is	the	context	of	the	mixture	assess-
ment?	To	address	this	problem,	answers	should	be	given	to	the	following	questions:

What	is	the	objective	of	the	assessment:	a	specific	assessment	for	a	con-
taminated	 site,	 or	 a	 generic	 assessment	 that	 will	 derive	 a	 conservative	
degree	of	protection?
What	 is	 the	 biological	 target	 of	 the	 assessment,	 a	 species,	 or	 a	
community?
Which	data	are	available	to	underpin	the	approach	chosen	in	a	mixture	
assessment?	Are	there	specific	data	directly	related	to	the	problem,	or	only	
data	that	are	peripherally	related	to	the	problem?	What	do	the	data	suggest	
(e.g.,	a	bias	toward	more	or	less	than	concentration-additive	effects)?
Which	types	and	levels	of	interactions	are	present	that	might	affect	mix-
ture	toxicity,	and	how	can	these	be	appropriately	addressed?	For	instance,	
is	 there	 an	 environmental	 interaction	 such	 as	 precipitation	 that	 would	
influence	mixture	effects	 through	modification	of	exposure	 in	a	signifi-
cant	way?	(Note:	In	the	rest	of	this	chapter,	limited	attention	is	paid	to	the	
issues	of	modifying	effects	brought	about	by	nonchemical	stressors,	such	
as	co-exposure	to	UV	rays	or	pathogens.	Those	interactions	are	treated	in	
the	other	chapters	of	this	book.)

After	these	questions	have	been	answered,	the	next	step	is	to	undertake	a	sys-
tematic	analysis	of	the	mixture	itself,	with	the	goal	of	identifying	the	toxicologically	
relevant	components.	For	example,	the	concentration	of	compounds	in	the	mixture	
could	be	compared	to	ecotoxicity	data	for	those	compounds	to	identify	compounds	
most	 likely	 to	 contribute	 to	 mixture	 effects	 (exposure	>	 sensitivity	 threshold),	 or	
grouping	of	compounds	in	the	mixture	according	to	modes	of	action.	In	the	follow-
ing	steps,	these	issues	are	elaborated,	starting	with	exposure	assessment.

•

•

•

•
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5.4.2	 second	steP:	considering	the	issue	of	exPosure	extraPolation

Matrix	and	media	effects	may	modulate	exposure	concentrations.	Methods	for	matrix	
and	media	extrapolation	should	be	applied	prior	to	modeling	mixture	risks	according	
to	the	methods	available	in	De	Zwart	and	Posthuma	(2005).	The	presence	of	mixtures	
of	chemicals	in	the	context	of	matrix	and	media	extrapolation	can	result	in	particular	
effects.	For	example,	2	toxic	compounds	may,	only	when	present	together,	form	an	
insoluble	complex,	resulting	in	lower	or	more	subtle	mixture	responses	than	expected.	
For	example,	various	 studies	on	 terrestrial	mixtures	have	 shown	 that	 the	bioavail-
ability	of	a	metal	may	be	affected	by	the	presence	of	another	metal	(van	Gestel	and	
Hensbergen	1997;	Posthuma	et	al.	1997,	1998).	In	general,	exposure	may	increase	or	
decrease	depending	upon	the	nature	of	the	compounds	in	mixed	form.	In	accordance	
with	the	ideas	of	Ashford	(1981),	exposure	assessments	should	be	executed	in	mixture	
extrapolation	before	considering	mixture	effects	at	the	target	site	of	toxic	action.

5.4.3	 third	steP:	mixture	extraPolation	in	tiered	risk	assessments

Because	there	are	various	options	to	account	for	possible	combined	effects,	includ-
ing	concentration	addition	alone,	response	addition	alone,	or	concentration	addition	
and	response	addition	in	concert,	and	motives	from	study	quality,	assessment	end-
point,	mechanistic	features,	and	statistical	characteristics	and	biases,	there	should	be	
a	way	to	logically	choose	amongst	methods	for	mixture	extrapolation.	The	logical	
and	pragmatic	way	to	choose	amongst	alternative	approaches	is	to	design	and	follow	
a	tiered	approach	(see	Chapter	1).

Tiering	 is	often	applied	 in	 risk	assessment	 in	order	 to	 reduce	expenditures	 in	
time,	money,	and	labor	when	the	assessment	requires	only	simple	and	possibly	con-
servative	output.	Table	5.3	provides	a	suggested	tiered	approach	in	mixture	extrapo-
lation	 and	 is	 further	 described	 in	 the	bulleted	 list	 below.	The	 tiering	 is	 based	on	
the	way	that	mixture	mechanisms	are	addressed	in	the	approach.	It	is	assumed	that	
issues	such	as	matrix	and	media	extrapolation	have	been	addressed	according	to	the	
methods	described	in	the	pertinent	chapters.	

The	following	tiered	approach	is	suggested	for	mixture	extrapolation:

Tier-0 methods, referred	to	as	“no	extrapolation” in	Chapter	10,	 imply	
that	mixture	effects	are	assumed	irrelevant	for	the	assessment.
Tier-1 methods, referred	 to	 as	 “simple	 generic	 approaches” in	 Chapter	
10,	consist	of	a	nontoxicological	way	of	addressing	mixtures.	For	example,	
one	may	just	define	criteria	for	groups	of	structurally	similar	compounds	
or	 apply	 safety	 factors	 to	 account	 for	 possible	 combined	 effects,	 if	 mix-
ture	exposures	are	considered	relevant.	This	approach	has	the	advantage	of	
needing	no	additional	information	but	may	be	toxicologically	meaningless	
if	compounds	are	too	different	in	their	individual	behaviors.
Tier-2 methods,	 referred	 to	 as	 “moderately	 simple	 generic	 methods,” 
assume	a	uniform	mode	of	action	for	all	compounds	or	a	complete,	non-
uniform	 set	 of	 modes	 of	 action.	 On	 one	 hand,	 this	 implies	 application	
of	 concentration	 addition	 to	 address	 the	 mixture	 and	 likely	 results	 in	

•

•

•
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overestimation	of	 risks	 (see	Drescher	and	Bödeker	1995).	On	 the	other	
hand,	it	may	imply	using	only	response	addition.	The	approach	based	on	
concentration	addition	is	most	often	used.	The	advantage	of	 the	overall	
concentration-addition	method	 is	 that	 it	 is	simple:	only	summary	toxic-
ity	descriptors	such	as	EC50	or	NOEC	values	are	required,	and	all	com-
pounds	 may	 be	 expressed	 in	 terms	 of	 toxic	 units	 that	 are	 summed	 as	
dimensionless	fractions	of	their	effective	concentrations	(see	protocols	in	
Section	5.3).	This	method	is	based	on	point	estimates	from	the	concentra-
tion	effect	curves	of	all	compounds	present.	Tier	2	methods	are	relatively	
simple,	and	should	be	applied	in	cases	where	the	assessment	problem	is	
either	simple	or	vaguely	formulated	(no	clear,	ecologically	identified	pro-
tection	target),	and	where	some	conservatism	in	the	assessment	output	is	
acceptable	or	desirable.	An	example	might	be	the	setting	of	quality	stan-
dards	for	a	clean	environment.
Tier-3 methods,	referred	to	as	“complex	specific	methods” in	Chapter	10,	
allow	for	assessment	of	nonuniform	modes	of	action,	which	may	include	
the	use	of	both	concentration-addition	and	response	addition	models.	This	
approach	requires	information	on	the	concentration–effect	relationship	of	
the	compounds,	as	opposed	to	only	point	estimates	as	in	Tier	2.
Tier-4 methods,	referred	to	as	“highly	specific	methods” in	Chapter	10,	
address	nonuniform	mixtures	from	the	perspective	of	using	not	only	the	
assumed	primary	mode	of	action	but	also	the	assumed	characteristics	of	
the	receptor	species.	Tier	4	methods	can	be	applied	when	the	assessment	
problem	is	defined	specifically	(regarding	site,	species,	and	compounds),	
and	where	an	accurate	result	is	preferred	over	a	conservative	one.

The	 tiers	may	be	 further	 refined	and	are	 further	discussed	 in	 the	 sections	on	
extrapolation	protocols.

•

•

table	5.3
Major	tiers	that	can	be	distinguished	in	combined	effect	extrapolation

tier Model
assumptions		
and/or	model Information	required

0 No	mixture	extrapolation
1 Additional	safety	factor,

or
Group	criteria

Combined	effect	might	
be	relevant

Occurrence	of	mixture	exposure

2 Toxic	unit	summation Point	extimates	on	
concentration-effect	
curves

Toxicological	reference	values	for	
the	mixture	components,	e.g.,	
EC50,	NOEC

3 Mixed-model	approach	 Similar	and	dissimilar	
action

Concentration	response	
relationships	for	the	components

4 Mixed	model	approach	with	
emphasis	on	characteristics	
of	receptor	species

Similar	and	dissimilar	
action

Mode	of	action	information,	recptor	
species	information
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5.4.4	 fourth	steP:	effects	extraPolation	issues

In	this	step,	the	mixture	extrapolation	is	planned.	Decisions	are	made	on	the	protocols	
to	be	used,	depending	on	tier,	exposed	organism	or	assemblage,	and	so	on.	In	this	step,	
choices	are	made	regarding	the	protocols	for	mixture	extrapolation.	In	simple,	generic	
analyses,	one	may	want	 to	work	with	point	estimates	from	the	concentration–effect	
curves.	In	more	specific	analyses,	one	may	want	to	work	with	mixed-model	approaches,	
acknowledging	both	the	modes	of	action	and	the	presence	or	absence	of	target	sites	of	
toxic	action	within	different	organism	groups.	If	one	wants	to	be	more	certain	about	
probable	mixture	effects	for	a	decision	(i.e.,	whether	predicted	risks	are	below	a	thresh-
old	while	being	uncertain	about	the	model),	the	concept	of	a	window	of	prediction	(i.e.,	
use	both	concentration	addition	and	response	addition	concepts	to	define	the	range	and	
limits	of	expected	combined	effects;	Walter	et	al.	2002)	can	be	applied.

5.4.5	 fifth	steP:	executing	and	interPreting	mixture	extraPolation

The	 last	 step	 is	 to	collect	 the	appropriate	models	and	 their	 input	data,	 to	execute	
the	mixture	extrapolation,	and	to	interpret	the	outcomes	in	view	of	the	assessment		
target.	The	strength	of	 the	 inferences	 that	can	be	made	can	be	explicitly	reported	
(e.g.,	based	on	the	amount	and	quality	of	the	input	data,	based	on	the	outcomes	of	the	
“window	of	prediction”	assessment,	or	by	elaborating	on	the	uncertainties	encoun-
tered	in	the	stepwise	procedures).

5.5	 speCIes-level	CoMbIned	eFFeCt	predICtIon

In	the	fourth	step	of	extrapolation,	specific	mixture	extrapolation	protocols	are	needed.	
Below,	some	details	on	the	theories	and	the	associated	protocols	are	given	for	con-
centration	addition,	response	addition,	and	mixed-model	approaches,	and	for	the	spe-
cies	and	assemblage	levels	separately	(this	section	and,	next	section,	respectively).

5.5.1	 Protocol	for	calculation	of	concentration	addition

Due	to	its	conceptual	and	numerical	ease	of	application,	concentration	addition	is	most	
commonly	used	as	the	null	hypothesis	in	the	assessment	of	mixture	responses	to	known	
components.	Thus,	the	concentration	addition	model	is	usually	applied	to	predict	the	
responses	 observed	 in	 single-species	 toxicity	 experiments	 in	 which	 the	 response	 to	
several	compounds	with	assumed	same	modes	of	action	is	considered.	Moreover,	the	
joint	effect	of	compound	mixtures	that	have	the	same	mode	of	action	and	that	show	no	
toxicological	interactions	will	be	quantitatively	correctly	described	using	the	concentra-
tion	addition	model	(Plackett	and	Hewlett	1952).	Several	concentration	addition–related	
methods	from	graphic	techniques	such	as	isobolograms,	through	indices	such	as	the	
“mixture	toxicity	index	(MTI),”	up	to	fully	parameterized	models	have	been	developed	
to	assess	combined	effects	 (Bödeker	et	al.	1990;	Gentile	et	al.	1999).	Concentration	
addition	implies	that	the	contribution	of	the	individual	toxicants	to	the	overall	effect	can	
be	added	in	the	form	of	toxic	units	(TUs;	Sprague	and	Ramsay	1965).

The	 concentration	 addition	 of	 a	 mixture	 can	 be	 described	 by	 the	 equation	
(Könemann	 and	 Pieters	 1996)	 TU d A D A d B D B= ∑ + + +( ) / ( ) ( ) / ( ) � � ,	 where	
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d(A),	d(B)	are	the	actual	exposure	concentrations	of	the	compounds	A	and	B,	and	
D(A),	D(B)	are	 the	exposure	concentrations	of	A	and	B	 that	 represent	a	common	
standard	response	such	as	a	median	lethal	or	effective	concentration	(LC50	or	EC50)	
or	a	no-observed-effect	concentration,	and	TU	is	expressed	as	dimensionless	toxic	
units.	The	individual	terms	“d(A)/D(A)”	and	“d(B)/D(B)”	may	be	called	“toxic	unit	
sum”	(TUS).	The	use	of	NOEC	values	introduces	an	inaccuracy	as	an	NOEC	value	
is	not	a	compound-independent	measure	of	noneffect.	It	in	fact	quantifies	a	certain	
effect	level	in	relation	to	experimental	design	issues.

Concentration	addition	implies	that	the	common	standard	response	is	expected	
to	occur	at	TU	=	1.	Because	no	concentration	threshold	exists	for	concentration	addi-
tion,	the	concept	predicts	that	a	response	may	occur	when	organisms	are	exposed	to	
a	mixture	of	compounds	where	each	of	the	constituents	separately	would	not	induce	
any	effect.	This	is	an	important	 implication,	as	ecosystems	often	experience	mix-
tures	of	chemicals	at	low	concentrations.

The	TU	summation	(TUS)	approach	for	the	concentration	addition	model	suf-
fers	from	a	serious	drawback.	The	method	is	based	on	point-estimate	assessments	
taken	 from	 the	 whole	 of	 the	 concentration–effect	 relationship,	 because	 the	 stan-
dard	response	is	often	set	at	the	LC50,	the	EC50,	or	the	NOEC.	If	the	slopes	of	the		
concentration–response	relationship	for	all	compounds	in	the	mixture	are	not	considered,	
there	is	no	way	to	determine	how	far	away	a	TUS	value	is	from	the	effect	of	concern		
(Solomon	 and	Takacs	2002).	An	 improvement	would	be	 to	 use	whole	 concentration–
response	functions	for	concentration	addition	modeling,	which	is	possible	when	adequate	
effect	information	for	the	individual	components	of	a	mixture	is	available,	as	has	been	
demonstrated	by	Faust	et	al.	(2000).	This	can	also	be	done	using	a	probabilistic	approach	
by	applying	the	following	protocol	(De	Zwart	and	Posthuma	2005).

5.5.1.1	 step	1

For	the	individual	components	of	the	mixture,	estimate	both	slope	and	EC50	by	fit-
ting	a	log-linear	regression	model	(or	another	appropriate	continuous	model,	usually	
for	sigmoid	concentration	response	data;	for	reference,	see	Scholze	et	al.	2001)	to	
the	range	of	concentrations	and	effects	observed	in	standardized	single-species	and	
single-substance	toxicity	experiments.	Among	the	types	of	log-linear	models,	logis-
tic,	Weibull,	or	probit	regression	might	be	used	for	modeling	a	quantitative	response	
(proportion	of	functional	decline)	as	well	as	for	a	qualitative	response	(proportion	
of	organisms	affected).	In	practical	terms,	probit	models	come	to	the	same	conclu-
sions	as	logistic	regression,	but	have	the	drawback	that	probit	coefficients	are	more	
difficult	 to	 interpret	 (there	 is	 no	 equivalent	 to	 logistic	 regression’s	 odds	 ratios	 as	
effect	sizes	in	probit).	Both	the	cumulative	standard	normal	curve	used	by	probit	as	
a	transform	and	the	logistic	or	Weibull	(log	odds)	curve	used	in	logistic	regression	
display	an	S-shape.	Though	the	probit	curve	is	less	flexible	as	it	is	symmetric	about	
the	midpoint,	differences	are	small	at	median-effect	levels.

A	formula	for	the	logistic	regression	is	Logit	(P)	= In	(P /	(1	- P)	= (log	c	-	log	EC50)	/	b,		
and	 for	 the	probit	 regression	 it	 is	 Probit c EC50( ) (log log ) /P = - +β 5,	where	P	 is	
the	probability	(or	proportion)	of	effect,	c	 is	 the	concentration	that	 is	supposed	to	
cause	 this	 effect,	 and	 b	 and	 s	 (standard	 deviation)	 are	 the	 respective	 slope	 coef-
ficients	of	 the	 regression.	The	ratio	of	 s	over	 b	 is	a	constant:	 σ/β π/= =3 1 81. .	
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Probit	values	can	be	obtained	from	a	probit	table,	or	by	applying	the	Microsoft	Excel	
function	NORMINV(P,5,1).	As	alternatives	to	this	protocol,	most	graphic	software	
programs	 contain	 a	 variety	 of	 nonlinear	 curve-fitting	 and	 regression	 procedures	
(including	standard	logit,	Weibull,	or	probit	models).	As	determination	of	concentra-
tion	response	functions	is	an	iterative	fitting	procedure,	fit	algorithms	typically	need	
reasonable	starting	parameters	that	may	be	taken	from	inspection	of	the	data	in	order	
to	allow	the	convergence	of	functions	within	the	set	number	of	iterations.

5.5.1.2	 step	2

Calculate	the	sum	of	TUs	for	the	mixture	components,	based	on	the	concentrations	
and	the	estimated	EC50	values	for	the	individual	components	(as	described	with	the	
TUS	approach).

Calculate	 the	 combined	 effect	 according	 to	 concentration	 addition.	 To	 calcu-
late	 the	combined	proportion	of	effect	 (P)	 in	a	 log-logistic	manner,	 substitute	TU		
and	the	average	of	b	in	 P = + -1 1/ ( )(log /e TU β) .	For	the	log-probit	evaluation,	there	is	
no	analytical	solution	other	than,	for	instance,	to	apply	the	Microsoft	Excel	function	
P = NORMDIST log(TU), ,Average( ( ), )0 1σ ,	which	provides	the	cumulative	density	
function	 (CDF)	 of	 the	 normal	 distribution	 by	 Taylor	 series	 approximation.	 Using	
this	protocol,	the	effect	level	to	be	expected	from	most	of	the	realistic	environmen-
tal	mixtures	can	be	predicted	from	combining	single-species	and	single-compound	
effect	data	with	the	concentration	addition	approach.

Alternatively,	you	may	utilize,	 if	available,	 the	slope	information	for	 the	indi-
vidual	components	by	employing	the	inverse	of	the	concentration	response	function	
to	 calculate	 expected	 concentrations	 for	 a	 defined	 mixture	 effect	 as	 follows.	 The	
concentration	of	each	component	in	the	mixture	can	be	expressed	as	a	fraction	of	
the	total	mixture	concentration.	Consequently,	a	total	concentration	of	the	mixture,	
at	which	a	certain	effect	is	generated,	can	be	calculated	using	concentration	addition	
according	to	the	following	equation:

	

EC
ECMixx

p
x
i

ii

n

=

-

∑

1

1

where	ECxMix	 is	 the	total	concentration	of	the	mixture	provoking	x%	effect;	ECxi	
is	the	concentration	of	component	i	provoking	the	x%	effect,	when	applied	singly;	
and	pi	denotes	the	fraction	of	component	i	in	the	mixture.	The	calculation	of	total	
mixture	concentrations	for	various	effect	levels	leads	to	a	complete	iteration	of	an	
expected	concentration–effect	curve.

Although	the	TUs	and	the	probabilistic	approaches	are	useful	in	estimating	the	
potency	of	different	mixtures	to	a	single	species	using	concentration	addition,	they	
must	be	used	with	caution	when	extrapolating	from	1	species	to	another	(Compton	
and	Sigal	1999).	Species	may	not	respond	to	the	same	set	of	toxicants	in	the	same	
way	(Parrott	et	al.	1995;	van	den	Berg	et	al.	1998),	which	would	invalidate	the	use	of	
the	same	TUs	or	concentration	response	curves	across	species	or	species	groups.

An	example	of	this	type	of	calculation	is	given	in	Box	5.1.
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box	5.1	 Example	of	a	spreadsheet	calculation	of	the	expected	combined	defined	effect	for	
a	multiple	mixture	using	different	amounts	of	information.	Note:	Tier-1	prediction	relies	on	
exposure	and	EC50	information	(toxic	unit	summation),	Tier-2	needs	additional	concentration	
response	information	for	calculation	of	expected	combined	effects	according	to	the	reference	
models	of	response	addition	or	concentration	addition,	and	Tier-3	calculation	(mixed	models)	
requires	information	on	the	relevant	mode	of	action.	The	sample	is	based	on	real	analytical	
and	effect	data.	Source:	Redrawn	from	data	from	Altenburger	et	al.	(2004).
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5.5.2	 Protocol	for	calculation	of	resPonse	addition

The	alternative	concept	 to	concentration	addition	 is	 response	addition,	which	was	
developed	to	address	the	issue	of	mixtures	containing	components	with	dissimilar	
actions.	The	reasoning	is	that	toxicants	may	primarily	interact	with	different	molec-
ular	target	sites	but	may	lead	to	a	common	toxicological	endpoint	via	distinct	chains	
of	reactions	within	an	organism.	Under	these	assumptions,	the	fractional	effects	of	
individual	mixture	constituents	(e.g.,	50%	response)	are	expected	to	be	independent	
from	each	other	in	a	probabilistic	sense.	This	means	that	the	relative	effect	of	a	toxi-
cant	(e.g.,	50%	mortality)	remains	unchanged	in	the	presence	of	another	chemical.	
There	is	discussion	as	to	whether	responses	against	chemicals	can	be	truly	indepen-
dent	or	whether	they	are	typically	partially	correlated.	Partial	correlation	of	sensitiv-
ities,	however,	is	not	an	extrapolative	issue	that	has	as	yet	been	solved.	Therefore,	for	
predicting	combined	effects	using	response	addition,	the	following	approach	applies,	
which	assumes	complete	independence	of	responses:

	
E c E ci

i

n

( ) ( ( ))Mix = - -
=∏1 1

1

The	 effect	 at	 the	 total	 concentration	 of	 the	 mixture,	 E(cMix),	 is	 based	 on	 the	
effects	of	the	components	that	they	generate	at	the	concentrations	at	which	they	are		
present	 in	 the	 mixture	 (E(ci)).	 If	 the	 latter	 is	 expressed	 as	 a	 fraction	 of	 the	 total		
mixture	concentration,	it	holds

	
E c E p ci

i

n

( ) ( ( ))Mix Mix= - - ×
=∏1 1

1

This	 allows	 the	calculation	of	 an	effect	 expected	according	 to	 the	concept	of	
response	addition	for	any	concentration	of	the	mixture.	Again,	the	estimated	indi-
vidual	effect	may	be	 taken	 from	a	concentration-response	 relationship	derived	on	
the	basis	of	dose–response	observations.	It	has	to	be	noted	that,	in	mixtures	of	many	
substances,	the	effects	to	be	estimated	for	the	individual	contributors	become	rather	
small;	 therefore,	a	high-quality	estimation	of	 the	concentration	 response,	particu-
larly	in	the	low	effect	region,	is	needed.	In	such	cases,	it	might	be	useful	to	consider	
models	other	than	the	standard	probit	or	logit	functions	for	description	of	the	data.

An	example	of	this	type	of	calculation	is	given	in	Box	5.1.

5.5.3	 Protocol	for	mixed-model	Prediction

As	can	be	deduced	from	the	review	in	Section	5.3.1,	most	studies	on	mixture	toxic-
ity	have	been	conducted	on	single	species	exposed	to	binary	mixtures.	In	the	case	
of	studies	with	more	complex	mixtures,	generally,	either	the	toxicants	have	all	been	
selected	to	operate	by	the	same	mode	of	action,	or	they	have	all	been	selected	to	
represent	different	modes	of	action.	In	the	complex	situation	of	a	multiple	contami-
nated	environment,	it	is	likely	that	the	biota	are	exposed	to	a	mixture	where	several	
modes	 of	 action	 (some	 similar,	 some	 dissimilar)	 are	 represented	 by	 a	 variety	 of	
toxicants	(Teuschler	et	al.	2004;	Chapin	2004).	Predicting	the	toxicity	of	a	complex	
mixture	of	 toxicants	could	build	on	observations	that	both	concentration	addition	
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and	response	addition	could	be	useful	to	predict	the	overall	response,	depending	on	
the	assumed	mode	of	action	of	the	mixture	constituents	(Altenburger	et	al.	2000).		
The	literature	now	provides	methods	to	predict	the	combined	toxicity	of	such	mix-
tures	(Posthuma	et	al.	2002a;	Altenburger	et	al.	2004,	2005;	De	Zwart	and	Posthuma	
2005).

A	proposed	stepwise	protocol	for	calculating	an	expectation	for	the	combined	
effect	of	a	mixture	with	components	that	act	similar	and	groups	or	components	that	
act	dissimilar	is	presented	in	Figure	5.1.	In	the	first	step,	evaluation	of	the	concen-
tration	addition	responses	to	individual	modes	of	action	is	required.	This	calcula-
tion	needs	to	be	performed	for	a	dilution	series,	which	can	subsequently	be	fitted	
to	an	expected	concentration	 response	 function	 for	 the	groups	of	 similarly	acting	
compounds.	 In	 the	 third	 step,	 the	 protocol	 requires	 evaluation	 of	 the	 response-	
additive	effect	of	different	modes	of	action.	In	the	mixed-model	case,	the	protocols	
for	concentration	addition	are	applied	within	groups	of	compounds	 that	share	 the	
same	mode	of	action,	and	response	addition	is	applied	across	these	groups.

The	proposed	protocol	is	a	logical	extension	of	the	evaluation	scheme	provided	
by	 Plackett	 and	 Hewlett	 (1952)	 for	 the	 problem	 of	 predicting	 effects	 of	 complex		
mixtures	of	known	composition.	However,	there	are	as	yet	only	few	data	available	to	
verify	its	predictive	capacity	(Altenburger	et	al.	2005).	Also,	ecotoxicity	databases	
usually	do	not	contain	the	full	concentration	effect	data,	which	means	that	reevalua-
tion	of	existing	studies	will	be	laborious.

Box	5.1	gives	examples	of	single-species	mixture	effect	calculations	for	different	
tiers	of	risk	assessment.

Substance 1

Substance 2

Substance 3

Substance 4

Substance 5

Substance 6

Substance 7

Substance 8

CA
Prediction

CA
Prediction

CA
Prediction

RA
Prediction

Prediction

FIGure	5.1	 Mixed-model	mixture	risk	assessment	approach.	Note:	This	illustrates	the	cal-
culation	of	steps	for	combined	effects	of	mixtures	with	similarly	(e.g.,	Substances	1	to	3)	and	
dissimilarly	(e.g.,	Substances	1	to	3	versus	Substances	6	to	8)	acting	components.
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5.5.4	 interactive	Joint	toxicity

Recently,	some	models	have	been	derived	to	analyze	the	occurrence	of	interactive	
joint	action	in	binary	single-species	toxicity	experiments	(Jonker	2003).	Such	detailed	
analysis	models	are	well	equipped	to	serve	as	null	models	for	a	precision	analysis	of	
experimental	data,	next	to	the	generalized	use	of	concentration	addition	and	response	
addition	as	alternative	null	models.	However,	 in	our	opinion	 these	models	are	not	
applicable	to	quantitatively	predict	the	combined	toxicity	of	mixtures	with	a	com-
plexity	that	is	prevalent	in	a	contaminated	environment,	because	the	parameters	of	
such	models	are	typically	not	known.	Recently	a	hazard	index	(Hertzberg	and	Teus-
chler	2002)	was	developed	for	human	risk	assessment	for	exposure	to	multiple	chem-
icals.	Based	on	a	weight-of-evidence	approach,	this	index	can	be	equipped	with	an	
option	to	adjust	the	index	value	for	possible	interactions	between	toxicants.	It	seems	
plausible	that	a	comparable	kind	of	technique	could	be	applied	in	ecotoxicological	
risk	assessments	of	mixtures	for	single	species.	However,	at	present,	the	widespread	
application	of	this	approach	is	prevented	by	lack	of	available	information.

5.6	 asseMblaGe-level	MIxture	extrapolatIon

Experimental	 data	 or	 field	 observations	 on	 mixture	 toxicity	 and	 the	 responses	 in	
species	assemblages	are	rarely	available,	with	some	exceptions	(Korthals	et	al.	2000;	
Backhaus	 et	 al.	 2004;	 Arrhenius	 et	 al.	 2004).	 Nonetheless,	 risk	 assessment	 and		
legislation	often	focus	on	the	protection	of	community-level	endpoints	in	both	pro-
spective	and	retrospective	risk	assessments.

For	addressing	multispecies	risk	of	mixture	toxicity,	we	propose	the	following	
same	procedure	that	is	followed	in	general	mixture	studies	in	single-species	ecotoxi-
cology.	That	is,	one	must	consider	exposure,	look	at	exposed	species	groups	when	
necessary	in	view	of	the	assessment	endpoints,	consider	the	mode	of	action	of	the	
components,	and	apply	either	of	the	sets	of	models	based	on	this	information.	The	
practical	protocols	for	mixture	risk	assessment	that	stem	from	this	choice	are	worked	
out	and	discussed	in	the	section	below.

5.6.1	 sPecies	sensitivity	distributions	(ssds)	and	mixture		
extraPolation

5.6.1.1	 ssds	and	the	Meaning	of	mspaF

Species	 sensitivity	 distributions	 (SSDs)	 are	 used	 for	 both	 prospective	 and		
retrospective	risk	assessments	(Posthuma	et	al.	2002b).	In	prospective	risk	assess-
ments,	the	concept	is	used	to	derive	hazardous	concentrations	(e.g.,	HC5),	which	
are	used	to	derive	environmental	quality	criteria.	In	retrospective	risk	assessments,	
the	SSD	approach	is	used	to	determine	the	local	“toxic	pressure”	in	terms	of	the	
potentially	affected	fraction	(PAF)	of	species	for	each	compound	separately.	Sub-
sequently	the	multisubstance	(ms)PAF,	or	optionally	the	combi-PAF,	for	the	local	
mixture	can	be	calculated.	Originally,	the	combi-PAF	concept	was	developed	by	
Hamers	et	al.	(1996)	and	assumes	that	only	compounds	exerting	narcotic	effects	
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are	addressed	by	concentration	addition,	whereas	all	other	compounds	are	handled	
by	response	addition	(mixed-model	approach).

Subsequently,	the	msPAF	was	introduced	by	Posthuma	and	Traas	and	coworkers	
(Traas	 et	 al.	 2002;	 Posthuma	 et	 al.	 2002a),	 and	 also	 applies	 the	 mixed-model	
approach,	but	in	this	case	all	compounds	that	share	the	same	mode	of	action	(not	
necessarily	narcotic	effects	only)	are	grouped	and	addressed	(within	such	groups)	by	
concentration	addition.	Thereafter,	response	addition	is	used	to	aggregate	over	the	
numbers	obtained.	In	this	case,	the	PAF	can	be	estimated	not	only	from	an	SSD	for	
all	tested	species	but	also	for	subgroups	of	species	that	are	sensitive	to	a	particular	
class	of	compounds	(e.g.,	insects	are	sensitive	for	insecticides,	and	the	SSD	is	con-
structed	from	insect	data	only;	see	Posthuma	et	al.	2002a).

The	meaning	of	 the	“toxic	pressure”	of	an	environmental	compartment	 to	 the	
exposed	species	assemblage,	as	quantified	by	PAF,	combi-PAF,	and	msPAF,	is	best	
explained	 via	 a	 hypothetical	 experiment.	 Consider	 a	 contaminated	 site	 where	 the	
PAF	is	estimated	as	25%	(with	a	95%	confidence	interval	[CI]	of	20%	to	30%),	based	
on	an	SSD	constructed	from	EC50s.	This	PAF	value	means	that	exposing	a	randomly	
selected	subset	of	the	tested	species	would	induce	50%	or	more	effect	to	25%	(CI	
20%	to	30%)	of	those	species.	Expressed	alternatively,	the	probability	of	effects	for	
a	randomly	chosen	species	(PES)	from	the	population	would	be	25%	(20%	to	30%).	
Evidently,	 the	 toxic	pressure	 that	 is	 imposed	by	the	environment	 to	any	randomly	
chosen	subset	of	the	set	of	tested	species	would	be	interpreted	as	clearly	different	
when	 the	PAF	for	a	 set	of	 sites	 ranges	between	 (for	example)	5%	and	85%.	This	
range	is	interpreted	as	a	low	versus	a	high	probability	of	impacts	on	any	species	at	
these	2	sites.	Evidently,	the	ecological	“reality”	of	PAF	estimates	improves	when	the	
tested	species	are	representative	for	the	local	community.

Thus,	although	the	PAF	is	a	statistical	parameter	summarizing	a	characteristic	
of	the	environment	rather	than	a	parameter	with	an	ecological	meaning	per	se,	the	
relative	rating	of	sites,	affected	species	groups,	and	compounds	is	nonetheless	fea-
sible	and	can	provide	meaningful	information	for	decision	making.

5.6.1.2	 protocol

The	risk	of	exposure	to	individual	chemicals	as	calculated	using	the	SSD	method	is	
based	on	the	same	mathematical	principles	used	in	the	derivation	of	concentration–
response	 curves	 in	 single-species	 toxicity	 evaluations.	 As	 for	 individual	 species,	
both	the	concentration	addition	and	response	addition	models	can	conceptually	be	
applied	in	ecological	risk	assessment	for	species	assemblages	exposed	to	mixtures	
of	 toxicants,	which	are	now	being	formulated	probabilistically	(Traas	et	al.	2002;	
Posthuma	et	al.	2002a;	De	Zwart	and	Posthuma	2005).

The	protocols	to	aggregate	compound-specific	PAF	values	to	a	single	risk	esti-
mate	for	a	mixture	of	compounds	are	derived	from	common	toxicological	theories	
on	joint	effects	of	compounds.	As	already	proposed	by	van	Straalen	and	Bergema	
(1995),	these	protocols	may	be	applied	after	corrections	for	differences	in	bioavail-
ability	 among	 test	 media	 and	 the	 actual	 field	 conditions	 have	 been	 made,	 if	 the	
necessary	information	is	available.	This	adaptation	to	reflect	actual	exposure	is	con-
ceptually	motivated	by	the	common	theory	of	molecule–receptor	interactions,	which	
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is	founded	on	the	principle	that	the	concentrations	at	the	target	sites	of	action	should	
be	addressed	rather	than	external	concentrations	(Ashford	1981).	This	adaptation	is	
further	numerically	motivated	by	observations	that	matrix	interactions	cause	major	
differences	 in	 availability	 between	 substrates	 (Chapter	 2).	 Based	 on	 the	 evidence	
obtained	from	the	single-species	studies,	the	following	protocols	are	proposed	for	
the	assessment	of	risks	for	species	assemblages	exposed	to	mixtures.

5.6.1.3	 data	sources	for	ssd	Construction

An	analysis	of	the	assessment	question	should	lead	to	the	selection	of	the	assessment	
approach	in	which	the	user	chooses	between	single-compound	PAF,	combi-PAF,	or	
msPAF	approaches	and	in	which	(optionally)	sensitive	species	groups	are	identified.	
In	either	case,	data	are	needed	to	construct	the	SSDs.	Data	can	be	obtained	from	the	
USEPA’s	ECOTOX	database	(USEPA	2001)	and	the	RIVM	e-toxBase	(Wintersen		
et	al.	2004).	The	RIVM	e-toxBase	contains	specific	information	on	mode	of	action	of	
compounds	for	specific	organisms	and	also	allows	the	user	to	select	species	groups	
on	the	basis	of	taxonomic	relationships.	For	example,	the	selection	of	EC50	data	for	a	
compound	can	be	made	by	focusing	on	a	group	of	organisms	such	as	“all	insects”	or	
“all	crustaceans.” The	selected	data	are	then	used	to	construct	SSDs	for	the	separate	
compounds	and/or	for	the	separate	species	groups.	Software	for	SSD	calculations	is	
provided	by,	for	example,	van	Vlaardingen	et	al.	(2004).

5.6.1.4	 basics	of	Concentration	addition	extrapolation

At	the	species	level,	the	TU	approach	—	a	point-estimate	approach	—	has	been	used	
to	express	the	toxicity	of	one	compound	as	a	fraction	of	another	with	the	same	mode	of	
action.	Transfer	of	the	TU	principle	to	species	sensitivity	distributions	(SSDs),	by	scal-
ing	compounds	in	a	similar	way,	results	in	hazard	units	(HUs).	The	scaling	is	done	on	
point	estimates	taken	from	an	SSD,	such	as	the	HC5	or	the	HC50,	or	on	any	other	point	
estimate	that	is	considered	relevant	for	the	assessment	(such	as	legal	quality	criteria).

Alternatively,	when	using	a	whole-curve	approach	for	compounds	with	allegedly	
the	same	mode	of	action,	a	single	SSDs	can	be	derived	using	(relative)	concentration	
addition	quantified	by	hazard	units.	This	SSD	represents	 the	separate	compounds	
and	any	mixture	of	these	compounds.	It	is	assumed	that	the	mode	of	action	in	this	
case	applies	to	all	species	from	which	the	SSD	is	derived.	The	msPAF	calculations	
for	 concentration	 addition	 (msPAFCA)	 are	 performed	 according	 to	 the	 protocols	
given	in	Section	5.6.2	(below).	These	protocols	require	toxicity	data	and	SSDs	for	all	
components	of	the	concentration-additive	mixture	for	a	variety	of	species.

5.6.1.5	 basics	of	response	addition	extrapolation

Multiple-species	risk	for	independent	combined	effects	in	terms	of	the	potentially	
affected	fraction	of	species	can	be	assessed	using	models	that	are	essentially	the	same	
as	for	the	prediction	of	response-additive	effects	in	single	species.	The	underlying	
assumption	in	the	application	of	a	response	addition	model	for	compounds	or	groups	
of	compounds	with	different	modes	of	action	is	that	correlation	of	species	sensitivi-
ties	to	the	different	constituents	of	the	mixture	is	again	considered	absent.	The	calculation	
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of	the	msPAF	for	independent	joint	action	or	response	addition	(msPAFRA)	is	per-
formed	according	to	the	protocol	described	in	Section	5.6.3	(below).

5.6.2	 Protocols	for	calculation	of	concentration	addition

Two	protocols	are	presented,	the	first	for	baseline	toxicity,	and	the	second	for	groups	
of	compounds	with	the	same	assumed	primary	mode	of	action.	The	protocols	are	
more	broadly	 explained	 in	De	Zwart	 and	Posthuma	 (2005).	Example	 spreadsheet	
calculations	can	be	found	in	Box	5.2.

box	5.2	 Example	of	a	spreadsheet	calculation	of	toxic	risk	(msPAF)	for	a	species	assem-
blage	in	an	imaginary	aquatic	pond	as	the	result	of	exposure	to	a	mixture	of	toxicants	with	
diverse	and	species-dependent	toxic	modes	of	action.	Note:	Overall	risk	values	(msPAF)	per	
species	group	were	 calculated	 assuming	 concentration	 addition	within	 common	modes	of	
action	and	response	addition	between	modes	of	action.	This	example	only	serves	to	demon-
strate	the	method	of	calculation.	The	SSD	information	on	the	mixture	constituents	as	well	as	
the	total	and	bioeffective	concentrations	in	pond	water	were	randomly	selected	by	realistic	
expert	judgement.	The	gray	cells	contain	examples	of	the	formulas	applied.

Column B Column C Column D Column E Column F Column G Column H Column I
Row 3 Taxon Imaginary aquatic SSD information Anthracene Atrazine Benzene Cadmium Malathion Toluene
Row 4 Algae Number of species 4.00 29.00 5.00 4.00 4.00 5.00
Row 5 Average of 10log acute EC50 (mg/L) -1.13 -0.62 2.47 -0.51 1.12 2.05
Row 6 Standard deviation of 10log acute EC50 1.06 0.64 0.53 0.71 0.63 0.60
Row 7 Assumed Toxic Mode of Action NPN PSI NPN CA NPN NPN
Row 8 Crustacea Number of species 3.00 9.00 8.00 12.00 29.00 6.00
Row 9 Average of 10log acute EC50 (mg/L) -1.11 0.80 2.02 -0.91 -0.90 1.81

Row 10 Standard deviation of 10log acute EC50 1.07 0.53 0.53 0.80 1.75 0.61
Row 11 Assumed Toxic Mode of Action NPN NPN NPN CA AChE NPN
Row 12 Insect larvae Number of species 4.00 3.00 7.00 12.00 65.00 3.00
Row 13 Average of 10log acute EC50 (mg/L) -1.27 0.44 2.07 0.99 -1.31 2.04
Row 14 Standard deviation of 10log acute EC50 0.73 0.51 0.52 0.83 0.75 0.82
Row 15 Assumed Toxic Mode of Action NPN NPN NPN CA AChE NPN
Row 16 Fish Number of species 3.00 19.00 18.00 18.00 71.00 13.00
Row 17 Average of 10log acute EC50 (mg/L) -1.46 1.19 1.52 -0.02 0.15 1.80
Row 18 Standard deviation of 10log acute EC50 0.90 0.68 0.52 0.98 0.82 0.58
Row 19 Assumed Toxic Mode of Action NPN NPN NPN CA AChE NPN
Row 20
Row 21
Row 22 Assumed Toxic Mode of Action Abbreviation
Row 23 Non Polar Narcosis NPN
Row 24 PhotoSynthesis Inhibition PSI
Row 25 Cadmium Action CA
Row 26 Acethyl Cholinesterase Inhibition AChE
Row 27
Row 28
Row 29 Imaginary concentration information Anthracene Atrazine Benzene Cadmium Malathion Toluene
Row 30 Total concentration in pond water (mg/L) 0.012 0.3 0.05 0.012 0.005 0.005
Row 31 pH of pond water 5.40 5.40 5.40 5.40 5.40 5.40
Row 32 Dissolved Organic Concentration in pond water (mg/L) 5.00 5.00 5.00 5.00 5.00 5.00
Row 33 Bioeffective concentration in mg/L (See Chapter 2) 0.009 0.011 0.045 0.009 0.004 0.004
Row 34
Row 35
Row 36 Taxon Calculated Hazard Units Anthracene Atrazine Benzene Cadmium Malathion Toluene
Row 37 Algae HU 0.12141 0.04608 0.00015 0.02912 0.00030 0.00004
Row 38 Example formulae D$33/10^D5 E$33/10^E5 F$33/10^F5 G$33/10^G5 H$33/10^H5 I$33/10^I5
Row 39 Assumed Toxic Mode of Action NPN PSI NPN CA NPN NPN
Row 40 Crustacea HU 0.11711 0.00176 0.00043 0.07293 0.03187 0.00006
Row 41 Assumed Toxic Mode of Action NPN NPN NPN CA AChE NPN
Row 42 Insect larvae HU 0.16592 0.00399 0.00038 0.00091 0.08078 0.00004
Row 43 Assumed Toxic Mode of Action NPN NPN NPN CA AChE NPN
Row 44 Fish HU 0.25733 0.00072 0.00136 0.00944 0.00280 0.00006
Row 45
Row 46

Assumed Toxic Mode of Action NPN NPN NPN CA AChE NPN

Row 47
Row 48 Taxon Assumed Toxic Mode of Action Sum TU Avg StDev
Row 49 Algae NPN 0.12190 0.71
Row 50 Example formulae D37+F37+H37+I37 AVERAGE(D6,F6,H6,I6)
Row 51 PSI 0.04608 0.64
Row 52 CA 0.02912 0.71
Row 53 Crustacea NPN 0.11935 0.68
Row 54 AChE 0.03187 1.75
Row 55 CA 0.07293 0.80
Row 56 Insect larvae NPN 0.17032 0.69
Row 57 AChE 0.08078 0.75
Row 58 CA 0.00091 0.83
Row 59 Fish NPN 0.25947 0.67
Row 60 AChE 0.00280 0.82
Row 61 CA 0.00944 0.98
Row 62
Row 63
Row 64 Taxon msPAF multiple TMoA
Row 65 Algae 0.13
Row 66 Crustacea 0.32
Row 67 Insect larvae 0.19
Row 68 Fish 0.21
Row 69 All Taxa avg 0.21

0.00
0.02

(ms)PAF single TMoA
0.10

0.02
0.02

0.07

NORMDIST(LOG(D49),0,E49,1)

Formula
1-(1-F49)*(1-F51)*(1-F52)

0.09
0.20
0.08
0.13

0.00
0.19

AVERAGE(C65:C68)

1-(1-F53)*(1-F54)*(1-F55)
1-(1-F56)*(1-F57)*(1-F58)
1-(1-F59)*(1-F60)*(1-F61)
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5.6.2.1	 Method	a:	unspecific	Modes	of	action	(baseline	toxicity)

Baseline	toxicity	or	narcosis	is	considered	to	be	associated	with processes	equally	
affecting	the	functioning	of	cell	membranes	in	all	types	of	organisms.	Full	baseline	
toxicity	occurs	in	mixtures	of	organic	compounds	that	exhibit	only	baseline	toxicity,	
which	pertain	to	about	60%	of	all	organic	industrial	compounds	(Warne	and	Hawker	
1995).	An	 earlier	 report	 from	 Bol	 et	 al.	 (1993)	 allocated	 about	 30%	 of	 classified	
OECD	high-production-volume	chemicals	(HPVCs)	into	the	group	of	inert	or	less	
inert	chemicals,	for	which	toxicity	is	assumed	to	be	only	baseline.	According	to	the	
funnel	hypothesis	(Warne	and	Hawker	1995),	responses	near	baseline	toxicity	will	
also	occur	in	mixtures	of	all	organic	compounds	with	extremely	low	concentrations.

5.6.2.1.1 Step 1
Toxicity	data	with	 the	same	 type	of	evaluation	criterion,	either	chronic	NOEC	or	
acute	L(E)C50	values,	or	 any	ECx,	 are	obtained	 from	an	appropriate	data	 set	 for	
each	compound.	Depending	on	data	availability,	the	sets	of	species	included	in	the	
SSDs	for	different	 toxicants	may	or	may	not	be	matched.	For	various	assessment	
problems,	Forbes	and	Calow	(2002)	argued	that	care	should	be	taken	to	include	spe-
cies	of	different	trophic	levels	and	to	include	endpoints	with	comparable	relevance	
to	population	success.	For	some	toxicants,	 the	toxicity	data	may	be	limited	to	the	
set	of	species	prescribed	 in	standard	 testing	protocols	 (e.g.,	 for	 the	OECD:	algae,	
crustaceans	[Daphnia],	and	fish).	The	set	of	toxicity	data	may	be	extended	by	apply-
ing	relative	methods	to	extrapolate	unknown	species	sensitivity	from	known	species	
sensitivity	 (von	der	Ohe	 and	Liess	 2004).	Usually,	 the	 existing	databases	 contain	
mainly	classical	criteria,	such	as	chronic	NOEC	and	acute	EC50	or	LC50	values,	not	
ECx	or	raw	concentration	effect	data.	In	general,	SSDs	for	deriving	environmental	
quality	criteria	are	based	on	chronic	NOEC	data	that	are	relatively	scarce	compared	
to	 acute	data.	Forbes	 and	Calow	 (2002)	 argued	 therefore	 that	 if	 chronic	data	 are	
used,	 the	resulting	SSDs	are	likely	less	representative	of	 the	sensitivity	of	natural	
species	assemblages.	Further,	NOEC	exceedance	does	not	give	a	clear	indication	of	
the	type	and	magnitude	of	effects	to	be	expected.	Whether	the	chronic	NOEC	is	the	
appropriate	criterion	to	use	in	ecological	risk	calculations	depends	on	the	assessment	
problem	itself.	An	influential	factor	for	the	choice	of	acute	or	chronic	criteria	is	the	
level	of	contamination	that	is	to	be	assessed.	If	the	contamination	level	is	very	low,	
NOECs	might	be	good	for	ranking	—	though	the	meaning	of	msPAF	as	output	is	
relatively	unclear.	If	it	is	high,	as	in	the	case	of	spills	or	highly	contaminated	sites,	
EC50	values	might	be	more	discriminative	for	ranking.

5.6.2.1.2 Step 2
Toxicity	data	are	scaled	into	dimensionless	hazard	units,	preferably	based	on	bio-
available	 concentrations.	A	hazard	unit	 is	 defined	as	 the	 concentration	where	 the	
effect	 criterion	 (e.g.,	 NOEC)	 is	 exceeded	 for	 50%	 of	 all	 species	 tested,	 that	 is,	
the	median	of	 the	 toxicity	data	of	 the	whole	data	set,	 HU NOEC / NOECi

j
i
j

i= ,	 for	
i	=	1	to	n	compounds	and	for	 j	=	1	to	m	species,	with	 HUi

j 	=	the	scaled	NOECs	
in	dimensionless	hazard	units	(mg.L–1	/	mg.L–1),	and	 NOECi 	=	the	median	NOEC	
for	substance	i.	The	SSDs	for	each	compound	are	obtained	by	fitting	a	log-logistic	
or	 log-normal	 model	 to	 the	 log	 toxicity	 data	 in	 hazard	 units.	 For	 the	 log-normal	
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procedure,	the	SSDs	are	fully	characterized	by	the	slope	of	the	cumulative	distribu-
tion	function	that	equals	the	standard	deviation	(s)	of	 log( )HUi

j ;	the	median	of	the	
distributions	is	zero	by	definition.	If	a	log-logistic	procedure	is	applied,	the	slope	of	
the	curve	(b)	is	given	by	 β σ/π= ×3 .

5.6.2.1.3 Step 3
For	each	compound	present	in	an	environmental	sample,	the	bioavailable	exposure	
concentration	is	again	recalculated	to	hazard	units,	 HU Bioavailable concentrationi i=
/NOECi.	The	HU	values	are	added	 (non-log	 transformed)	 for	 substances	with	corre-
sponding	modes	of	action	and	corresponding	slopes,	 HU HUTmoA = ∑i i.	The	 log-nor-
mal	 concentration	 addition	 model	 gives	 the	 toxic	 risk	 for	 mixture	 constituents	 with	
the	 same	 mode	 of	 action	 by	 applying	 the	 Microsoft	 Excel	 function	 NORMDIST:	
msPAF NORMDIST HU , , ,CA,TMoA TMoA= ∑(log( ) )0 1σ .	Using	the	log-logistic	concentra-
tion	addition	model,	toxic	risk	for	mixture	constituents	with	the	same	mode	of	action	can	
be	calculated	by

	
msPAFCA,TMoA

HUTmoA
Tmoa= +( )- ∑

1 e
log( )
β

5.6.2.2	 Method	b:	specific	Modes	of	action

For	compounds	with	a	specific	mode	of	action,	 the	situation	is	more	complicated.	
Some	 species	 experience	 the	 same	 type	 of	 effect	 due	 to	 specific	 interactions	 at		
targets	sites	that	only	occur	in	a	fraction	of	the	species,	and	other	species	only	expe-
rience	narcosis,	due	to	a	lack	of	specific	target	sites	for	the	compound.	This	holds,	
for	example,	 for	organophosphate	(OP)	biocides.	Each	OP	biocide	acts	by	acetyl-	
cholinesterase	inhibition,	and	thus	all	compounds	in	this	group	can	be	seen	as	dilu-
tions	of	each	other	for	those	organisms	that	have	a	receptor	for	this	compound	(e.g.,	
insect	 larvae	 and	 crustaceans).	 In	 such	 cases,	 concentration	 addition	 modeling	
(Method	A)	should	be	applied	for	the	specifically	acting	OP	biocides,	with	an	SSD	
for	sensitive	species.	However,	species	or	groups	of	species	that	lack	the	target	recep-
tor	are	not	sensitive	for	OP	exposure	(e.g.,	bacteria	and	algae),	and	will	only	experi-
ence	narcotic	baseline	toxicity,	or	a	secondary	level	of	toxicity	(Solomon	and	Takacs	
2002).	This	means	that	concentration	addition	for	a	specific	mode	of	action	is	only	
appropriate	within	a	single	SSD,	if	the	SSD	consists	of	species	having	the	specific	
receptor.	For	the	organisms	without	the	receptor,	it	may	be	more	useful	to	consider	
narcotic	or	nonspecific	concentration	addition	according	to	Method	A.	This	requires	
splitting	SSD	curves	according	to	groups	of	species	with	different	types	of	receptors,	
as	proposed	by	Posthuma	et	al.	(2002a).

5.6.3	 Protocols	for	calculation	of	resPonse	addition

The	msPAFCA,TMoA	values	for	the	different	modes	of	action	in	the	mixture	are	cal-
culated	according	to	the	procedures	in	Section	5.6.2	describing	the	multiple-species	
risk	model	for	concentration	addition,	even	if	a	mode	of	action	is	only	represented	
by	a	single	substance.	The	combination	effect	for	compounds	with	different	modes	

73907_C005.indd   162 4/24/08   11:30:58 AM



Mixture Extrapolation Approaches 163

of	 action	 is	 again	 calculated	 analogous	 to	 the	 probability	 of	 2	 nonexcluding	 pro-
cesses.	For	the	present	use	in	SSDs,	it	is	assumed	that	sensitivities	are	uncorrelated	
in	response	addition.	For	more	than	2	chemicals	or	groups	of	chemicals	with	differ-
ent	modes	of	action,	this	leads	to	 msPAF msPAFRA TMoA TMoA= - -1 1Π ( ) ,	for	mode	of	
action	=	1	to	n	substances	or	modes	of	action,	with	msPAFRA	representing	the	multisub-
stance	potentially	affected	fraction	of	various	(groups	of)	compounds	calculated	by	
response	addition.	Example	spreadsheet	calculations	can	be	found	in	Box	5.2.

5.6.4	 mixed	models	allowing	sPecies-dePendent	modes	of	action

Various	msPAF	protocols	for	complex,	known	mixtures	can	be	conceptualized	on	
the	basis	of	the	protocols	of	Section	5.5.

Mixed	model	with	concentration	addition	only	for	narcotics: The	msPAF	
protocol	originally	proposed	by	Hamers	et	al.	(1996)	applied	concentration	
addition	only	to	compounds	with	a	narcotic	mode	of	action,	whereas	all	
other	compounds	were	treated	following	the	response	addition	approach.
Mixed	model	with	concentration	addition	 for	 all	 compounds	 that	 share	
1	 mode	 of	 action: In	 current	 practice	 (e.g.,	 Traas	 et	 al.	 2002;	 Mulder	
et	al.	2004;	De	Zwart	and	Posthuma	2005),	concentration	addition	is	also	
applied	 to	mixtures	of	 nonnarcotic	 compounds	with	 the	 same	mode	of	
action,	such	as	photosynthesis	inhibition	or	acetyl-cholinesterase	inhibition.	
The	protocol	is	shown	in	Figure	5.2.
Mixed	model	with	assignment	of	exposed	subgroups:	When	the	mixture	
contains	compounds	with	highly	specific	modes	of	action	that	also	differ	
for	the	different	groups	of	species,	it	is	possible	to	generate	mixed-model	
(concentration	addition	and	response	addition)	msPAF	values	(again)	for	
the	individual	groups	of	species	—	provided	that	sufficient	toxicity	data	
are	 available.	 In	 this	 approach,	 a	 single	 assessment	 for	 a	 contaminated	
ecosystem	yields	various	msPAF	values	 for	 different	 groups	of	 species	
(Box	5.2)	gives	a	hypothetical	mixed-model	example	calculation	for	the	
msPAF	of	a	mixture	containing	different	modes	of	action	for	different	spe-
cies	groups,	where	the	species	groups	have	equal	weight	in	the	analysis.

As	a	 last	step	 in	 the	aggregation	process,	an	overall	msPAF	can	be	calculated	by	
averaging	over	the	msPAFs	generated	for	different	groups	of	species.	This	average	
msPAF	may	be	weighted,	amongst	others,	according	to	the	relative	representation	
of	groups	of	species	in	the	field	(Posthuma	et	al.	2002a;	Forbes	and	Calow	2002).		
The	weighting	may	also	be	motivated	in	different	ways,	for	example,	numerically	
based,	biomass	based,	or	trophic	position	based.	Nonweighting	relates	to	the	fact	that	
the	SSD	approach	handles	species	as	equal	entities	(numbers),	with	each	given	the	
same	weight.	Nonweighting	implies	that	each	species	group	is	considered	to	be	equal	
in	(ecological)	importance.	Weighting	can	be	preferred	when	some	species	groups	
are	considered	more	important	than	others,	such	as	in	the	case	of	a	subgroup	con-
taining	so-called	“keystone	species”	or	“ecosystem	engineers.”	The	weighting	itself	
may	be	helpful	to	tailor	the	basic	(numerical)	outcome	to	the	problem	under	investi-
gation.	As	yet,	no	universally	applicable	and	validated	method	has	been	derived.

•

•

•
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5.7	 MIxtures	oF	undeFIned	CoMponents

5.7.1	 overview	and	tyPology

In	the	case	of	complex	mixtures	of	unknown	composition,	the	application	of	extrap-
olation	techniques	using	the	approaches	described	in	Sections	5.5	and	5.6	is	possible	
only	after	the	components	and	other	stressors	have	been	identified.	Thus,	the	main	
issue	when	starting	with	an	ill-defined	mixture,	or	a	mixture	of	completely	unknown	
toxicants,	is	to	isolate	the	agents	or	factors	that	cause	biological	stress.

There	are	various	types	of	issues	for	unknown	mixtures.	An	assessor	might	first	
wish	to	know	that	effects	do	occur.	An	example	of	an	approach	to	address	such	a	
problem	is	the	internationally	common	whole-effluent	testing	approaches	(Chapman	
2000)	or	the	Dutch	pT-monitoring	approach	(De	Zwart	and	Sterkenburg	2002),	both	
of	which	attempt	to	quantify	impact.

Next,	an	assessor	may	wish	 to	know	the	 identity	of	 the	most	 influential	com-
pounds	within	the	effluent	or	mixture,	or	the	possible	role	of	mixtures	when	a	set	of	
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FIGure	5.2	 Schematized	presentation	of	 the	mixed-model	approach	for	assemblage-level	
extrapolation.	Note:	A	similar	approach	is	followed	for	species-level	mixed-model	extrapo-
lation.	The	 system	can	be	 simplified	by	assuming	 response	addition	 for	 all	 extrapolations	
except	the	baseline	toxicity	assessment	(approach	of	Hamers	et	al.	[1996],	yielding	combi-
PAF).	The	system	can	also	be	more	complex	when	predictions	for	compound	class	effects	are	
made	for	different	species	groups.
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stress	factors	is	present.	If	the	concentrations	of	a	set	of	toxic	compounds	are	estab-
lished,	the	mixture	extrapolation	techniques	introduced	in	the	previous	sections	can	
be	applied,	but	the	extrapolation	in	such	cases	represents	a	retrospective	diagnostic	
approach.	That	is,	extrapolation	is	undertaken	to	improve	understanding	of	the	effect	
causation	as	much	as	possible,	to	be	able	to	make	informed	risk	management	deci-
sions	such	as	defining	remediation	priorities.	The	assessor	follows	a	causal–analytical	
approach	to	decide	on	the	most	effective	risk	management	option.	By	chemical	and	
physical	 means,	 the	 assessor	 can	 try	 to	 partition	 the	 mixture	 into	 separate	 com-
pounds,	or	groups	of	compounds,	and	test	these	mixtures.

Finally,	extrapolation	of	unknown	mixtures	could	consist	of	 investigations	on	
a	large	number	of	cases	of	environmental	contamination	with	mixtures,	where	an	
investigator	wants	to	predict	the	effects	of	unknown	mixtures	for	nonstudied	sites.

An	important	first	question	for	risk	managers	trying	to	assess	complex	contami-
nated	sites	or	samples	and	the	cumulated	risk	for	target	populations	or	assemblages	
is	whether	 the	mixture	 is	of	a	 stable	composition	 in	 time	 (Vouk	et	al.	1987).	For	
unstable	exposure	situations	such	as	effluents	with	greatly	varying	composition	of	
toxicants,	there	are	currently	no	mixture	extrapolation	techniques	available,	and	thus	
only	 toxicity-monitoring	 techniques	are	suitable.	 In	contrast,	 for	mixtures	of	con-
stant	composition,	as	is	often	found	at	contaminated	soil,	sediment,	or	groundwater	
sites,	mixture	extrapolation	techniques	can	be	applied	in	solving	the	environmental	
problems	after	the	identification	of	major	causative	toxicants.

5.7.2	 diagnosis	and	identification	of	relevant	comPounds

5.7.2.1	 biologically	directed	diagnosis

Biologically	directed	approaches,	which	include	bioindication,	biotesting,	and	bio-
monitoring,	 have	 become	 important	 tools	 used	 to	 measure	 spatial	 and	 temporal	
responses	of	ecological	systems	to	environmental	disturbance	(Markert	et	al.	2003).	
Implicit	in	the	use	of	living	organisms	to	assess	environmental	quality	is	that	they	
integrate	the	effects	of	all	stressors	to	which	they	are	exposed.	Primary	emphasis	
in	biologically	directed	approaches	is	placed	on	the	use	of	living	organisms	as	indi-
cators	of	ecological	condition.	Such	approaches	have	been	particularly	well	devel-
oped	 for	 assessment	 of	 aquatic	 systems	 (Cairns	 and	 van	 der	 Schalie	 1980;	 Suter	
et	al.	1999a;	Barbour	and	Yoder	2000).	This	approach	typically	involves	measuring	
individuals,	populations,	or	communities	and	using	 this	 information	 in	1	or	more	
(multimetric)	indices	of	relative	environmental	quality.	Such	studies	include	compar-
isons	of	community	structure	upstream	and	downstream	of	contaminant	discharges,	
between	reference	and	polluted	sites	(including	the	reference	condition	approach),	
and	along	concentration	gradients	of	an	environmental	stressor.

5.7.2.2	 Causal	emphasis

The	 composition	 of	 complex	 mixtures	 that	 occur	 in	 effluents	 or	 contaminated	
sediments	is	often	unknown.	In	such	cases,	it	 is	difficult	 to	establish	cause–effect		
(concentration–response)	 relationships	 aimed	 at	 identifying	 specific	 contaminants	
to	which	ameliorative	efforts	can	be	applied.	To	identify	specific	contaminants	that	
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are	responsible	for	the	toxicity	observed	in	contaminated	field	samples	containing	
mixtures	of	chemicals,	it	may	be	necessary	to	use	chemical	methods	(fractionation)	
capable	of	separating	the	mixture	constituents.	Two	approaches	that	can	be	applied	
are	toxicity	identification	and	evaluation	(TIE)	and	bioassay-directed	fractionation	
(BDF).	BDF	and	TIE	are	diagnostic	tools	that	use	both	toxicity	testing	and	chemical	
methods	in	an	iterative,	directed	approach	to	arrive	at	the	identification	of	chemi-
cals	in	sediments	or	waters	and	to	link	these	to	effects	determined	in	toxicity	tests	
(Mount	and	Anderson-Carnahan	1989;	Norberg-King	et	al.	1991;	Mount	et	al.	1993;	
Burgess	2000;	Ho	et	al.	1997).	Guidance	has	been	published	on	stressor	identifica-
tion	 techniques	and	approaches	 to	eliminate	noncritical	 stressors	 from	the	matrix	
(USEPA	2000c).

TIE	was	originally	developed	to	identify	chemicals	in	effluents	but	has	since	
been	adapted	for	use	in	sediments	using	pore	water	extracts	and	bulk	sediments	
(Schubauer-Berigan	and	Ankley	1991;	Ankley	and	Schubauer-Berigan	1995;	Doe	
et	al.	2003).	Bioassay-directed	fractionation	is	a	more	directed	form	of	TIE.	BDF	
combines	 toxicity	 tests	with	 fractionation	using	organic	 solvent	 extracts.	Thus,	
BDF	 is	 generally	 limited	 to	 organic	 toxicants	 (Brack	 2003).	 For	 both	 TIE	 and	
BDF,	isolated	chemical	fractions	are	used	in	bioassays	to	determine	the	presence	
and	magnitude	of	 toxicity.	 In	TIE	 for	aquatic	 systems,	common	 test	organisms	
include	Daphnia magna	 and	 Ceriodaphnia dubia.	 In	 BDF	 approaches,	 sample	
volumes	are	frequently	small,	so	toxicity	tests	have	been	developed	using	small	
organisms	with	rapid	life	cycles,	including	bacteria	(e.g.,	Vibrio fischeri),	rotifers,	
and	algae.

Both	approaches	are	most	frequently	applied	at	higher	tiers	of	the	retrospective	
risk	assessment	process	due	 to	 the	cost	and	effort	 that	are	 required	and	 the	more	
mechanistic	nature	of	the	information	they	provide.	For	example,	TIE	and	BDF	have	
been	applied	after	initial	screening	using	whole-effluent	testing	(De	Vlaming	et	al.	
2000).	The	primary	limitations	of	BDFs	and	TIEs	include	insensitivity	to	the	detec-
tion	of	both	 toxicity	and	chemical	 toxicants	due	 to	 the	chosen	nontarget	analysis.	
Therefore,	the	methods	are	typically	applied	at	established	or	suspected	hotspot	con-
taminations.	Recently,	methods	for	the	application	of	in	situ	BDFs	and	TIEs	have	
been	developed	and	have	been	shown	to	be	more	sensitive	than	lab-based	TIEs	at	
detecting	sediment	contamination	from	pore	waters	(Burton	et	al.	2002).	Overall,	
TIE	 and	 BDF	 methods	 offer	 a	 logical	 solution	 for	 relating	 effects	 and	 exposure	
assessments	and	therefore	could	provide	a	more	accurate	and	comprehensive	charac-
terization	of	risk	(Simon	2003;	Brack	2003).	Inherent	to	any	TIE	or	BDF	approach	
is	the	use	of	mixture	extrapolation	techniques,	as	the	relative	roles	of	identified	toxi-
cants	need	to	be	confirmed	regarding	their	contribution	to	the	overall	toxicity	of	the	
original	sample	that	has	to	be	explained	(Grote	et	al.	2005).

The	concept	of	ecological	disturbance	evaluations	(EDEs)	is	another	approach	
to	address	causation.	EDE	is	conceptually	comparable	to	TIE	and	BDF.	As	with	
TIE	 and	 BDF,	 which	 are	 used	 to	 identify	 chemicals	 responsible	 for	 toxicity	 in	
whole	effluents	and	contaminated	sediments,	an	EDE	is	applied	after	an	impact	
has	been	detected	in	a	community.	The	EDE	uses	an	integrated	index	(e.g.,	index	
of	biotic	integrity),	or	other	metric,	allowing	the	researcher	to	extract	information	
that	might	represent	a	response	signature	for	 the	suspected	cause	of	 the	 impact.	
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This	approach	was	applied	by	Fore	 (2003),	who	developed	 impact-specific	mul-
timetric	indices	using	benthic	invertebrates,	which	were	used	to	identify	specific	
causes	of	impacts	due	to	metal	contamination	in	rivers	flowing	through	hard-mining	
areas	in	Colorado.

A	recent	example	of	fish	assemblage	stress	analyses	by	means	of	multivariate	
gradient	analyses	that	involved	the	use	of	local	toxic	stress	quantifications	(msPAFs)	
is	provided	by	De	Zwart	et	al.	(2006).	The	targets	of	this	study	were	both	impact	
quantification	and	the	assignment	of	probable	causation.	A	specific	approach	in	this	
respect	has	been	termed	biological	response	signatures	(BRS)	and	is	based	on	the	
use	of	biological	data	to	discriminate	between	different	stressors	causing	impairment	
(Yoder	and	Rankin	1995;	Simon	2003).	At	present,	assigning	causes	and	sources	of	
impairment	in	biologically	directed	approaches	is	perhaps	best	achieved	by	apply-
ing	a	weight-of-evidence	approach	that	incorporates	information	from	multiple	lines	
of	evidence	drawn	from	response	indicators	such	as	biological	response	signatures	
or	biocriteria.	An	important	component	of	such	studies	is	to	develop	a	conceptual	
model	of	 the	 range	of	stressors	 that	may	be	affecting	various	communities.	Once	
a	decision	has	been	made	using	 the	weight	of	 evidence,	 and	ameliorative	 actions	
have	been	instituted,	biologically	directed	approaches	can	then	be	used	to	monitor	
improvements	in	biological	condition.

5.7.3	 Predictions	of	toxicity	for	unknown	mixtures

In	contrast	to	the	list	of	prediction	methods	that	can	be	constructed	from	the	litera-
ture	on	extrapolation	of	known	mixtures,	there	is	no	specific	technique	that	can	be	
applied	in	practice	as	a	method	for	mixture	extrapolation	for	mixtures	of	unknown	
composition.	Even	if	one	has	data	(e.g.,	from	a	large	series	of	WET	observations	at	
a	certain	location),	the	use	of	any	extrapolation	approach	to	predict	the	toxicity	of	a	
new	WET	test	for	that	location	may	be	inappropriate,	especially	when	the	situation	
of	concern	is	unpredictable.

When	a	problem	is,	however,	relatively	well	known	and	predictable	from	moni-
toring	data	sets	collected	in	the	past,	and	when	risk	managers	have	to	handle	this	
recurring	situation,	mixture	extrapolation	may	be	useful.	Such	a	situation	exists	in	
The	 Netherlands,	 where	 risk	 managers	 have	 to	 make	 decisions	 on	 the	 deposition	
of	 slightly	 contaminated	 sediments	 from	 rural	 areas	 on	 adjacent	 land.	 Ongoing	
research	here	focuses	on	the	categorization	of	sediments	into	3	classes	(Posthuma,	
unpublished	results):	sediments	that	can	always	be	put	on	land	because	mixture	risks	
are	always	acceptable;	sediments	that	can	never	be	deposited	on	land	due	to	persis-
tent,	nonacceptable	risks;	and	sediments	for	which	the	site-specific	risk	is	sometimes	
acceptable	and	sometimes	not.	The	“sometimes”	category	exists	because	the	risks	
that	a	sediment	may	pose	on	a	 local	scale	will	depend	on	various	factors	such	as	
the	propensity	of	the	compounds	to	adsorb	to	local	soils.	The	categories	are	defined	
using	 centiles	 (e.g.,	 the	 95%	 and	 50%	 protection	 levels)	 to	 discriminate	 between	
“always”	and	“sometimes”	and	between	“sometimes”	and	“never,”	respectively.	The	
possible	levels	of	mixture	risks	from	all	possible	combinations	of	compounds	and	
soil	types	(scenarios)	are	calculated	by	means	of	the	mixed-model	approach.	Pattern	
recognition	 statistics	 are	 subsequently	 used	 to	 identify	 the	 proxy	 parameters	 that	
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influence	 risks	most.	Because	of	 this	 latter	 step,	 the	 local	mixtures	 for	which	 the	
risks	eventually	need	to	be	handled	are	“unknown”	(i.e.,	not	precisely	known).	They	
are	represented	by	the	few	selected	proxy	parameters.	For	sediments	with	unknown	
mixtures	(but	known	proxies),	the	msPAF	scenario	values	can	be	used	to	decide	on	
the	categorization	of	a	 sediment	 into	1	of	3	categories	 for	daily	practice	decision	
making.	The	use	of	proxies	introduces	a	new	kind	of	uncertainty	as	the	trade-off	of	
ease	of	use,	but	the	choice	of	regulatory	acceptance	criteria	can	be	made	relatively	
conservative	to	avoid	“false	positives.”	In	short,	a	practical	way	to	predict	risks	of	
imprecisely	defined	mixtures	from	the	risks	of	known	mixtures	(scenarios)	has	been	
developed	to	support	repetitive	risk	management	questions.

5.8	 applICatIons	In	rIsk	ManaGeMent	praCtICes

5.8.1	 overview

Risk	management	problems	for	known	mixtures	have	existed	since	the	beginning	
of	ecotoxicology.	Hence,	various	practical	ways	 to	handle	mixture	problems	have	
been	designed	in	the	past,	and	are	used	in	various	regulations.	This	section	describes	
selected	applications	of	the	various	parameters	(e.g.,	TU	and	SSD)	described	in	the	
previous	sections	in	the	context	of	risk	management.	The	approaches	are	presented	
and	described	(Sections	5.5	and	5.6)	using	a	tiered	approach,	as	shown	in	Table	5.4.

5.8.2	 aPPlications	of	sPecies-level	mixture	extraPolation

5.8.2.1	 tier-0:	no	extrapolation

The	 absence	 of	 mixture	 extrapolation	 is	 common.	 In	 many	 studies,	 the	 issue	 of	
possible	mixture	effects	is	mentioned,	but	not	addressed.	In	various	cases,	mixture	
assessments	are	only	partial,	for	a	selected	subset	of	compounds	with	assumed	simi-
lar	modes	of	action.	For	other	compounds	with	different	modes	of	action,	no	mixture	
assessment	is	made.

5.8.2.2	 tier-1:	application	of	substance	Group	
Criteria	or	additional	safety	Factors

Various	approaches	are	used	for	which	the	occurrence	of	mixture	exposures	has	led	
to	the	formulation	of	regulatory	standards	for	whole	groups	of	chemicals	of	similar	
structure	or	use	(e.g.,	ground-	and	drinking-water	quality	standards	in	the	EU).	In	
The	Netherlands,	substance	groups	for	which	group	criteria	are	used	are	given	by	
Traas	(2003).	Some	environmental	quality	criteria	for	individual	compounds,	such	
as	the	EU	water	quality	objectives	or	the	Dutch	Target	Value	(to	identify	“clean	soil”	
with	negligible	risk)	have	been	formulated	using	uncertainty	factors	that	explicitly	
account	for	combined	effects	from	mixture	exposures.	The	most	often	used	extrapo-
lation	methods	in	species-level	mixture	extrapolation	are	based	on	this	model.	The	
modeling	makes	use	of	acronyms	such	as	TUs,	TEFs	(toxic	equivalence	factors),	and	
TEQs	(toxicity	equivalent	quotients)	(e.g.,	van	den	Berg	et	al.	1998).	The	TEF	and	
TEQ	approaches	have	been	especially	developed	for	assessing	risks	of	specific	mix-
tures	(e.g.,	of	PCBs	and	PAHs)	for	target	species	groups	(i.e.,	birds	and	mammals).
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Recently,	methods	for	the	evaluation	of	mixtures	in	contaminated	sediments	have	
been	developed,	including	the	use	of	TU	modeling,	development	of	numerical	sedi-
ment	quality	guidelines	(SQGs),	and	application	of	weight-of-evidence	approaches.	
Where	the	contaminants	in	a	sediment	are	known	to	act	in	a	concentration-additive	
fashion,	one	approach	is	to	simply	apply	a	sum	of	toxic	units	using	either	pore	water	
or	organic-carbon-normalized	 (OC-normalized)	TUs.	The	sediment–TU	approach	
has	been	applied	successfully	to	metals.	When	applied	in	conjunction	with	measure-
ments	of	acid	volatile	sulfide	(AVS),	a	strong	binding	phase	for	metals	in	anaerobic	
sediments,	and	simultaneously	extracted	metals	 (SEMs),	 this	approach	provides	a	
good	geochemical	basis	for	extrapolating	the	cumulative	effects	of	metal	mixtures	
in	anaerobic	sediments	(Swartz	and	Di	Toro	1997).

The	TU	approach,	combined	with	equilibrium	partitioning	(EqP)	and	(Q)SAR	
modeling,	was	also	used	by	Swartz	and	DiToro	(1997)	to	develop	the	ΣPAH	model	
to	predict	the	toxicity	of	sediment-associated	PAH	compounds.	A	(Q)SAR	and	EqP	
method	is	also	presented	by	Swartz	and	DiToro	(1997)	for	modeling	narcotic	chemi-
cals	in	sediments.	In	this	approach,	the	sediment	quality	guideline	for	a	mixture	of	
narcotic	chemicals	that	exhibit	additive	toxicity	could	be	expressed	as	the	sum	of	the	
fraction	of	the	OC-normalized	sediment	concentrations	divided	by	the	SQG	for	each	

table	5.4
overview	of	mixture	extrapolation	approaches	used	in	practice

level	of	mixture	
	consideration

approaches details

Interactions	between	compound	
and	exposure	medium

Matrix	and	media	chapter

Mixture	exposure	modeling Matrix	and	media	chapter See	discussion	for	
future	options

Combined	effect	modeling	for	
species

Tier-1:	point	estimates TU,	MTI,	AI,	TEF,	
TEQ,	and	isobols

Tier-2:	concentration	response	function	
based

Concentration	addition	
and	response	addition

Tier-3:	mode	of	action	based

Combined	effect	modeling	for	
species	assemblages

Tier-1:	point	estimates CCU,	HU,	and	EQC

Tier-2:	concentration	response	function	
based

SSDs

Tier-3:	concentration	response	function	
based,	mixed	models

SSDs,	Combi	PAF,	
msPAF,	spatiotemporal	
variation,	and	EPC	pie	
diagrams

Tier-4:	concentration	response	function	
based,	mixed	models	with	attention	for	
receptor	species	type

Specific	SSDs	and	
msPAFNOEC
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chemical.	A	calculated	SQG	for	the	mixture	that	exceeds	a	value	of	1	indicates	that	
the	total	concentration	of	the	narcotic-acting	compounds	in	the	sediment	is	expected	
to	exceed	 the	 level	 that	will	protect	95%	of	 the	species	 from	acute	effects	 (deter-
mined	by	interpolating	the	5th	percentile	of	the	species	sensitivity	distribution	for	
toxicity	endpoints	for	narcotics).	A	chronic	SQG	could	be	calculated	by	assuming	an	
acute-to-chronic	ratio	(ACR)	of	10	(Swartz	and	Di	Toro	1997).

In	 the	USEPA	guidance	document	on	the	confirmation	step	in	 toxicity	 identi-
fication	evaluation	(Mount	and	Anderson-Carnahan	1989),	different	steps	are	pro-
posed	to	confirm	that	the	causes	of	toxicity	are	correctly	identified.	In	one	of	these	
steps,	the	correlation	approach,	which	especially	applies	when	mixtures	of	toxicants	
are	 present,	 the	 authors	 recommended	 the	 utilization	 of	 a	 TU	 calculation.	 How-
ever,	being	aware	of	the	problem	arising	from	the	application	of	TU	calculations	of	
nonconcentration	additive	compounds,	they	stated	that	great	care	must	be	taken	to	
understand	the	interactions	of	the	toxicants.	They	stated	that	“if	two	or	more	toxi-
cants	are	strictly	non-additive,	only	the	major	one	(the	one	present	in	the	most	TUs)	
should	be	included	in	the	data	set”	(Mount	and	Anderson-Carnahan	1989:	Section	2	
to	3).	Grote	et	al.	(2005)	pointed	out	that	in	TIE	and	EDA,	by	using	TU	summation	
approaches	as	a	confirmation	strategy,	there	is	substantial	bias	potentially	leading	to	
the	risk	of	overlooking	major	toxicants	or	unresolved	toxicity.

It	has	also	been	noted	that	species-related	approaches	must	be	used	with	cau-
tion	when	 extrapolating	 from	one	 species	 to	 another	 (or	 amongst	 species	groups)	
as	 these	 species	may	not	 respond	 in	 the	 same	way	 (Parrott	 et	 al.	 1995;	Compton	
and	Sigal	1999).	As	a	practical	question,	risk	assessors	face	the	problem	of	judging	
mixtures	in	which	the	compounds	have	different	modes	of	action.	Conceptually,	the	
concentration	 addition	 approach	 would	 not	 be	 applicable.	 However,	 based	 on	 the	
ease	of	application	of	the	models	that	only	require	EC50	values	for	the	mixture	com-
ponents,	the	assessor	might	consider	which	approach	would	introduce	the	least	bias:	
choosing	nonextrapolation	(and	viewing	each	compound	separately),	or	choosing	a	
conceptually	wrong	model	that	nonetheless	provides	a	numerical	approximation	of	
risk.	As	stated	in	Section	5.3.2,	 it	 is	usually	more	beneficial	 to	extrapolate	with	a	
less	than	ideal	model	than	to	extrapolate	and	judge	each	compound	separately.	The	
latter	might	yield	the	undesired	situation	of	a	high	level	of	“false	positives”	—	that	
risks	(per	compound)	are	not	unacceptable	—	but	the	mixture	as	a	whole	induces	
undesired	effects.

In	human	toxicology,	it	has	become	a	standard	procedure	to	split	the	toxicologi-
cally	acceptable	dosage	of	a	chemical	for	different	routes	of	exposure,	thus	account-
ing	for	sequential	multiple	exposures.	All	these	applications	of	mixture	extrapolation	
do	not	necessarily	require	any	additional	information	on	the	type	or	degree	of	com-
bined	effects.	The	approaches	are	mostly	precautionary	rather	than	evidence	based.

5.8.2.3	 tier-2:	Concentration	response	Function-based	approaches

As	summarized	in	Section	5.3.1,	the	vast	majority	of	aquatic	mixture	toxicity	stud-
ies	report	that	the	actual	toxicity	of	mixtures	is	very	close	to	the	toxicity	predicted	
by	concentration	addition.	The	application	of	Tier-3	approaches	is	mostly	restricted	
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to	the	analysis	of	experimental	data.	These	approaches	are	not	used	in	predictive	
frameworks	outside	that	field,	due	to	the	lack	of	available	concentration	response	
data.	Unlike	 the	 issue	of	SSDs,	 single-species	 toxicity	 data	 comprising	 the	 raw	
data	of	mixture	studies	are	not	systematically	collected,	which	hampers	the	use	of	
existing	data	sets	to	generate	predictions	for	response	addition	in	general	and	for	
concentration	addition	at	other	than	EC50	or	NOEC	levels.	An	important	improve-
ment	over	using	point	estimates	would	be	to	use	concentration	response	functions	
for	the	assessment,	which	is	possible	when	adequate	information	for	the	individual	
components	 of	 a	 mixture	 is	 available.	 This	 can	 be	 done	 in	 a	 probabilistic	 way,	
both	 for	 compounds	 that	 share	 the	 same	 mode	 of	 action	 and	 for	 more	 complex	
mixtures.	 Predicted	 mixture	 effects	 are	 usually	 generated	 within	 experiments,	
from	single-compound	treatment	group	responses,	using	concentration	addition	or	
response	addition	as	null	models	based	on	the	assumed	mode	of	action.	Recently,	
an	advancement	was	proposed	for	the	establishment	of	causal	links	between	chem-
ical	 contamination	 and	 observed	 toxic	 effects	 of	 environmental	 samples	 (Grote	
et	al.	2005).	In	this	effect-directed	analysis,	use	is	made	of	tools	for	the	assessment	
of	mixture	toxicity	that	accounts	for	unknown	modes	of	action	and	heterogeneity	
of	 concentration	 response	 (Grote	 et	 al.	 2005).	 For	 this	 purpose,	 toxicants	 were	
identified	 in	 sediment	 extracts,	 and	 subsequently	all	 identified	compounds	were	
tested	 individually	 as	pure	 compounds	as	well	 as	 in	mixtures	 at	 ratios	 equal	 to	
those	found	in	the	sediment	extracts.	The	observed	extract	toxicity	was	then	com-
pared	with	the	expected	combined	effects	calculated	according	to	the	models	of	
concentration	addition	and	response	addition	as	well	as	with	the	observed	toxic-
ity	of	 the	synthetic	mixture.	An	Index	of	Confirmation	Quality	was	 introduced,	
providing	a	quantitative	measure	of	confirmation	over	a	range	of	different	effect	
levels.

There	are	various	mathematical	models	that	can	be	used	to	describe	and	analyze	
experimental	data	(Scholze	et	al.	2001).	In	addition	to	these	curve-fitting	approaches,	
response	surface	models	are	also	available	 (e.g.,	Greco	et	al.	1995),	but	 these	are	
suitable	primarily	 for	 the	analyses	of	experimental	data,	 rather	 than	for	predictive	
purposes.	As	an	example,	Altenburger	et	al.	(2004)	applied	both	concentration	addi-
tion	and	response	addition	and	observed	that	the	combined	effect	of	a	3-compound	
mixture	out	of	10	identified	sediment	toxicants	was	sufficient	to	explain	the	observed	
combined	effect	of	 the	more	complex	mixture.	For	 identifying	remediation	priori-
ties	 in	site-specific	assessment	of	complex	contamination,	 this	approach	has	great	
potential.

5.8.2.4	 tier-3:	Mode	of	action-based	approaches	and	the	Mixed	Model

As	in	Tier-2	approaches,	Tier-3	approaches	use	concentration	response	information	
but	in	addition	try	to	acknowledge	particular	mode	of	action	information.	This	leads	
to	the	use	of	concentration	addition	as	a	model	to	predict	cumulative	effects	within	
groups	of	compounds	with	the	same	mode	of	action,	and	response	addition	to	predict	
the	overall	cumulative	effects	(over	those	groups	and	the	compounds	with	a	mode	
of	 action	 that	 is	 unique	 in	 the	 investigated	 mixture).	 For	 identifying	 remediation	
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priorities	 in	site-specific	assessment	of	complex	contamination,	 this	approach	has	
great	potential.

5.8.2.5	 tier-4	approaches

Tier-4	approaches	do	not	exist	for	the	single-species	level.	The	Tier-4	approach	is	
defined	by	the	presence	of	more	than	1	exposed	species,	which	is	not	the	case	for	
single-species	mixture	extrapolation.

5.8.3	 aPPlications	of	assemblage-level	mixture	extraPolation

5.8.3.1	 tier-0:	no	extrapolation

There	are	numerous	examples	of	no	extrapolation.	The	clearest	example	is	the	com-
mon	practice	of	setting	environmental	quality	criteria	for	each	compound	separately.	
Conceptually,	it	is	difficult	to	imagine	how	a	single	quality	objective	could	be	for-
mulated	for	every	possible	mixture	in	terms	of	maximum	permissible	mixture	con-
centration,	unless	one	could	develop	a	criterion	that	is	formulated	as	a	maximization	
of	impact	or	risk.

5.8.3.2	 tier-1:	point	estimates	and	Concentration	addition

Transfer	of	the	TU	principle	to	the	community	level	results	in	hazard	units	or	cumulative	
criterion	units	(CCUs).	The	most	common	types	of	hazard	assessment	use	this	concept.

Toxic	unit–type	approaches	applied	at	the	community	level	have	been	used	in	a	
limited	number	of	field	studies	investigating	metal-contaminated	streams	in	North	
America	(Clements	et	al.	2000;	Fore	2003)	and	New	Zealand	(Hickey	and	Clements	
1998).	Clements	et	al.	(2000)	found	significant	correlations	between	CCUs	and	10	
out	of	the	16	biological	metrics	that	they	tested	to	assess	benthic	community	struc-
ture.	 Hickey	 and	 Clements	 (1998)	 found	 that	 abundance	 and	 species	 richness	 of	
mayflies;	number	of	taxa	in	the	orders	Ephemeroptera,	Plecoptera,	and	Trichoptera	
(EPT);	 and	 total	 taxonomic	 richness	 were	 the	 best	 indicators	 of	 heavy	 metals	 in		
New	Zealand	streams.	Further	New	Zealand	studies	with	macroinvertebrates	exposed	
in	mesocosms	for	34	days	to	a	mixture	of	Cu	and	Zn	found	strong	relationships	with	
CCU.	Variance	in	community	structure	was	best	explained	by	3	quantitative	vari-
ables:	total	mayfly	abundance,	a	mollusk	(Potamopyrgus antipodarum)	abundance,	
and	a	summary	parameter	(QEPT,	or	the	quantity	of	EPT	individuals).	These	studies	
concluded	that	the	CCU	model	could	represent	a	useful	approach	for	monitoring	the	
toxicity	of	metal	mixtures	 in	aquatic	environments.	 Indeed,	 the	CCU	approach	 is	
similar	to	the	total	toxicity	of	a	mixture	(TTM),	a	method	that	is	currently	used	in	
a	regulatory	context	in	Australia	and	New	Zealand	(ANZECC	ARMCANZ	2000;	
Norwood	et	al.	2003).	As	with	CCUs,	the	TTM	is	determined	by	summing	the	ratio	
of	the	toxicity	of	the	individual	metals	to	their	water	quality	criteria.

When	using	TU-based	approaches,	specific	attention	should	be	paid	to	the	defini-
tion	of	the	units	that	are	used.	Commonly,	these	units	are	the	environmental	quality	
criteria	that	are	locally	applicable.	In	The	Netherlands,	however,	a	total	of	3	CCUs	
does	not	necessarily	imply	that	there	are	ecosystem	risks.	This	relates	to	the	fact	that	
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the	unit	values	in	the	regulations	are	the	lowest	of	a	set	of	subordinate	risk	limits,	being	
the	human	risk	limits	for	the	set	of	compounds	and	ecological	risk	limits	for	those	
compounds	(Swartjes	1999;	Sijm	et	al.	2002).	Exceedance	of	a	quality	criterion	may	
thus	imply	the	presence	of	human	risks,	ecological	risks,	or	—	at	high	exposures	—		
both.

5.8.3.3	 tier-2:	Whole-ssd	Curve-based	approaches,	
Concentration	addition,	or	response	addition

SSD-based	approaches	are	used for	monitoring	and	trends	analyses	regarding	toxic	
mixtures	per	 se,	 and	 for	 the	analysis	of	 situations	of	multiple	 stressors.	However,	
none	of	the	SSD-based	methods	assumes	a	priori	that	only	concentration	addition	
or	response	addition	would	apply.	Even	the	earliest	applications	recognize	the	rel-
evance	of	both	models.	These	uses	of	SSDs	are	described	under	Tier-3	methods.

5.8.3.4	 tier-3:	Whole-ssd	Curve-based	approaches,	Concentration	
addition,	and	response	addition	(Mixed	Model)

The	earliest	SSD-based	approach	for	monitoring	and	trends	analyses	yielded	the	so-
called	combi-PAF	(Hamers	et	al.	1996)	and,	by	aggregating	over	a	package	of	sub-
stances	used	in	The	Netherlands,	the	indicator	known	as	I-tox.	The	latter	parameter	
has	been	used	to	investigate	the	changes	over	space	and	time	in	overall	toxic	pressure	
in	The	Netherlands	for	soil	and	water	data	 in	various	“State	of	 the	Environment”	
reports	of	RIVM.	Such	analyses	have	suggested,	for	example,	that	I-tox	values	have	
declined	in	the	larger	rivers	over	the	last	few	decades.

A	site-specific	example	of	mixture	 risk	analysis	was	provided	by	Traas	et	 al.	
(2002).	Spatial	and	temporal	distributions	of	mixture	risk	(msPAF)	were	analyzed	
for	 a	 major	 estuary	 basin,	 for	 which	 potential	 adverse	 influences	 were	 suspected	
from	 major	 industrial	 activities	 upstream.	 The	 analyses	 showed	 spatiotemporal	
variation	in	toxic	pressure	in	the	estuary,	and	these	data	were	used	to	support	risk	
management	 through	 the	 identification	of	 the	periods	and	 the	 sites	of	 the	highest	
expected	impacts,	and	the	major	compounds	most	likely	contributing	to	the	risks.	
Various	authors	elaborated	on	this	idea	further	to	identify	hotspots	of	highest	risks	
along	a	river	stretch,	to	identify	the	added	risks	of	introducing	new	chemicals	into	
the	system	(Verdonck	et	al.	2003),	and	to	make	GIS	maps	of	pesticide	impacts	in	The	
Netherlands	(see	Figure	5.3).	This	approach	was	called	“georeferenced	probabilistic	
risk	assessment.”

A	very	specific	way	of	applying	estimates	of	the	ecotoxicity	of	mixtures	at	the	
community	level	is	the	application	of	the	msPAF	approach	in	life-cycle	assessments	
(Huijbregts	et	al.	2002).	In	this	application,	the	target	is	to	assess	ecological	impacts	
of	mixtures	in	a	single	value,	and	to	compare	this	value	to	the	predicted	impacts	of	
other	stressors	(e.g.,	ozone	depletion	and	energy	expenditure).

Various	 examples	 exist	 of	 the	 use	 of	 msPAF	 in	 multiple-stress	 analysis	 to	
acknowledge	the	relative	role	of	toxicant	mixtures	in	shaping	ecological	communi-
ties.	 Mulder	 et	 al.	 (2004)	 studied	 the	 decline	 of	 butterfly	 populations	 in	 a	 nature	
reserve	in	The	Netherlands.	It	appeared	difficult	to	establish	associations	between	
decline	and	the	major	environmental	parameters,	such	as	pH	and	water	relationships.	
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By	using	msPAF	as	a	surrogate	parameter	for	the	toxicant	mixture	(metals),	it	was	
found	that	the	decline	of	the	species	was	associated	with	metal	stress,	but	mediated	
by	the	direct	effects	of	the	compounds	on	the	host	plants.	In	this	example,	ecological	
(trophic)	relationships	between	species	were	an	explicit	part	of	the	msPAF-mediated	
analyses.	In	a	further	example	that	merges	ecological	and	ecotoxicological	methods,	
De	Zwart	et	al.	(2006)	used	msPAF	methods	in	concert	with	ecological	modeling	
(RIVPACS)	to	identify	the	relative	role	of	toxicant	mixtures	as	compared	to	other	
human-induced	stress	and	natural	variability	in	shaping	local	fish	communities	in	
Ohio	surface	waters.	Based	on	a	large	database	of	abiotic	(physical	and	chemical)	
and	biotic	(fish	counts	for	100	species)	variables	in	Ohio	rivers,	these	authors	applied	
the	mixed-model	mixture	extrapolation	technique	to	quantify	the	likely	impact	of	the	
local	mixtures	of	metals	and	household	chemicals.	The	analyses	resulted	in	so-called	

FIGure	5.3	 Predicted	ecotoxicological	risk	(msPAFNOEC)	of	pesticide	use	in	field	ditches.
Note:	The	maps	from	left	to	right	and	from	top	to	bottom	represent	the	development	of	pesti-
cide	risk	for	4-week	periods	throughout	the	year	1998.	Darker	colors	indicate	higher	risk,	up	
to	the	maximum	level	of	51%	msPAF.	Original	data	redrawn	from	De	Zwort	(2005).
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“effect	and	probable	cause”	(EPC)	pie	diagrams,	the	pie	size	for	each	sampling	site	
representing	the	magnitude	of	 impact	(compared	to	 the	community	that	 is	 locally	
expected	 under	 reference	 conditions	 through	 ecological	 modeling,	 or	 RIVPACS)	
and	the	slice	sizes	indicating	the	relative	contributions	of	the	(statistically)	probable	
causes.	The	strength	of	the	method	in	such	diagnostic	analyses	is	that	1	msPAF	can	
be	used	to	represent	toxic	stress	instead	of	a	large	set	of	measured	compound	con-
centrations,	which	strongly	improves	statistical	power.

5.8.3.5	 tier-4:	Whole-ssd	Curve-based	approaches	for	species	
level	with	Mode	of	action	and	exposed	species	analysis

A	possible	criticism	to	the	Tier-3	approaches	is	that	one	single	compound	can	have	
multiple	 modes	 of	 action	 in	 the	 case	 of	 community-level	 exposure.	 For	 example,	
an	insecticide	that	acts	on	the	nervous	system	of	insects	may	also	elicit	responses	
in	 plants	 and	 other	 nontarget	 organisms	 (such	 as	 narcotic	 effects).	 As	 a	 solution,	
for	 specific	assessment	problems,	one	may	acknowledge	 the	presence	of	different	
groups	of	ecological	receptors	(see	Box	5.2).	This	approach	reduces	the	potential	for	
disparities	between	data	and	SSD	that	can	occur,	for	example,	when	nonhomologous	
groups	of	ecological	receptors	are	used	to	create	an	overall	SSD.

Higher	tier	mixture	extrapolation	approaches	such	as	this	are	used	in	practice,	
by	calculating	site-specific	msPAF	values,	across	a	broad	range	of	assessment	ques-
tions.	A	practical	example	is	provided	by	De	Zwart	(2005),	who	studied	the	impacts	
of	pesticide	use	 in	The	Netherlands.	 In	 this	 study,	 the	 specific	mode	of	action	of	
the	pesticide	was	 taken	 into	account,	as	shown	in	Box	5.2.	This	analysis	 resulted	
in	 spatiotemporal	 indicators	 of	 relative	 toxic	 pressure	 across	 The	 Netherlands	
(Figure	5.3).

From	 a	 legal	 standpoint,	 Tier-4	 methods	 might	 constitute	 the	 best	 option	 for	
defining	 a	 problem.	When	 environmental	 laws	 are	 violated,	 and	 the	 “violator”	 is	
prosecuted,	 very	 specific	 questions	 are	 asked	 regarding	 likely	 local	 impacts.	This	
relates	to	the	fact	that	larger	impacts	result	in	higher	penalties.	Legal	cases	asking	
for	quantitative	mixture	risk	assessment	have	occurred	in	The	Netherlands	(RIVM,	
unpublished	results).	In	such	cases,	depending	on	the	exposed	species	types,	Tier-3	
methods	could	be	the	best	option	to	address	the	question	of	seriousness	of	impact	
and	penalty.

5.8.4	 absolute	versus	relative	interPretations

In	 single-species	 assessments,	 the	 interpretations	 of	 mixture	 assessments	 tend	 to	
be	mostly	absolute.	Hence,	risk	assessors	often	focus	on	particular	species	and	par-
ticular	compound	groups	(e.g.,	risks	of	PCB	mixtures	for	birds),	allowing	them	to	
interpret	and	explain	 their	 experimental	data	 to	 the	best	of	 their	 abilities.	On	 the	
other	 hand,	 many	 risk	 assessors	 apply	 mixture	 extrapolation	 methods	 to	 address	
risks	for	communities.	The	applications	of	SSD-based	methods	for	this	evolved	fast	
and	 now	 cover	 a	 wide	 set	 of	 approaches,	 ranging	 from	 ecological	 multiple-stress	
analyses	to	overall	approaches	such	as	life-cycle	assessment.	Especially	in	the	latter	
set	of	approaches,	the	risk	assessor	can	often	allow	the	method	to	only	yield	relative	
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rankings	of	risks	(e.g.,	to	identify	sites	or	compounds	of	highest	concern).	The	param-
eter	msPAF	can	serve	those	purposes,	although	an	absolute,	ecological	interpretation	
of	PAF	remains	to	be	established.

5.9	 unCertaIntIes	and	Future	Issues	
In	MIxture	extrapolatIon

5.9.1	 general

We	 have	 reviewed	 current	 conceptual	 and	 modeling	 approaches	 in	 mixture	 eco-
toxicology	as	well	as	current	experimental	evidence	to	derive	practical	risk	assess-
ment	protocols	for	species	and	species	assemblages.	From	the	review	of	conceptual	
approaches	in	mixture	ecotoxicology,	it	appears	that	there	is	a	difference	between	a	
mechanistic	view	of	joint	action	from	a	compound	mixture	and	a	probabilistic	per-
spective	on	combined	toxicity	and	mixture	risk.	A	mechanistic	view	leads	to	empha-
sis	on	the	distinction	of	modes	of	action	and	physicochemical	properties	first,	then	
on	the	choice	of	the	appropriate	joint	toxicity	model,	followed	by	a	comparison	of	the	
models’	prediction	with	experimental	observations.	A	probabilistic	orientation	leads	
to	 the	observation	that	concentration	addition	often	yields	a	relatively	satisfactory	
quantitative	prediction	of	observations	for	the	integral	level	of	effects	as	observed	in	
individual	organisms	or	populations.	In	these	applications,	concentration	addition	is	
frequently	connected	with	a	slight	bias	to	conservatism,	especially	for	compounds	
with	different	modes	of	action	(Backhaus	et	al.	2000,	2004;	Faust	et	al.	2003).

The	different	viewpoints	frequently	cause	misunderstanding	in	debates	between	
scientists	adopting	the	causal–analytical	viewpoint	(for	research)	and	those	develop-
ing	operational	instruments	(for	practical	use	in	risk	assessment).	In	this	chapter,	we	
merge	some	of	the	issues	by	proposing	mixed-model	methods	for	complex	mixture	
risk	assessment	based	on	probabilistic	modeling,	taking	into	account	mode	of	action	
knowledge	at	higher	tier	extrapolation.

5.9.2	 mixture	exPosure

5.9.2.1	 Improvements	on	exposure	extrapolation

Ashford	(1981)	and	Mesman	and	Posthuma	(2003)	emphasized	the	issue	of	exposure	
assessment	within	the	context	of	mixture	modeling	(i.e.,	estimating	the	actual	dose	
at	 the	 target	 site	 of	 action).	 In	 ecotoxicology,	 this	 practice	 is	 still	 under	 develop-
ment.	Regarding	the	issue	of	environment–chemical	interactions,	there	are	various		
compound-specific	 interactions	between	 the	 compound	 and	matrix	 and,	 superim-
posed	 on	 that,	 interactions	 between	 the	 compounds	 (such	 as	 nonsoluble	 complexes).	
As	 a	 rule,	 the	 latter	 are	 likely	 to	 be	 less	 important	 than	 the	 former.	 For	 metals,	 for	
example,	the	range	of	matrix	influences	(e.g.,	pH)	on	separate	metals	can	be	substan-
tial,	 resulting	 in	orders	of	magnitude	of	exposure	variance	(Janssen	et	al.	1997).	Van	
Straalen	and	Bergema	(1995)	have	highlighted	the	effects	of	changing	soil	acidity	on	
the	ecological	risks	of	metals	to	soil	organisms	as	predicted	by	SSDs.	They	showed	that	
risks	steeply	increased	at	lower	pH	levels.	Screening	of	typical	compound–compound		
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interactions	should	be	part	of	the	mixture	extrapolation	steps	to	avoid	missing	criti-
cal	interaction	data.	Focus	should	be	on	expected	special	interactions,	such	as	those	
rendering	a	compound	either	substantially	less	or	more	mobile	in	the	presence	of	the	
other	(e.g.,	by	formation	of	insoluble	precipitates).

Regarding	 the	 issue	of	 internal	redistribution	of	multiple	compounds	over	 tis-
sues	(toxicodynamics),	there	is	a	general	lack	of	practical	approaches	and	data.	The	
concept	of	physiologically	based	pharmacokinetic	modeling	might	provide	specific	
solutions	 in	 the	 future.	PBPK	models	were	 suggested	 for	 application	 in	 assessing	
human	health	risks	of	contaminants	in	drinking	water	(Ashford	1981)	on	the	basis	
that	most	interactions	between	organic	substances	occur	as	a	result	of	induction	or	
inhibition	of	metabolism.	There	are	some	practical	examples.	In	practice,	however,	
the	option	to	execute	a	risk	assessment	of	mixture	toxicity	based	on	application	of	
PBPK	 models	 in	 ecotoxicology	 is	 currently	 very	 limited.	 Although	 conceptually	
attractive,	the	use	of	PBPK	modeling	as	a	basis	for	estimating	mixture	toxicity	is	far	
from	being	operational	for	ecotoxicity	assessments	due	to	lack	of	data.	Hence,	the	
exposure	extrapolation	issues	can	currently	be	assessed	in	practice	only	by	applying	
matrix	and	media	extrapolation	approaches	as	discussed	in	Chapter	2.

When	the	assessment	concerns	a	community-level	risk	assessment,	it	should	be	
considered	that	each	species	explores	its	habitat	in	its	own,	specific	way,	so	that	in	
the	higher	mixture	assessment	tiers	(where	species	groups	might	be	separated	out	
for	deriving	specific	SSDs	for	 them)	 the	assessor	may	need	to	consider	 that	 these	
different	groups	would	need	different	exposure	extrapolations.	 In	Posthuma	et	al.	
(2002a)	and	Vijver	(2004),	the	issue	of	differences	between	different	soil	organisms	
was	conceptually	worked	out	in	an	example	for	metals.	In	soil,	where	many	species	
have	 soft	 integuments,	 the	dominant	 exposure	 route	 is	 through	 the	 skin	 (as	 com-
pared	to	passage	through	the	alimentary	system),	such	that	contaminant	uptake	is	
highly	dependent	on	the	pH	of	the	soil.	However,	for	soil	species	with	a	hard	integu-
ment,	exposure	is	better	correlated	with	the	total	metal	level	in	the	food.	This	relates	
to	the	regulated	conditions	(e.g.,	pH	for	metals)	in	the	alimentary	canal.	Applying	
species-group–dependent	corrections	for	exposure	adds	 realism	in	 the	assessment	
when	executed	well	and	with	enough	 input	data,	but	data	 limitations	may	oppose	
this	expected	increase	in	confidence.	That	is,	when	the	available	data	are	split	into	2	
subgroups,	the	conceptual	improvement	trades	off	in	the	format	of	increasing	size	of	
the	confidence	intervals	of	subgroup	results.

5.9.2.2	 Improvements	on	toxicant	detection

The	major	challenge	for	dealing	with	mixtures	of	unknown	composition	is	to	gener-
ate	meaningful	information	on	the	contributing	toxicants.	Current	approaches	look	
at	property	estimations,	using	physicochemical	parameters	such	as	chromatographic	
distribution	behavior.	Refined	protocols	of	 toxicant	 identification	are	being	devel-
oped,	based	on	fractionation	schemes	for	complex	contaminated	matrices.	The	use	
of	effect	assays	as	toxicity	detectors	in	such	approaches	is	being	pursued,	but	confir-
mation	of	the	identified	effect	contribution	and	quantification	of	unresolved	effects	
are	vital	for	useful	application	(Brack	2003).	The	practical	need	for	high-throughput	
effect	assays,	however,	trades	off	with	the	need	to	also	focus	on	ecologically	relevant	
effects	at	prolonged	exposure	times.
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5.9.2.3	 simultaneous	versus	sequential	exposure

All	mixture	extrapolations	considered	so	far	have	their	focus	on	cases	of	simultaneous	
exposure	to	a	set	of	toxicants,	whereas	organisms	or	species	assemblages	in	the	environ-
ment	frequently	face	sequential	exposure.	Although	extrapolative	methods	are	avail-
able	for	sequential	exposure	to	single	compounds,	this	is	not	the	case	for	mixtures.

5.9.3	 mixture	effects

5.9.3.1	 Modeling

Based	on	a	review	of	the	data, 2	main	models	were	encountered	most	frequently:	
concentration	addition	and	response	addition.	These	models	are	regarded	as	the	2	
biologically	 most	 plausible	 and	 useful	 reference	 concepts	 suitable	 to	 calculate	 an	
expected	 mixture	 effect	 based	 on	 effect	 information	 from	 the	 components	 of	 the	
mixture	under	consideration.	The	appropriate	selection	of	the	reference	concept	to	
be	applied	is	believed	to	depend	on	the	similarity	of	the	mode	of	action	of	the	com-
ponents.	This	is,	however,	an	ambiguous	form	of	information	(Grimme	et	al.	1996),	
because	 the	mode	of	action	of	a	compound	 is	codetermined	by	 the	 receptor.	One	
is	therefore	often	left	with	the	dilemma	of	2	possible	ways	to	assess	the	same	data.	
Consideration	of	the	quantitative	difference	in	the	expected	combined	effect	or	the	
modeling	of	a	prediction	window	using	both	concepts	might	be	more	helpful	than	
selecting	1	by	chance.

Despite	 the	 fact	 that	 concentration	 addition	 and	 response	 addition	 are	 com-
pletely	 different	 in	 mechanistic	 backgrounds	 and	 modeling,	 the	 predicted	 effects	
may	numerically	be	similar.	Evidence	for	this	is	presented	by	Drescher	and	Bödeker	
(1995)	and	Deneer	 (2000).	At	a	slope	of	 log-logistic	beta	 (slope)	of	about	0.4	and	
a	log-normal	standard	deviation	of	about	0.8,	concentration	addition	and	response	
addition	methods	yield	similar	risk	predictions.	The	degree	of	similarity	of	predicted	
effects	between	the	concentration	addition,	response	addition,	and	perhaps	mixed-
model	 approach	 is,	 in	part,	 dependent	on	 the	mathematical	model	 that	 is	used	 to	
describe	the	data	(log-normal,	log-logistic,	Gaussian,	etc.)	on	the	slope	divergence,	
on	the	position	on	the	curve	for	which	the	extrapolation	is	needed	(e.g.,	lower	tail),	
and	on	the	number	of	components.	The	models	themselves	may	equally	fit	experi-
mental	data	in	many	cases,	so	that	the	different	models	yield	equivalent	prediction	
values	when	used	in	extrapolation	in	such	cases!	This	means	that	mixture	risk	pre-
diction	might	be	more	robust	than	often	thought.

The	existence	of	mathematical	features	of	the	models	used	in	mixture	extrapo-
lation	does	not	mean	that	it	is	appropriate	to	apply	unchecked	models	to	all	assess-
ment	problems.	Most	data	for	which	the	models	were	 tested	pertain	 to	 the	higher	
exposure	(e.g.,	EC50)	level.	There	may	be	mathematical	features	of	the	models	that	
introduce	bias	when	applied	to	lower	exposure	levels.	The	models	should	be	applied	
with	a	clear	understanding	of	the	potential	biases	that	may	occur.	A	model	might	
be	discarded	for	a	certain	use	because	of	its	bias.	For	example,	using	concentration	
addition	 for	all	mixtures,	even	when	 there	 is	clearly	a	case	of	different	modes	of	
action,	would	 typically	overestimate	mixture	 risks	when	assessing	 risks	at	a	con-
taminated	 site,	which	would	be	 an	undesired	 feature	 for	 this	 type	of	 assessment.	
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In	the	assessment	and	ranking	of	contaminated	sites,	one	tries	to	obtain	a	realistic	
view,	not	a	conservative	one.	On	the	other	hand,	a	model	might	be	preferred	if	the	
bias	is	favorable	for	the	assessment	target.	The	concentration	addition	approach	is	
biased	toward	overestimation	of	risks	at	lower	exposures,	but	this	is	desired	in	cases	
when	environmental	protection	is	the	assessment	endpoint.

The	issue	that	matters	most	is	the	presence	of	data	at	the	concentration	where	the	
models	are	to	be	applied.	For	example,	many	experiments	focus	on	the	concentration	
level	of	maximum	response	(i.e.,	the	inflection	point	of	effect	curves,	e.g.,	the	EC50),	
whereas	for	the	objective	of	setting	EQC	one	usually	applies	NOECs	(low	concen-
tration	range).	Various	authors	have	shown	that	there	is	a	concentration-dependent	
pattern	 in	 similarity	 between	 observed	 and	 predicted	 values	 using	 concentration	
addition	 (Posthuma	et	 al.	1997;	van	Gestel	 and	Hensbergen	1997;	Sharma	Shanti		
et	al.	1999;	van	der	Geest	et	al.	2000;	Jonker	2003).	Mixture	experiments	do	not	usu-
ally	have	observation	points	at	low	concentrations	that	are	precisely	measured	so	as	
to	clearly	distinguish	concentration	addition	from	response	addition.	This	is	caused	
by	a	general	lack	of	data	in	the	tails	of	the	curves,	yielding	low	statistical	power.	The	
underpinning	of	mixture	extrapolation	is	thus	weakest	in	the	low	exposure	range,	as	
is	true	for	all	dose–response	extrapolations.

If	there	are	doubts	about	the	mode	of	action	in	relation	to	the	studied	ecologi-
cal	receptors	and	the	concept	of	the	receptor	sites,	a	good	approach	may	be	to	use	a	
reasonable	worst-case	assumption,	which	in	many	cases	seems	to	be	concentration	
addition.	A	better	approach	may,	however,	be	the	generation	of	a	“prediction	win-
dow”	(Walter	et	al.	2002).	A	prediction	window	shows	the	outcomes	of	alternative	
modeling	 options,	 when	 model	 choice	 (concentration	 addition,	 response	 addition,	
or	mixed	model)	is	not	supported	by	the	available	knowledge.	Prediction	windows	
are	 produced	 by	 applying	 alternative	 null	 models.	 The	 location	 of	 the	 prediction	
window	(bordered	by	the	outcomes	of	 the	alternative	models)	as	compared	to	 the	
chosen	protection	endpoint	may	yield	insights	that	are	sufficient	for	decision	making.	
For	example,	Posthuma	et	al.	(2006)	applied	this	concept	in	the	design	of	a	decision	
support	system	for	deciding	on	the	deposition	of	slightly	contaminated	sediment	on	
land.	In	cases	where	the	prediction	results	of	alternative	models	all	suggested	that	
the	mixture	risks	were	below	the	(policy’s)	acceptance	threshold	(in	this	case,	the	use	
of	a	95%	protection	criterion	as	a	critical	level	for	unacceptable	risks,	whereby	less	
than	5%	of	the	species	is	supposed	to	be	exposed	at	a	level	higher	than	their	no-effect	
level),	the	decision	can	be	made	that	sediment	could	be	deposited	on	land	without	
causing	unacceptable	risks.

5.9.3.2	 Improvements	at	the	toxicological	level	sensu	stricto

Although	 most	 mixture	 studies	 in	 ecotoxicology	 focus	 on	 integral	 effects	 (i.e.,	
vital	 characteristics	 such	 as	 growth	 and	 reproduction),	 various	 molecular	 assays	
exist	for	assessing	or	predicting	mixture	effects	on	gene	or	protein	induction,	inhi-
bition,	 or	 alteration.	 It	 can	 be	 argued	 that	 the	 reactions	 that	 occur	 in	 vital	 char-
acteristics	as	a	result	of	these	physiological	changes	may	be	more	valid	endpoints	
for	extrapolation	 toward	ecologically	 relevant	mixture	effects,	 and	 that	molecular	
reactions	can	provide	an	“early-warning”	signal.	Recent	technical	advances	in	the	
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field	of	eco(toxico)genomics	might	provide	the	options	for	empirical	test	strategies	
for	addressing	mode-of-action	issues	and	mixture	modeling.	A	challenge	here	is	to	
develop	 “early-warning”	 effect	 tools	 that	 are	 also	 suitable	 to	 detect	 and	 quantify	
combined	effects	for	ecologically	relevant	endpoints.

A	neglected	area	in	ecotoxicology	has,	as	yet,	been	the	internal	redistribution	
of	compounds	within	organs	and	cells	within	an	organism.	Ashford	 (1981)	devel-
oped	such	ideas	in	the	framework	of	human	pharmacology,	and	these	ideas	could	be	
applied	to	ecotoxicological	problems	(Figure	5.4).	In	ecotoxicology,	external	stimuli	
(ExS,	 the	 toxicant	 exposure	 concentrations	 outside	 the	 organism)	 are	 most	 com-
monly	used	as	 surrogates	of	exposure.	However,	 the	use	of	effective	 stimuli	 (ES,	
toxicant	concentrations	that	enter	the	tissues)	and	operational	stimuli	(OS,	concen-
trations	at	particular	target	sites	of	action	[Ti])	would	be	much	more	appropriate	for	
describing	the	true	physiological	(internal)	activity	of	a	contaminant.	The	ES	and	
OS	 depend	 on	 internal	 distribution	 processes	 amongst	 tissues,	 and	 the	 OS	 is	 not	
necessarily	the	same	at	all	sites	of	action	in	different	tissues.	A	receptor	(Rj)	can	be	
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FIGure	5.4	 Theoretical	concept	of	 the	 joint	action	of	chemical	compounds	according	 to	
Ashford	 (1981),	 adapted	 to	 describe	 ecotoxicological	 effects	 at	 the	 single-species	 whole-
organism	level.	Note:	Ashford’s	external	stimulus	is	the	mixture	(e.g.,	of	an	organic	compound	
and	a	metal-containing	compound).	Ti	is	the	concentration	at	target	site	i.	Rj	is	a	receptor	for	
toxicant	j.	Sk	is	a	physiological	subsystem	k.	The	arrows	of	variable	thickness	leading	to	mor-
tality	and	reproduction	are	indicating	the	relative	contribution	of	underlying	processes	to	the	
overall	effects	studied	in	ecotoxicology.	Source:	Ashford	(1981).
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present	in	one	or	more	physiological	subsystems	(Sk).	The	action	can	be	a	toxic	inter-
action,	where	the	compounds	in	the	operational	stimulus	and	the	receptors	are	fully	
complementary	(full	stimulus–receptor	[S–R]	match;	function	is	fully	inhibited)	or	
a	partial	 interaction,	whereby	 the	 stimulus	 inhibits	 the	normal	 function,	 but	only	
partially.	Compounds	may	affect	different	subsystems,	with	different	combinations	
of	Rj.	Figure	5.4	shows	mechanistic	effects	at	target	sites	of	toxic	action	in	exposed	
subsystems	and	overall	effects	at	 the	level	of	 the	organism	(e.g.,	on	mortality	and	
reproduction	rates).	The	latter	effects	are	studied	in	ecotoxicology,	and	the	former	
in	pharmacology.	The	final	toxic	effect	(mortality,	altered	reproduction,	or	altered	
growth	rate	of	a	species)	 is	 the	net	effect	of	all	subsystem-level	effects,	 including	
their	interactions.

Each	subsystem	may	have	various	active	sites	for	the	toxic	action	of	compounds.	
However,	between	subsystems,	the	same	mixture	is	likely	to	cause	quantitatively	dif-
ferent	responses.	Because	an	organism	is	composed	of	an	array	of	subsystems,	the	
outcome	of	a	mixture	study	with	compounds	with	distinctly	different	modes	of	action	
on	reproduction	effects	may	demonstrate	a	response	that	is	numerically	similar	to	
concentration	 addition,	 whereas	 the	 underlying	 responses	 in	 all	 subsystems	 (e.g.,	
endocrine,	energetic,	and	metabolic	systems)	may	differ	mechanistically.	Although	
all	this	is	theoretically	plausible,	the	challenge	still	is	to	provide	empirical	evidence	
that	the	models	derived	accurately	predict	mixture	effects	in	exposed	species.

5.9.3.3	 tiering

Current	efforts	to	extrapolate	mixture	effects	are	dominated	by	TU-based	approaches,	
which	result	in	prediction	error	when	the	models	are	used	for	situations	where	the	con-
centrations	deviate	from	the	original	effect	level	that	is	used	to	define	TU.	Provided	
that	 the	data	are	available,	mixture	extrapolation	at	 the	species	level	may	improve	
by	using	 the	proposed	higher	 tier	protocols.	 It	 should	be	acknowledged,	however,	
that	the	data	needed	for	such	an	enterprise	at	the	species	level	are	not	systematically	
stored	in	databases,	as	is	the	case	for	the	databases	available	to	construct	SSDs	(see	
Section	5.6.1).	For	a	significant	advancement,	researchers	therefore	should	strive	for	
full-curve	modeling	over	point-estimate	models	(i.e.,	to	model	at	Tier-2	and	Tier-3).	
The	major	requirement	would	therefore	be	to	not	only	produce	but	also	report	system-
atically	on	concentration	response	functions	for	individual	compounds,	as	this	would	
allow	prediction	of	any	yet	untested	mixture	for	the	same	biological	response.

5.9.3.4	 suggestions	for	Improvements	at	the	assemblage	level

5.9.3.4.1 Models
This	 chapter	 proposes	 the	 use	 of	 SSD	 and	 mixture	 toxicity	 models	 in	 ecological	
risk	 assessment	 of	 species	 assemblages	 by	 calculating	 the	 multisubstance	 poten-
tially	affected	fraction	of	species	on	the	basis	of	measured	or	predicted	(biologically	
active)	concentrations	of	toxic	compounds	in	the	environment.	The	msPAF	method	
has	been	scrutinized	for	its	conceptual	basis.	To	address	this	scrutiny,	we	cite	the	
human	toxicology	work	of	Ashford	(1981)	as	a	cross-link.
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Indeed,	the	ideas	of	Ashford	(1981)	could	be	introduced	productively	into	mix-
ture	 ecotoxicology.	Ashford’s	 ideas	 can	 further	 be	 seen	 as	 a	 prelude	 to	 the	 inter-
actions	between	multiple	 toxicants	 and	multiple	 species,	 as	 a	 next	 level	 of	 added	
complexity	and	improved	relevance	of	mixture	studies.	In	this	added	level,	species	
can	 be	 considered	 as	 active	 sites	 of	 mixture	 effects.	 They	 might	 be	 called	 “eco-
logical	receptors”	of	the	compounds,	as	equivalent	to	the	toxicological	target	sites	
of	action	(i.e.,	 the	toxicological	receptors).	The	subsystems	might	be	envisaged	as	
species	groups	that	show	interactions	(e.g.,	within	and	between	functional	groups	in	
a	food	web).	The	concept	of	an	“ecological	receptor”	was	originally	introduced	by	
van	Straalen	(1992).	An	ecological	receptor	is	an	ecological	entity	at	a	higher	level	
of	biological	organization	than	the	toxicological	receptor.	Regarding	the	mixture	lit-
erature,	the	concept	would	in	practice	often	relate	to	the	species	level.	For	example,	
the	primary	ecological	receptors	of	insecticides	are	insects,	as	they	possess	unique	
physiologies	or	specific	molecular	targets	for	insecticide	action.	Any	other	species	
that	responds	similarly	to	another	insecticidal	compound	could	also	be	considered	
an	ecological	receptor	for	insecticides.	The	response	may	be	exclusive	for	that	spe-
cies	or	species	group,	and	is	dependent	on	the	way	the	species	(or	group)	explores	its	
niche	and/or	on	its	molecular	and	physiological	characteristics.	At	the	community	
level,	it	is	conceptually	problematic	to	maintain	the	idea	that	“each	compound	can	be	
assigned	a	single	mode	of	action.”	In	this	case,	a	compound	can	have	more	than	one	
mode	of	action,	and	likely	even	many	modes	of	action.	For	example,	an	organophos-
phorus	insecticide	has	been	designed	to	kill	insects	whereby	the	mode	of	action	is	a	
chemical	interaction	with	particular	target	sites	of	toxic	action	in	the	nervous	system	
of	insects.	The	same	insecticide	likely	has	other	types	of	(inter)actions	in	the	tissues	
of	other,	noninsect	organisms.	In	other	species,	it	may	only	cause	baseline	toxicity.	
Posthuma	et	al.	(2002a)	called	these	phenomena	“target,”	“partial,”	and	“minimum”	
toxicity	to	designate	the	apparent	effects	of	the	slope	and	position	of	species	sensi-
tivity	distributions.	Data	inspection,	as	done	by	De	Zwart	(2002),	might	indicate	the	
presence	of	different	ecological	modes	of	action	(EMoAs)	of	a	compound.	EMoAs	
are	defined	here	as	the	equivalents	of	the	concept	of	mode	of	action,	but	the	concepts	
pertain	to	a	higher	level	of	biological	organization	than	the	molecular	target.

The	proposed	mixed-model	approach	for	assemblages,	preceded	by	an	expo-
sure	 analysis,	 is	 in	 line	 with	 Ashford’s	 ideas;	 the	 ecological	 interactions	 need	
further	 attention.	Whether	Ashford’s	 ideas	 can	be	 fully	worked	out	 conceptually,	
tested	experimentally,	and	applied	in	a	validated	predictive	framework	remains	to	be	
solved	by	mixture	ecotoxicologists.

5.9.3.4.2 Tiering
A	proposal	for	tiering	was	suggested,	based	on	an	array	of	simple	and	more	com-
plex	 modeling	 approaches,	 consisting	 of	 an	 uncertainty	 factor–based	 approach	
(Tier-1),	point-estimate–based	extrapolation	(Tier-2),	and	full-curve–based	extrapo-
lation	(Tier-3)	to	curve-based	extrapolation	with	special	emphasis	on	the	link	between	
mode	of	action	and	ecological	receptors	(Tier-4,	only	for	assemblages).

The	TU-based	approaches	(Tier-1)	have	to	date	most	widely	been	used	in	prac-
tice.	A	critique	of	this	approach	is	that	it	operates	under	the	assumption	that	a	linear	
relationship	exists	between	risk	and	criterion	exceedance	or	concentration,	and	that	
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the	slope	of	the	concentration–risk	relationship	is	equal	for	the	different	substances	
in	the	mixture.	This	may	not	be	the	case,	because	the	sensitivity	distribution	(SSD)	
is	typically	characterized	by	a	nonlinear	bell-shaped	response	relationship	that	may	
have	a	different	width	for	different	substances.	Further,	the	individual	criterion	con-
centrations	(ci)	for	each	compound	will	be	those	determined	by	a	particular	regula-
tory	agency	and	may	vary	between	jurisdictions	and	with	periodic	revisions.

Specific	 critiques	 of	 the	 TU-based	 method	 have	 been	 listed	 by	 Solomon	 and	
Takacs	(2002).	A	specific	problem	is	that	investigators	limit	the	application	of	this	
approach	to	compounds	with	an	assumed	similar	mode	of	action,	because	they	have	
mechanistic-based	objections	against	broadened	applications.	However,	especially	
in	 the	 case	of	 site	 assessment,	 the	goal	 is	 to	know	 the	 risk	of	 the	 complete	mix-
ture,	not	only	the	risk	of	compounds	with	an	assumed	similar	mode	of	action.	This	
could	result	 in	 the	underestimation	of	risks	and	“false	positives”	wherein	 the	risk	
assessment	made	for	the	limited	set	of	compounds	could	suggest	“absence	of	risks”	
although	the	total	mixture	would	in	reality	induce	risks.	To	prevent	“false	positives,”	
one	could	sum	the	TUs	 for	all	compounds,	 thereby	 removing	 the	objections.	The	
numerical	similarity	between	predictions	generated	by	concentration	addition	and	
response	addition	can	be	seen	as	numerical	support	for	this	idea.

5.9.3.4.3 Validity
For	msPAF	to	be	a	useful	parameter	in	risk	management,	it	is	crucial	to	obtain	values	
of	msPAF	that	are	relevant	to	predict	community	risk	under	field	conditions,	either	
in	an	absolute	sense,	where	risk	is	related	to	ecological	effects,	or	in	a	relative	sense,	
where	the	method	is	useful	for	ranking	contaminated	sites.	However,	the	ecological	
meaning	of	msPAF	is	still	rather	unclear.	The	results	of	msPAF	evaluations	can	be	
validated	by	analyzing	combined	physicochemical	and	biological	monitoring	data	or	
with	mesocosm	experiments.	Observing	effects	in	the	field	may	be	difficult	due	to	
high	variability	and	a	lack	of	reference	sites.	The	expected	effects	may	be	masked	if	
less	sensitive	species	outcompete	the	affected	species,	or	effects	may	be	larger	than	
expected	due	to	interactions	between	species	not	predicted	by	single-species	toxicity	
tests	(Klepper	et	al.	1999;	Mulder	et	al.	2004).	Ecological	interactions	are	an	impor-
tant	 point	 to	 consider	 when	 interpreting	 SSD-based	 output.	 In	 practice,	 different	
natural	stressors	or	any	other	nontoxicological	environmental	stressor	may	influence	
the	effects	of	toxicants	either	directly	by	affecting	the	species’	viability	or	through	
interactions	with	the	compound.	This	is	a	factor	that	is	not	taken	into	account	when	
calculating	mixture	risk	in	the	proposed	way.

When	 interpreting	SSD-based	 risk	 predictions,	 one	 should	 note	 that	 the	 SSD	
approach	 solely	 focuses	 on	 direct	 effects	 of	 toxic	 compounds	 on	 species	 assem-
blages.	Indirect	ecological	effects	resulting	from	changes	in	species	interactions	are	
an	aspect	not	reflected	in	the	msPAF	risk	modeling	proposed	in	this	chapter.	It	 is	
likely	that	indirect	effects	can	only	occur	when	direct	effects	are	present	and	that	
their	importance	increases	at	increasing	levels	of	direct	effects.	When	msPAFs	can	
be	calculated,	such	as	in	Box	5.2,	ecologists	might	be	able	to	identify	some	likely	
indirect	effects	(e.g.,	when	msPAF	values	for	primary	producers	are	high,	there	is	an	
increased	probability	of	indirect	effects	on	grazers).	Confirmation	studies	could	shed	
light	on	the	implications	associated	with	increased	levels	of	toxic	risk.
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There	is	quantifiable	uncertainty	in	the	steps	associated	with	SSD	and	msPAF	
assessments.	Although	there	is	as	yet	no	universal	procedure	to	develop	a	specific	
SSD-based	 ecological	 risk	 assessment,	 it	 is	 essential	 to	 take	 uncertainties	 into	
account.	One	of	the	options	to	present	uncertainties	is	the	use	of	confidence	inter-
vals.	Although	the	confidence	intervals	of	a	single	toxicant	PAF	can	be	calculated	
quite	easily	(Aldenberg	and	Jaworska	2000),	the	mixture	risk	approach	uses	addi-
tional	concepts	and	parameters,	for	example,	related	to	exposure	and	bioavailability	
issues.	These	uncertainties	should	be	superimposed	on	those	of	the	separate	SSDs,	
implying	 that	 further	uncertainty	analysis	of	SSD-based	models	 is	needed,	 along	
with	a	clear	ecological	interpretation	of	the	final	output	and	its	confidence	interval.

5.9.3.4.4 Use
Various	options	were	listed	for	practical	application	of	the	proposed	protocols	for	
risk	prediction	for	species	assemblages.	One	of	the	most	useful	features	of	the	SSD	
concept	is	that	its	output	in	terms	of	dimensionless	PAF	values	can	be	aggregated	to	
reflect	the	risk	posed	by	multiple	substances,	according	to	a	set	of	protocols	that	are	
motivated	by	established	toxicological	principles	and	that	are	further	supported	by	
quantitative	data	on	model	behavior	and	model	characteristics.	Mathematical	analy-
ses	of	an	array	of	mathematical	response	models	are	supporting	the	viewpoint	that,	
in	the	case	of	lack	of	data	on	modes	of	action,	reasonable	robust	risk	predictions	can	
be	obtained,	especially	when	slopes	are	approximately	equal.	If	a	mixture	consists	
of	compounds	with	moderate	and	similar	slope	values,	then	this	would	remove	part	
of	the	necessity	to	have	a	debate	on	mechanistic	principles	in	the	absence	of	data	to	
support	either	viewpoint.	When	the	slopes	diverge	outside	the	given	bounds	or	are	
different	among	substances,	the	outcome	of	the	assessment	could	be	characterized	as	
likely	overestimating	or	likely	underestimating	the	direct	risks	as	a	consequence	of	
mathematical	model	characteristics.	It	remains	to	be	established	how	robust	predic-
tions	of	msPAF	are	when	compared	to	field	or	mesocosm	data,	and	how	uncertainties	
proliferate	through	the	whole	protocol.	Despite	the	profitable	mathematical	charac-
teristics,	it	should	be	noted,	however,	that	the	principles	of	combination	toxicology,	
derived	from	single	species,	are	directly	transposed	to	the	level	of	multiple	species,	
with	the	hidden	assumption	that	 joint	effects	 transfer	unchanged	from	the	species	
level	to	the	community	level.	Whether	this	assumption	holds	true	remains	an	open	
question.

5.10	 ConClusIons

Mixture	extrapolation	 is	needed	for	many	assessment	purposes,	but	 techniques	 to	
execute	mixture	extrapolations	are	not	strongly	validated	by	test	data	that	are	appro-
priate	to	the	problem,	such	as	the	almost	complete	lack	of	data	on	assemblage-level	
mixture	effects.

Typical	problems	prohibit	 the	derivation	of	firm	“mixture	extrapolation	 laws”	
that	are	sound	with	regard	to	both	conceptual	underpinning	and	support	by	test	data.	
Due	 to	 the	 lack	of	high-quality,	appropriate	data,	mixture	extrapolation	 is	mostly	
founded	on	a	few	simple	pharmacodynamic	concepts	of	noninteractive	joint	action,	
commonly	called	concentration	addition	and	response	addition,	and	on	the	statistical	
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features	and	biases	of	these	models.	Those	are,	however,	well	known,	and	they	can	
thus	be	used	for	decision	making.

This	chapter	provides	some	new	views	on	theoretical	concepts	that	are	in	use	in	
mixture	studies,	such	as	the	ecological	equivalent	of	the	mode	of	action,	which	is	the	
ecological	mode	of	action,	and	the	introduction	of	the	mixed-mechanism	problems	
and	mixed-mechanism	models	for	cases	in	which	various	types	of	compounds	affect	
the	exposed	biota.	 It	 is	 argued	 that	 the	conceptual	 approaches	 in	mixture	 studies	
should	further	address	environmental–chemical	interactions,	toxicokinetic	and	toxi-
codynamic	interactions,	and	ecological	interactions.

Because	these	necessary	concepts	have	not	been	widely	applied	in	the	existing	
experimental	studies,	the	data	that	have	been	collected	in	the	past	were	reviewed	on	
the	basis	of	existing	reviews	and	the	mathematical	characteristics	of	mixture	models.	From	
that,	 it	was	concluded	that	 the	mathematical	models	 that	are	used	in	the	best-case	
studies	do	predict	mixture	responses	relatively	well,	although	the	use	of	some	models	
may	not	be	mechanistically	justified,	and	although	the	models	have	peculiar	biases	
that	need	be	taken	into	account	in	relation	to	the	objective	of	the	extrapolation.

A	tiered	system	for	mixture	extrapolation	is	proposed,	in	which	the	main	tiers	are	
extrapolation	based	on	substance	co-occurrence	(Tier-1);	point-estimate	extrapolation	
using	toxicological	summary	information	such	as,	for	example,	EC50	values	(TUs,	
TEFs,	CCUs,	etc.;	Tier-2),	and	whole-curves–based	extrapolation	relying	on	concen-
tration	response	 information	(Tier-3),	 respectively.	 In	 the	 latter	case,	 the	approach	
may	be	further	specified	according	to	recognition	of	mode-of-action	information	or	
on	identification	of	different	ecological	receptors	(Tier-4).	These	basic	tiers	can	be	
applied	in	predicting	responses	of	species	and/or	assemblages,	or	in	understanding	
monitoring	 responses.	Targeted	 research	 can	be	designed	 to	 investigate	 the	 issues	
where	extrapolation	techniques	are	currently	weakest	(i.e.,	in	community-level	mix-
ture	assessments	or	interaction	at	exposure	or	effect	propagation	level).
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6.1	 IntRoDUCtIon

Populations	 and	 communities	 integrate	 the	 effects	 of	 environmental	 conditions	
over	 different	 temporal	 and	 spatial	 scales.	 Natural	 communities	 are	 character-
ized	 as	 being	 spatially	 heterogeneous	 and	 temporally	 dynamic	 systems	 (Connell	
and	Sousa	1983;	Sousa	1984),	and	populations	may	show	a	high	degree	of	stochastic		
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variability,	particularly	when	they	are	small	and	spatially	isolated	(May	1974a;	Lande	
1993).	 Furthermore,	 most	 ecological	 perturbation	 experiments	 are	 performed	 on	
spatial	and	temporal	scales	that	are	much	smaller	and	shorter	than	the	natural	sys-
tems	and	time	frames	of	interest	(e.g.,	Englund	and	Cooper	2003),	and	the	scale	at	
which	scientists	work	may	have	a	large	impact	on	their	perspective	of	ecological	and	
ecotoxicological	phenomena.	Although,	in	the	extrapolation	of	ecotoxicological	data,	
it	 is	not	 always	easy	or	desirable	 to	 separate	aspects	of	 spatial	 and	 temporal	vari-
ability,	 this	chapter	has	 its	 focus	on	 temporal	extrapolation.	The	following	chapter	
(Chapter	7)	deals	with	aspects	of	spatial	extrapolation	in	ecological	effect	assessments	
of	chemicals,	and	also	builds	further	on	the	data	presented	in	this	chapter	by	paying	
attention	to	the	ecological	effect	assessment	of	chemicals	at	the	landscape	level.

Measurable	 properties	 of	 populations	 and	 communities	 are	 usually	 in	 flux	
because	of	diurnal	and	seasonal	changes	in	key	abiotic	factors	(e.g.,	light	conditions,	
temperature,	and	hydrological	conditions)	or	internal	ecological	mechanisms	(e.g.,	
the	 increase	 in	biomass	and	species	 richness	 in	 the	course	of	succession).	Conse-
quently,	when	extrapolating	risks	of	toxicants	in	time,	one	should	take	into	account	
the	natural	variability	of	factors	that	affect	chemical	fate,	exposure,	and	ecotoxico-
logical	responses.	When	the	intensity	of	chemical	stressors	is	small,	their	ecological	
impacts	may	be	hard	to	detect,	especially	when	the	effects	fall	within	the	“normal	
operating	range”	of	the	measurement	endpoints	(Maise	2001).	At	greater	intensities	
of	 chemical	 stressors,	 however,	 the	 structure	 and	 functioning	 of	 ecosystems	 may	
change	significantly.

In	the	effect	characterization	of	contaminants,	both	lower	and	higher	tier	toxic-
ity	 tests	may	be	performed	for	comparative,	 retrospective,	or	predictive	purposes.	
When	one	is	primarily	interested	in	ranking	the	toxicity	of	chemicals,	highly	stan-
dardized	tests	and/or	(Q)SARs	are	used,	and	there	is	less	focus	on	spatiotemporal	
extrapolation.	For	retrospective	and	predictive	applications,	however,	temporal	issues	
in	the	risk	assessment	procedure	cannot	be	ignored.	In	the	retrospective	risk	assess-
ment	 of	 persistent	 toxicants,	 important	 research	 issues	 may	 be	 temporal	 changes	
in	bioavailable	fractions	due	to	aging	and	breakdown,	as	well	as	temporal	changes	
in	ecological	responses	due	to	recovery	and	adaptation.	Predictive	risk	assessment	
procedures,	performed	for	the	registration	of	new	chemicals,	initially	adopt	a	“real-
istic	worst-case	approach”	 that	 intends	 to	 take	 into	account	possible	uncertainties	
related	to	spatiotemporal	variation	in	exposure	concentrations	and	in	species,	popu-
lations,	and	habitats	potentially	at	risk.	At	a	more	advanced	stage	(higher	tiers)	of	the	
risk	assessment	procedure,	the	focus	is	on	more	environmentally	realistic	exposure	
regimes	and	organisms	at	risk.	An	important	regulatory	question	at	stake	is	whether	
higher	tier	tests	performed	in	certain	periods	of	the	year	and	with	certain	exposure	
regimes	can	be	extrapolated	in	time.	It	is,	however,	neither	financially	nor	practically	
feasible	 to	 test	all	ecologically	 relevant	exposure	scenarios	 (e.g.,	pulsed,	 intermit-
tent,	or	chronic)	on	a	large	number	of	species	and	communities	during	different	time	
periods.	 Therefore,	 both	 extrapolation	 across	 time-varying	 exposure	 regimes	 and	
the	 temporal	 extrapolation	of	 ecotoxicological	 effect	 data	 are	 important	 issues	 in	
ecological	risk	assessment.

This	chapter	aims	to	provide	insight	into	1)	our	current	knowledge	of	temporal	
variability	of	ecological	 responses	 to	chemical	 stress	and	2)	 the	 tools	 that	can	be	
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used	to	extrapolate	across	time.	The	focus	of	this	chapter	will	be	on	aquatic	organ-
isms	and	ecosystems,	and	it	is	divided	into	2	major	sections:

Extrapolation	 across	 time-varying	 exposure	 regimes:	 This	 section	 will	
focus	primarily	on	the	toxicological	and	ecological	implications	of	differ-
ent	exposure	regimes	and	the	relation	between	the	time	frames	of	expo-
sure	and	response.
Temporal	variability	and	ecotoxicological	data	extrapolation:	This	section	
has	its	focus	on	temporal	variation	in	population	and	community	struc-
tures	and	related	differences	in	sensitivities,	and	on	the	ability	of	popula-
tions	and	communities	to	recover	from,	or	adapt	to,	chemical	stress.

6.2	 eXtRAPoLAtIon	ACRoss	tIMe-VARYInG	
eXPosURe	ReGIMes

6.2.1	 ExposurE	Duration	anD	incipiEnt	toxicity	LEvELs

The	 response	 of	 organisms	 to	 toxic	 chemicals	 depends	 on	 both	 exposure	 con-
centration	 and	 exposure	 time	 and	 duration.	 Consequently,	 when	 using	 laboratory	
toxicity	values	to	estimate	effects	 in	the	field,	 it	 is	 important	 to	consider	 the	rela-
tionship	between	exposure	duration	and	the	time	needed	to	express	the	toxic	effect		
(Figure	6.1).	 For	 example,	 there	 was	 a	 highly	 significant	 negative	 relationship	
between	exposure	duration	and	effect	concentrations	for	aquatic	amphipods	exposed	
to	the	pyrethroids	lambda-cyhalothrin	and	cypermethrin:	1-hour	exposures	were	18	
times	less	toxic	than	96-hour	exposures	(Maund	et	al.	1998).	Effect	measures	such	as	
LC50s	normally	decrease	with	time	until	an	incipient	level	is	reached,	at	which	point	
toxicity	stabilizes.	Standard	toxicity	testing	guidelines	(e.g.,	those	provided	by	the	
OECD)	prescribe	(minimum)	test	durations,	usually	48	to	96	hours	for	acute	toxicity	
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FIGURe	6.1	 Illustration	of	change	in	toxicity	over	time	until	incipient	effect	(lethality	in	this	
case)	is	reached.
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tests	with	aquatic	organisms.	Reaching	incipient	levels	for	lethal	effects,	however,	
may	require	longer	than	48	hours,	depending	on	the	mode	of	action	of	the	chemical.	
For	example,	in	toxicity	tests	exposing	aquatic	arthropods	to	the	insecticide	diazi-
non,	it	was	observed	that	lethality	increased,	on	average,	by	a	factor	of	4.4	between	
48	and	96	hours	(Stuijfzand	et	al.	2000).	This	increase	in	toxicity	with	exposure	time	
may	be	smaller	when	focusing	on	more	sensitive	sublethal	measurement	endpoints	
(e.g.,	immobility).	For	most	organophosphorus	and	pyrethroid	insecticides,	there	is	
little	difference	in	EC50	values	for	aquatic	arthropods	exposed	for	48	or	96	hours;	
EC50s	decreased	by	a	factor	of	1.4	for	lambda-cyhalothrin	(n	=	10;	Schroer	et	al.	
2004a)	and	by	a	factor	of	1.6	for	chlorpyrifos	(n	=	7;	van	Wijngaarden	et	al.	1993).

Temporal	effects	may	be	more	marked	for	other	types	of	chemicals.	For	instance,	
a	96-hour	exposure	period	may	not	be	long	enough	to	reveal	the	incipient	toxicity	
of	 the	 fungicide	carbendazim	 to	aquatic	 invertebrates,	 the	 time	 required	 to	 reach	
incipient	concentrations	being	dependent	on	the	test	organisms	and	the	measurement	
endpoint	selected	(Table	6.1;	van	Wijngaarden	et	al.	1998).	In	Table	6.1	it	can	be	seen	
that,	 for	 the	crustaceans	Daphnia magna	and	Gammarus pulex,	 incipient	 toxicity	
concentrations	 were	 not	 attained	 after	 336	 hours	 of	 exposure	 to	 carbendazim.	 In	
these	long-term	toxicity	experiments,	the	animals	were	fed.	The	flatworm	Dugesia 
lugubris	was	the	most	sensitive	species	tested	against	carbendazim;	both	the	EC50	
and	LC50	values	for	this	species	decreased	by	a	factor	of	approximately	7	between	
48	and	96	hours.	In	addition,	it	appears	that	between	96	and	168	hours,	the	LC50	
value	for	Dugesia	decreased	again	by	approximately	a	factor	of	6,	and	incipient	tox-
icity	concentrations	were	reached	only	after	approximately	336	hours	of	exposure.	
In	contrast,	when	focusing	on	EC50	values	of	Dugesia,	differences	in	toxicity	values	
between	96	and	168	hours	differed	only	by	a	factor	of	2,	and	incipient	concentrations	
were	reached	after	168	hours	of	exposure	(van	Wijngaarden	et	al.	1998).	It	can	be	
concluded	that,	for	certain	receptor-specific	modes	of	action,	we	may	need	longer	

tAbLe	6.1
Relation	between	sublethal	(eC50)	or	lethal	(LC50)	toxicity	
values	(µg/L)	and	exposure	duration	(in	hours)	for	the	
microcrustacean	Daphnia magna,	the	macrocrustacean	
Gammarus pulex,	and	the	flatworm	Dugesia lugubris	exposed	
to	the	fungicide	carbendazim

Daphnia magna Gammarus pulex Dugesia lugubris

time eC50 LC50 eC50 LC50 eC50 LC50

48	hours 192 320 167 1041 178 876
96	hours 87 91 55 177 25 134
168	hours 61 61 47 53 12 22
336	hours 55 — 26 34 13 12
504	to	600	hours 44 — 16 16 12 14

Source:	After	van	Wijngaarden	et	al.	(1998).
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testing	periods	than	48	to	96	hours.	The	problem,	however,	often	is	lack	of	elucida-
tion	of	the	toxic	mode	of	action	of	the	chemicals	of	concern.

The	data	presented	above	are	for	temperate	species	and	show	that	the	time	needed	
to	reach	incipient	toxicity	is	dependent	on	the	type	of	chemical	and	the	species	and	
endpoint	tested.	However,	the	time	needed	to	reach	incipient	toxicity	values	may	be	
different	for	species	from	different	geographical	regions	subject	to	different	climate	
conditions	 (Chapman	 and	 Riddle	 2003).	 In	 colder	 polar	 environments,	 metabolic	
rates	may	be	slower	than	in	temperate	regions,	resulting	in	longer	response	times,	
whereas	in	warmer	climates,	metabolic	rates	of	organisms	may	be	higher,	resulting	
in	shorter	response	times.	For	Antarctic	species	exposed	to	zinc,	it	was	observed	that	
an	increase	in	exposure	time	from	4	to	14	days	resulted	in	an	increase	in	toxicity	by	
a	factor	of	3	to	22	(Ling	et	al.	1998).	According	to	a	review	by	Mayer	and	Ellersieck	
(1986),	temperature	and	toxicity	are	positively	correlated	for	most	chemicals.	Ele-
vated	temperatures	may	increase	respiration	in	the	organisms	and	increase	uptake	
across	membranes.	At	the	same	time,	elevated	temperatures	may	reduce	exposure	by	
increasing	the	metabolism	of	toxicants,	resulting	in	more	rapid	degradation	within	
the	organism.	In	a	study	of	the	effects	of	temperature	(test	range	10°C	to	26°C)	on	
cadmium	toxicity	to	Daphnia magna, it	was	demonstrated	that	cadmium	concentra-
tions	in	tissue	showed	a	greater	rate	of	increase	at	higher	temperatures	and	that	the	
time	needed	 to	 express	 the	 effects	 of	 a	 certain	 exposure	 concentration	 decreased	
(Heugens	 et	 al.	 2003).	 The	 mathematical	 model	 DEBtox	 (Bedaux	 and	 Kooijman	
1994)	provided	an	adequate	fit	to	the	cadmium	concentrations	in	the	daphnids.	In	
addition,	 the	 survival	of	 the	daphnids	was	described	well	by	 the	estimated	 tissue	
concentrations.	DEBtox	is	able	to	describe	time-dependent	toxicity	data,	which	con-
tain	information	about	the	dynamic	aspects	of	the	occurrence	of	effects.

Adequate	extrapolation	of	results	from	standard	laboratory	toxicity	tests	to	other	
time	scales	of	exposure	and	response	requires	observations	on	 the	 time	course	of	
toxic	effects.	These	observations	can	then	be	used	to	construct	time-to-event	models,	
such	as	the	DEBtox	model	mentioned	above.	These	models	explicitly	address	both	
intensity	and	duration	of	exposure	to	hazardous	chemicals,	and	better	use	is	made	
of	 the	data	gathered	 from	 toxicity	experiments.	Diverse	endpoints	 in	 time	can	be	
addressed,	 and	 individual	 organism	 characteristics	 and/or	 environmental	 circum-
stances	(e.g.,	temperature)	can	be	incorporated	as	covariables.	An	overview	of	time-
to-event	models	and	approaches	and	their	use	in	the	risk	assessment	of	chemicals	is	
provided	by	Crane	et	al.	(2002).

6.2.2	 rEvErsibiLity	of	rEsponsEs	anD	timE-variabLE	ExposurE

Some	 responses,	 such	 as	 mortality,	 are	 irreversible.	 However,	 many	 sublethal	
responses	may	be	reversible,	such	as	the	impact	of	the	photosynthesis-inhibiting	her-
bicide	 linuron	on	macrophytes	 (Snel	 et	 al.	1998).	Linuron	 inhibits	photosynthesis	
by	disturbing	electron	 transport	 in	photosystem	II.	Table	6.2	presents	 the	kinetics	
of	photosynthesis	inhibition	when	shoots	of	macrophytes	are	placed	in	water	with		
50	µg/L	linuron,	and	subsequent	recovery	when	placed	in	uncontaminated	water.	The	
EC50	values	are	remarkably	similar	between	macrophytes,	and	half-life	estimates	
for	inhibition	and	recovery	are	less	than	2	hours	(Table	6.2).	Except	for	Potamogeton 
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crispus,	inhibition	is	more	rapid	than	recovery;	however,	differences	between	spe-
cies	are	relatively	small.	Not	surprisingly,	Chara chlobularis,	with	its	small	distance	
between	chloroplasts	 and	external	medium,	 shows	 the	most	 rapid	kinetics.	These	
data	 are	 in	 accordance	 with	 observations	 on	 other	 photosynthesis-inhibiting	 her-
bicides.	For	instance,	recovery	of	algae	from	exposure	to	50	µg/L	of	atrazine	was	
nearly	 instantaneous,	 once	 the	 herbicide	 was	 removed	 from	 the	 overlying	 water	
(Klaine	et	al.	1997),	and	reversibility	of	the	effect	of	metribuzin	on	the	photosynthe-
sis	of	periphyton	communities	could	be	demonstrated	by	placing	periphyton	in	clean	
water	(Gustavson	et	al.	2003).

Reversibility	of	effects	in	exposed	individuals	has	also	been	reported	for	animals.		
For	 example,	 Little	 et	 al.	 (1993)	 exposed	 bluegill	 (Lepomis macrochirus)	 to	 the	
pyrethroid	esfenvalerate	and	assessed	aggressive	interactions	among	these	fish	after	
30,	60,	and	90	days	of	continuous	exposure	to	the	insecticide,	and	after	21	days	of	
recovery.	There	was	a	significant	reduction	in	aggressive	behavior	in	all	treatment	
groups	(0,	0.01,	0.025,	0.05,	0.1,	and	0.2	µg/L),	but	after	21	days,	aggressive	behavior	
had	only	recovered	in	the	0.01	µg/L	treatment	group;	hence,	the	reversibility	of	the	
effect	on	individuals	was	concentration-dependent.	Pulsed	exposure	to	esfenvalerate	
resulted	in	a	significant	decrease	in	the	aggressive	behavior	of	fish	exposed	to	0.1	µg/
L	or	greater,	but,	in	contrast	to	continuous	exposure	treatments,	aggression	was	simi-
lar	among	all	treatment	groups	21	days	after	the	final	pulsed	exposures.	Therefore,	
reversibility	of	the	effect	was	dependent	on	concentration,	exposure	type,	and	dura-
tion	of	exposure.	These	data	demonstrate	that	the	issue	of	reversibility	of	toxic	effects	
cannot	be	ignored	when	evaluating	the	risks	of	pulsed	and	multiple	exposures.

For	 some	 compounds,	 no	 difference	 in	 toxicity	 has	 been	 observed	 between	
time-varying	or	repeated	and	continuous	exposures.	This	situation	can	occur	when	
responses	are	related	to	peak	exposure	rather	than	time-weighted	exposures,	when	
exposures	are	cumulative	(compounds	with	slow	depuration	rates),	or	when	effects	
are	only	slowly	reversible	(organism	“memory”;	van	der	Hoeven	and	Gerritsen	1997).		

tAbLe	6.2
eC50	values	(and	95%	confidence	limits)	for	the	effects	of	linuron		
on	the	efficiency	of	photosystem	II	in	aquatic	macrophytes

Plant	species eC50	in	µg/L
Inhibition	t1/2	in	

hours
Recovery	t1/2	

in	hours

Elodea nuttallii 13.3	(10.7	to	16.8) 0.41 1.5
Myriophyllum spicatum 11.8	(6.9	to	20.5) 0.23 1.8
Potamogeton crispus 12.9	(9.6	to	17.4) 1.90 0.57
Ranunculus circinatus 13.2	(11.0	to	16.0) 0.16 1.00
Chara chlobularis 12.1	(7.9	to	18.5) 0.10 0.45

Note:	Kinetics	of	the	inhibition	of	photosystem	II	electron	flow	in	these	macrophytes	by	50	µg/L	linuron	
and	the	subsequent	recovery	of	inhibition	by	washing	with	uncontaminated	well	water	are	expressed	as	
half-life	times	(t1/2).

Source:	Adapted	from	Snel	et	al.	(1998).
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For	example,	no	difference	in	the	toxicity	of	organophosphorus	compounds	to	larvae	
of	the	midge	Chrironomus riparius	was	observed	between	pulsed	and	continuous	
exposures	 (Kallander	et	al.	1997).	 In	 the	 same	study,	however,	 two	1-hour	pulses	
caused	 significantly	 fewer	 symptoms	 of	 intoxication	 than	 2	 hours	 of	 continuous	
exposure	to	carbamate	compounds,	when	animals	were	placed	in	clean	water	for	at	
least	2	to	6	hours	between	treatments	(Kallander	et	al.	1997),	suggesting	that	detoxi-
fication	or	elimination	of	the	toxicant	during	the	toxicant-free	period	can	reduce	the	
toxic	effects	of	the	earlier	exposures.

Most	laboratory	single-species	tests	are	conducted	using	standard	times	(48	or	
96	hours)	 that	may	not	be	 similar	 to	 realistic	environmental	 exposures	of	 shorter	
duration,	for	example,	when	environmental	dissipation	and/or	degradation	rates	are	
relatively	great,	or	when	concentrations	quickly	decline	due	to	dilution	(e.g.,	pulsed	
exposure	regimes	in	rivers).	Several	model	ecosystem	experiments,	particularly	in	
artificial	streams,	have	demonstrated	that	the	severity	of	ecological	responses	and/or	
threshold	concentrations	is	lower	for	shorter	pulse-exposure	durations.	Hose	et	al.	
(2002)	studied	the	effects	of	12-	and	48-hour	exposures	 to	aqueous	endosulfan	in	
artificial	streams.	NOECs	for	 this	organochlorine	 insecticide	with	the	most	sensi-
tive	endpoint	of	 the	macroinvertebrate	assemblages	were	8.7	and	1.0	µg/L	for	 the	
12-	and	48-hour	exposure	regimes,	respectively.	In	other	Australian	studies,	Pusey	
et	 al.	 (1994)	 observed	 that	 a	 6-hour	 pulse	 to	 0.1	 µg/L	 chlorpyrifos	 did	 not	 result	
in	effects	on	arthropod	populations	 in	experimental	streams,	whereas	Ward	et	al.	
(1995)	 demonstrated	 pronounced	 effects	 on	 the	 macroinvertebrate	 assemblage	 in	
these	test	systems	as	a	result	of	continuous	exposure	to	the	same	concentration	for	
3	weeks.	Similar	relationships	between	exposure	duration	and	ecological	responses	
in	experimental	ecosystems	are	reported	for	herbicides.	Adverse	effects	on	biomass	
and	cell	densities	of	periphytic	algae	could	not	be	observed	in	streams	exposed	twice	
for	24	hours	(interval	14	days)	to	100	µg/L	atrazine	(Jurgensen	and	Hoagland	1990).	
In	contrast,	in	experimental	streams,	a	7-day	exposure	to	100	µg/L	of	this	photosyn-
thesis-inhibiting	herbicide	resulted	in	significant	effects	on	periphyton	(Moorhead		
and	Kosinski	1986).	In	addition,	a	21-day	exposure	to	10	µg/L	also	resulted	in	signif-
icant	treatment-related	effects	on	periphyton	(Kosinski	and	Merkle	1984;	Kosinski	
1984).	 These	 observations	 were	 confirmed	 by	 model	 ecosystem	 experiments	 per-
formed	with	another	photosynthesis	inhibitor.	In	artificial	streams,	a	12-hour	pulse	
exposure	to	2700	µg/L	hexazinone	elicited	little	effect	on	the	structure	and	function-
ing	of	the	aquatic	community	(Kreutzweiser	et	al.	1995),	whereas	in	lake	enclosures	
a	single	peak	load	of	100	µg/L	(without	renewal	of	water)	caused	pronounced	effects	
on	oxygen	metabolism	and	densities	of	plankton	(Thompson	et	al.	1993a,	1993b).	
The	mechanism	of	action	of	these	herbicides	is	inhibition	of	photosynthesis,	which	
can	be	reversed	(Jensen	et	al.	1977).	This	reversal	explains	the	minimal	impact	that	
short-term	 pulse	 exposures	 to	 atrazine	 and	 hexazinone	 have	 on	 the	 structure	 of	
periphyton	communities	(see	above).

Effects	on	organisms	may	be	similar	when	they	are	exposed	for	a	short	time	to	a	
greater	concentration	or	for	a	longer	time	to	a	smaller	concentration,	a	phenomenon	
referred	to	as	“reciprocity”	(Giesy	and	Graney	1989).	For	example,	a	4-day	exposure	
at	4	µg/L	may	cause	 the	 same	effects	 as	a	1-day	exposure	at	16	µg/L	or	a	2-day	
exposure	at	8	µg/L,	an	example	of	linear	reciprocity.	Similarly,	Heming	et	al.	(1988)	
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showed	that	short	(2-hour)	pulsed	exposure	of	early	life	stages	of	rainbow	trout	to	
methoxychlor	 (580	µg/L)	produced	similar	effects	 to	 static	exposures	 to	30	µg/L.	
According	to	Giesy	et	al.	(1999),	reciprocity	relationships	may	be	used	to	estimate	
responses	to	shorter	environmental	exposures	where	they	are	less	than	those	used	in	
“acute”	bioassays	in	the	laboratory.

However,	 several	 experimental	 studies	 revealed	 that	 reciprocity	 did	 not	 ade-
quately	describe	effects	in	other	types	of	time-varying	exposure	regimes	(e.g.,	Bailey	
et	al.	1985;	Schulz	and	Liess	2000;	Naddy	and	Klaine	2001).	Apparently,	reciprocity	
only	holds	when	dealing	with	an	exposure	that	causes	a	certain	degree	of	damage	
in	 the	organism	 that	 is	 not,	 or	 is	 only	 to	 a	 small	 degree,	 repaired	 in	 the	 interval	
between	 repeated	 exposures.	 If	 the	damage	 is	 repaired	 relatively	quickly	 and	 the	
effect	is	reversible,	the	effect	is	predominantly	caused	by	the	highest	concentration	
during	the	exposure	period.	If,	on	the	other	hand,	elimination	of	the	compound	from	
the	organism	occurs	relatively	slowly,	and/or	irreversible	binding	of	the	compound	
to	receptors	occurs,	then	the	effect	is	probably	best	described	by	some	other,	more	
integral	measure	of	 exposure,	 and	not	by	 the	maximum	concentration	during	 the	
exposure	period.

Intermittent	and	multiple	exposures	may	allow	not	only	for	interexposure	detoxifica-
tion	and/or	excretion,	but	also	for	acclimation,	behavioral	adaptation,	selection	of	more	
susceptible	individuals,	or	population	recovery	(for	organisms	with	short	generation	
times).	Population	recovery	and	adaptation	are	discussed	in	detail	in	Sections	6.3.3	and	
6.3.4.	An	example	of	acclimation	is	the	induction	of	biotransformation	enzymes	such	
as	cytochrome	P-450-dependent	monooxygenases	and	mixed-function	oxygenases		
in	fish	(Sipes	and	Gandolfi	1986;	Parrott	et	al.	1995;	Burnison	et	al.	1996).	These	
enzymes	better	allow	exposed	organisms	to	physiologically	cope	with	the	toxicants.	
An	example	of	behavioral	adaptation,	avoidance	of	exposure	to	pulses	of	toxicants,	
is	provided	by	Rajagopal	et	al.	(2003).	They	studied	the	impact	of	continuous	and	
intermittent	chlorination	(pulses	of	4	hours	of	exposure	followed	by	4	hours	of	no	
exposure)	 on	 3	 mussel	 species	 (Dreissena polymorpha,	 Mytilus edulis,	 and	 Myt-
ilopsis leucophaeata).	 Mussels	 shut	 their	 valves	 as	 soon	 as	 chlorine	 was	 applied	
and	 opened	 them	 only	 after	 chlorine	 exposure	 was	 stopped.	 Under	 conditions	 of	
continuous	chlorination,	mussels	kept	their	shell	valves	shut	and	experienced	100%	
mortality	after	3	 to	7	weeks	 (dependent	on	species)	of	continuous	chlorination	at		
1	 mg/L.	 However,	 the	 3	 mussel	 species	 subjected	 to	 intermittent	 chlorination	 at		
1	mg/L	showed	little	or	no	mortality	during	the	same	periods.

6.2.3	 mEchanistic	moDELs	to	prEDict	EffEcts	of	timE-variabLE	ExposurE

Mathematical	models	have	been	developed	and	used	 to	extrapolate	 toxicity	under	
pulsed	exposure	conditions	(for	an	overview,	see	Boxall	et	al.	2002;	Reinert	et	al.	
2002;	Ashauer	et	al.	2006;	Jager	et	al.	2006).	Some	models	consider	concentration	
×	time	(Meyer	et	al.	1995);	others,	uptake	and	depuration	(Mancini	1983)	or	dam-
age	and	 repair	 (Breck	1988).	Several	models	 are	based	on	 the	 concept	of	 critical	
body	residues,	which	integrates	toxicokinetics	and	the	effects	of	exposure	time	on	
toxicity	(McCarty	and	Mackay	1993;	Barron	et	al.	2002).	This	approach	is	prom-
ising	because	several	studies	showed	that	 toxicity	from	pulse	exposures	 is	 largely	
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controlled	by	accumulation	and	elimination	rates	of	toxicants	by	exposed	organisms	
(Hickie	et	 al.	1995).	However,	 the	main	 limitation	of	 the	use	of	 the	critical	body	
residue	approach	in	risk	assessment	is	its	dependence	on	age,	sex,	lipid	content,	and	
other	variables	of	an	individual	within	a	species	(e.g.,	Deneer	et	al.	1999).

In	the	mechanistic	models	used	to	predict	toxic	effects	of	time-variable	exposure	
to	organisms,	a	distinction	can	be	made	between	1-step	models	and	2-step	models	
(Ashauer	et	al.	2006).	One-step	models	only	consider	toxicokinetics,	whereas	2-step	
models	 consider	 both	 toxicokinetics	 and	 toxicodynamics.	One-step	 models	 try	 to	
describe	the	uptake	and	elimination	of	a	given	compound	in	an	organism	and	relate	
the	 calculated	 internal	 concentration	 to	 the	 effect	 occurring.	 Usually,	 an	 average	
total	body	residue	is	calculated,	assuming	that	the	concentration	at	the	actual	site(s)	
of	action	will	be	linearly	related	to	the	total	body	concentration.	In	specific	cases,	it	
may	be	necessary	to	calculate	the	concentration	at	the	site	of	action	through	the	use	
of	more	refined	multicompartment	(PBPK)	models.

Two-step	models	include,	besides	the	toxicokinetic	terms	“uptake”	and	“elimina-
tion,”	terms	addressing	toxicodynamics	such	as	“injury”	and	“repair.”	Ashauer	et	al.	
(2006)	concluded	that	2	approaches	of	such	2-step	models	are	suitable	to	model	the	
effects	of	time-variable	exposure	to	aquatic	organisms:	one	approach	originates	from	
the	damage	assessment	model	(Lee	et	al.	2002),	and	the	other	from	the	DEBtox	con-
cept	(Bedaux	and	Kooijman	1994).	Ashauer	et	al.	(2007)	combined	these	approaches	
to	form	the	threshold	damage	model.	The	2-step	models	mentioned	above	will	be	
difficult	to	operationalize,	calibrate,	and	validate	without	extensive	research,	which	
is	partly	due	to	the	fact	that	species-	and	compound-specific	parameterizations	are	
necessary.	The	feasibility	of	extrapolation	to	other	species	and/or	compounds	has	not	
yet	been	demonstrated.	Nevertheless,	as	stated	by	Ashauer	et	al.	(2007),	parameter-
izing	these	models	for	different	species	could	facilitate	a	better	understanding	of	the	
causes	for	the	distribution	of	species	sensitivities	toward	toxicants,	hence	leading	to	
new	approaches	for	interspecies	extrapolation	of	toxicity.

Where	effects	are	known	to	be	dependent	on	pulsed	exposures,	and	the	temporal	
nature	of	the	exposures	is	modeled	or	measured,	the	exposures	can	be	characterized	
using	a	tool	such	as	the	Risk	Assessment	Tool	to	Evaluate	Duration	and	Recovery	
(RADAR),	developed	as	part	of	the	efforts	of	ECOFRAM	(ECOFRAM	1999;	Reinert		
et	al.	2002).	This	tool	provides	information	on	pulse	magnitude,	duration,	and	inter-
pulse	interval,	which	is	particularly	useful	for	assessing	likely	effects	on	classes	of	
organisms	with	known	recovery	times	and	time-exposure	responses.

6.2.4	 acutE-to-chronic	rEsponsE

The	 extrapolation	 from	 acute	 responses	 to	 no-observed-effect	 concentrations	 or	
chronic	responses	is	particularly	important	as	chronic	tests	are	more	costly	and	time-
consuming	than	acute	tests.	Traditionally,	relationships	between	acute	and	chronic	
effects	were	estimated	using	a	simple	ratio,	the	acute-to-chronic	ratio	(ACR).	Where	
acute	and	chronic	effect	measures	are	available	for	 the	same	species,	 this	 ratio	 is	
used	to	estimate	chronic	responses	in	related	organisms	for	which	only	acute	data	
are	 available	 (Stephan	and	Rogers	1985).	This	 approach	 is	based	on	 the	 assump-
tion	that	there	is	a	relationship	between	the	responses	in	acute	and	chronic	tests,	an	
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assumption	that	is	not	necessarily	true.	For	example,	in	an	acute	test	the	response	
observed	may	be	lethality,	whereas	in	the	chronic	test	it	is	growth	or	reproduction.

ACRs	(=	acute	L(E)C50	and/or	chronic	NOEC)	were	calculated	for	all	aquatic	
species	 in	 the	 ECETOC	 database	 and	 presented	 according	 to	 specific	 substance	
classes	(Länge	et	al.	1998).	For	8	of	the	28	species	in	the	analysis,	it	was	possible	to	
calculate	ACRs	for	5	or	more	chemicals.	The	minimum,	median,	90th	centile,	and	
maximum	values	for	the	acute–chronic	ratios	were	determined	for	several	classes	of	
those	chemicals	(Table	6.3).	Median	and	90th	centile	ACRs	were	highest	for	metals		
and	organometals,	followed,	in	decreasing	order,	by	pesticides,	other	inorganic	sub-
stances,	and	other	organic	substances.

Although	 it	 has	 been	 concluded	 that	 a	 significant	 relationship	 exists	 between	
acute	 and	 chronic	 effects	 in	 some	 organisms	 and	 for	 some	 types	 of	 data,	 a	 high	
uncertainty	factor	may	be	necessary	if	predictions	with	a	very	high	protection	are	
required.	For	example,	for	pesticides,	uncertainty	factors	between	100	and	800	may	
be	necessary	for	aquatic	invertebrates	and	95th	centile	predictions	(Elmegaard	and	
Jagers	op	Akkerhuis	2000).	The	data	for	pesticides	presented	in	Table	6.3,	however,	
suggest	that	an	uncertainty	factor	up	to	100	may	suffice	for	90th	centile	predictions,	
and	around	10	for	50th	centile	predictions.

Methods	for	acute-to-chronic	extrapolations	have	been	developed	and	are	avail-
able	as	computer	programs	such	as	the	acute-to-chronic	estimation	(ACE;	Mayer	et	al.		
1994;	Ellersieck	et	al.	2003)	software,	which	makes	use	of	3	methods	—	regression,		
multifactor	probit	analysis,	and	accelerated	life	testing	—	to	consider	the	relationship	
between	exposure	concentration,	degree	of	response,	and	time	course	of	response	
(Mayer	et	al.	1994;	Sun	et	al.	1995;	Lee	et	al.	1995).	All	methods	produce	confidence	
intervals	around	the	LC	and/or	EC	percentage	point	estimate.

An	analysis	of	 regularities	observed	 in	 species	 sensitivity	distributions	 (SSD)		
fitted	on	acute	and	chronic	aquatic	toxicity	data	for	a	large	number	of	organic	and	
inorganic	 toxicants	 is	 provided	 by	 De	 Zwart	 (2002).	 The	 log-logistic	 sensitivity	
model	he	used	is	characterized	by	the	parameter	a,	which	is	the	mean	of	the	observed	
log10-transformed	L(E)C50	or	NOEC	values	over	a	variety	of	 test	 species,	and	 b,	
a	 scale	 parameter	 proportional	 to	 the	 standard	 deviation	 of	 the	 log10-transformed	

tAbLe	6.3
Acute–chronic	ratios	(acute	L[e]C50	and/or	chronic	noeC)	from	the	
eCetoC	aquatic	toxicity	(eAt)	database	for	all	aquatic	species

Group Minimum 50th	Centile 90th	Centile Maximum

Metals	and	organometals	 0.3 28 192 1290
Other	inorganics 2.9 8.4 20.1 69.3
Pesticides 1.3 12 83.7 371
Other	organics 0.13 3.9 15.9 27.5

Source:	From	Länge	et	al.	(1998).
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toxicity	values.	A	regression	of	acute	and	chronic	b	values	for	a	large	number	of	chem-
icals	reveals	that	the	average	acute	toxicity	is	approximately	a	factor	of	10	higher	in	
concentration	than	the	average	chronic	toxicity	(Figure	6.2).	Provided	that	enough	
data	for	individual	species	are	available,	regression	analysis	on	the	acute	and	chronic	
b	values	indicates	that	the	factorial	difference	between	the	sensitivities	of	the	most	
and	least	sensitive	species	tested	is	about	equal	for	both	acute	and	chronic	tests.	De	
Zwart	(2002)	suggested	that	the	observed	regularities	may	be	used	to	assign	surro-
gate	SSD	parameters	in	situations	where	appropriate	sets	of	acute	toxicity	data	are	
available	but	corresponding	appropriate	chronic	data	sets	are	lacking.

Maltby	et	al.	(2002)	and	Van	den	Brink	et	al.	(2006a)	compared	SSDs	based	on	
acute	and	chronic	laboratory	toxicity	data	for	aquatic	test	species	exposed	to	pesti-
cides.	The	SSDs	were	constructed	with	toxicity	data	for	the	most	sensitive	taxonomic	
group,	because	of	the	specific	toxic	mode	of	action	of	the	pesticides	selected.	The	
SSDs	were	used	to	calculate	the	hazardous	concentration	to	5%	of	the	species	(HC5)	
by	means	of	a	log-normal	distribution	model,	and	comparisons	were	performed	for	2	
insecticides	and	7	herbicides	(Table	6.4).	The	log-normal	model	did	not	fit	the	diuron	
(herbicide)	 short-term	 L(E)C50	 data	 or	 the	 atrazine	 (herbicide)	 long-term	 NOEC	
data.	Consequently,	the	L(E)C50	HC5	value	for	diuron	and	the	NOEC	HC5	value	
for	atrazine	should	be	interpreted	with	caution,	as	well	as	their	acute	HC5–chronic	

Chronic = 1.053 Acute 1.430
95% conf. intervals
Slope:       0.889  to 1.217
Intercept:  1.973  to 0.888
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FIGURe	6.2	 Comparison	of	average	acute	and	chronic	toxicities	for	aquatic	species	Source:	
Drawn	from	data	from	De	Zwart	(2002).
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HC5	ratios.	Of	the	9	pesticides	investigated,	6	compounds	showed	a	ratio	of	less	than	
10	between	the	median	L(E)C50	HC5	and	the	median	NOEC	HC5	values.	For	the	
herbicides	linuron	and	2,4-D,	this	ratio	was	slightly	greater	than	10	(i.e.,	11.6	and	
13.9,	respectively),	and	for	the	herbicide	diuron	this	ratio	was	substantially	greater	
(i.e.,	 36.3).	The	 acute	HC5–chronic	HC5	 ratios	based	on	 lower	 limits	were	 some	
what	 lower	 to	5	 times	greater	 than	 those	based	on	median	values.	The	2	selected	
insecticides	showed	the	lowest	ratios.	The	data	presented	in	Table	6.4	suggest	that,	
for	all	pesticides	except	diuron,	a	chronic	HC5	may	be	estimated	from	an	acute	HC5	
by	applying	an	uncertainty	 factor	of	10	 to	15,	whereas,	 for	all	compounds	except	
1,	an	uncertainty	factor	of	20	would	suffice	to	extrapolate	lower	centile	acute	HC5	
values	to	the	lower	centile	chronic	HC5	values.	A	pragmatic	approach	for	a	specific	
substance	might	be	to	adopt	an	uncertainty	factor	equivalent	to	the	acute-to-chronic	
ratio	observed	in	guideline	tests	with	sensitive	standard	test	species.	However,	the	
data	presented	in	Table	6.4	are	limited	to	2	acetylcholinesterase-inhibiting	insecti-
cides	(azinphos-methyl	and	diazinon),	1	auxin-simulating	herbicide	(2,4-D),	5	photo-
synthesis-inhibiting	herbicides	(atrazine,	diuron,	linuron,	metribuzin,	and	simazine),	
and	 1	 herbicide	 that	 inhibits	 cell	 division	 and	 shoot	 elongation	 (pendimethalin).	

tAbLe	6.4
estimates	of	HC5	in	µg/L	(with	95%	confidence	limits)	for	the	most	
sensitive	taxonomic	group	to	pesticides	in	single-species	short-term	toxicity	
tests	using	L(e)C50	as	the	endpoint	and	long-term	toxicity	tests	using	
noeC	as	the	endpoint

Pesticide
noeC	HC5	(95%	
confidence	limits)

L(e)C50	HC5	(95%	
confidence	limits)

L(e)L50:	
noeC	HC5	

Median

L(e)	C50:	
noeC	HC5	
lower	95%	
confidence	

limit

Azinphos-methyl 0.038	(0.005	to	0.121) 0.044	(0.009	to	0.142) 1.2:1 1.8:1
Diazinon 0.094	(0.019	to	0.217) 0.286	(0.090	to	0.674) 3.0:1 4.7:1
2,4-D 5.1	(0.57	to	16) 71	(7.1	to	199) 13.9:1 12.5:1
Atrazine 3.0a	(1.3	to	5.3) 13	(5.8	to	24) 4.3:1 4.5:1
Diuron 0.34	(0.04	to	1.0) 12a	(7.6	to	16) 35.3:1 190:1
Linuron 0.50	(0.09	to	1.4) 5.8	(0.74	to	17) 11.6:1 8.2:1
Metribuzin 1.4	(0.20	to	3.3) 7.4	(4.0	to	11) 5.3:1 20:1
Pendimethalin 0.51	(0.03	to	1.8) 2.0	(0.20	to	5.1) 3.9:1 6.7:1
Simazine 6.4	(1.7	to	13) 52	(18	to	92) 8.1:1 10.6:1

a	The	log-normal	model	did	not	appropriately	fit	the	data.

Note:	The	most	sensitive	taxonomic	group	was	Arthropoda	for	insecticides	(azinphos-methyl	and	diazi-
non),	macrophytes	for	the	herbicide	2,4-D,	and	algae	and	macrophytes	for	the	other	herbicides	(atrazine	
and	simazine).

Source:	Data	 for	 insecticides	according	 to	Maltby	et	al.	 (2002)	and	 those	for	herbicides	after	Brock		
et	al.	(2004)	and	van	den	Brink	et	al.	(2006a).
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More	 chronic	 toxicity	 data	 on	 compounds	 with	 other	 toxic	 modes	 of	 action	 are	
required	before	a	more	robust	generalization	can	be	offered.

A	few	aquatic	micro-	and/or	mesocosm	experiments	allow	for	a	comparison	
between	ecological	 threshold	concentrations	 for	 short-term	and	 long-term	expo-
sures	 to	pesticides.	In	experimental	ditches,	a	short-term	pulsed	exposure	to	 the	
photosynthesis-inhibiting	herbicide	linuron	resulted	in	an	NOEC	of	5	µg/L	based	
on	the	most	sensitive	structural	endpoint	(abundance	of	algae;	Kersting	and	van	
Wijngaarden	1999;	van	Geest	et	al.	1999).	The	threshold	concentration	for	long-
term	exposure	was	a	factor	of	10	 lower;	in	indoor	macrophyte-dominated	micro-
cosms,	which	were	treated	chronically	for	4	weeks	with	linuron,	the	NOEC	of	the	
most	sensitive	structural	endpoint	was	0.5	µg/L	(abundance	of	algae	and	biomass	of	
macrophytes;	van	den	Brink	et	al.	1997;	Cuppen	et	al.	1997).

The	same	test	systems	were	used	to	study	the	impact	of	the	acetylcholinesterase-
inhibiting	insecticide	chlorpyrifos.	In	the	experimental	ditches,	a	single	application	
of	chlorpyrifos	resulted	in	a	short-term	exposure	regime	and	an	overall	NOEC	of		
0.1	µg/L	based	on	the	most	sensitive	structural	endpoint	(abundance	of	arthropods;	
van	 den	 Brink	 et	 al.	 1996;	 van	 Wijngaarden	 et	 al.	 1996).	 In	 indoor	 microcosms,	
which	were	treated	chronically	for	4	weeks	with	an	insecticide	mixture	of	chlorpy-
rifos	and	lindane,	slight	and	transient	effects	(class	2	sensu;	Brock	et	al.	2000a)	on	
1	crustacean	species	were	observed	at	treatment	concentrations	of	0.01	µg/L	chlor-
pyrifos	in	combination	with	0.3	µg/L	lindane	(van	den	Brink	et	al.	2002b;	Cuppen	
et	al.	2002).	These	data	suggest	that,	at	the	ecosystem	level,	and	when	considering	
responses	of	the	most	sensitive	endpoints	to	chlorpyrifos,	the	ACR	of	this	compound	
will	be	around	10.

A	single	application	of	 the	acyl-urea	 insecticide	diflubenzuron	was	studied	 in	
indoor	microcosms	and	outdoor	enclosures	(Moffet	et	al.	1995).	The	acute	exposure	
regime	to	diflubenzuron	resulted	in	an	NOEC	of	0.3	µg/L	and	slight	transient	effects	
(Effect	class	2,	according	to	Brock	et	al.	2000a)	on	some	arthropod	populations	at	0.7	
µg/L	(Moffet	et	al.	1995).	In	artificial	streams,	Hansen	and	Garton	(1982)	studied	the	
ecological	impact	of	chronic	exposure	(26	weeks)	to	diflubenzuron.	They	observed	
an	NOEC	of	0.1	µg/L	based	on	the	most	sensitive	endpoint	of	the	invertebrate	com-
munity	and	populations.	Again,	the	short-term	and	long-term	exposure	studies	with	
diflubenzuron	 reveal	 a	 ratio	 of	 less	 than	 10	 between	 the	 acute	 NOECecosystem	 and	
the	chronic	NOECecosystem	 in	experimental	aquatic	ecosystems.	These	observations	
are	 in	 line	 with	 the	 ratios	 between	 median	 acute	 HC5	 and	 median	 chronic	 HC5		
values	for	pesticides	presented	above	(Table	6.4).

In	the	scientific	literature,	relatively	few	examples	of	model	ecosystem	experi-
ments	can	be	found	that	compare	the	ecological	responses	between	an	acute	and	a	
chronic	exposure	regime	for	the	same	chemical.	A	larger	database	may	be	obtained	
when	combining	 the	 results	of	experiments	performed	with	compounds	 that	have	
similar	toxic	modes	of	action	and	by	expressing	the	effect	concentrations	in	toxic	
units	 (1TU	 =	 L[E]C50	 of	 the	 most	 sensitive	 standard	 test	 species).	 For	 example,	
this	was	done	for	 insecticides	by	Brock	et	al.	 (2000b)	and	van	Wijngaarden	et	al.	
(2005b)	(see	Figure	6.3).	The	probability	of	insecticide	effects	occurring	in	micro-
cosm	and	mesocosm	studies	was	calculated	by	analyzing	the	combined	data	set	of	
all	 available	 insecticide	 studies	using	 logistic	 regression;	by	making	a	distinction	
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between	single-application	exposure,	repeated-application	exposure,	and	continuous	
chronic	exposure;	and	by	using	the	effects	classes	presented	in	Table	1.3	(Chapter	1)		
to	describe	responses.	Table	6.5	presents	the	5th,	50th,	and	95th	centile	values	for	
micro-	and/or	mesocosm	effect	concentrations	(MEC;	expressed	in	toxic	units)	with	
95%	confidence	intervals	when	comparing	no	or	transient	effects	(classes	1	and	2)	
versus	clear	effects	(classes	3,	4,	and	5)	for	the	3	exposure	regimes.	The	confidence	
intervals	 of	 the	 50th	 centile	 MEC	 values	 are	 relatively	 small	 when	 compared	 to	
the	5th	and	95th	centile	values.	Overall,	the	difference	in	MEC	values	between	the		
single-	 and	 repeated-application	 exposure	 regimes	 was	 larger	 than	 between	 the	
repeated	and	chronic	exposure	regimes.	It	should	be	noted	that	the	category	“repeated	
applications”	is	rather	heterogeneous	because	the	number	of	applications	between	
studies	varied	considerably.	When	comparing	the	median	5th,	50th,	and	95th	centile	
MEC	values	of	no	or	transient	effects	versus	those	of	clear	effects	(Table	6.5)	between	
single-application	exposure	and	chronic	exposure,	it	appears	that	uncertainty	factors	
of	12,	6,	and	3,	respectively,	are	needed	to	extrapolate	threshold	concentrations	for	
acute	insecticide	exposure	to	those	of	a	chronic	exposure	regime.

The	 insecticides	 used	 in	 the	 studies	 contributing	 to	 Figure	6.3	 and	 Table	6.5	
comprised	mainly	nonpersistent	compounds.	In	microcosm–mesocosm	experiments	

FIGURe	6.3	 Responses	 of	 the	 most	 sensitive	 endpoints	 in	 aquatic	 microcosm	 and	 meso-
cosm	 studies	 treated	 once	 (A),	 repeatedly	 (B),	 or	 chronically	 (C)	 with	 an	 acetylcholines-
terase-inhibiting	 or	 pyrethroid	 insecticide.	 Note:	 The	 effects	 are	 expressed	 in	 toxic	 units	
(1	TU	=	L[E]C50)	of	the	most	sensitive	standard	test	species	(TUmso)	and	classified	(Effect	
class)	according	to	magnitude	and	duration.	1	=	no	significant	effect,	2	=	slight	effect,	3	=	
clear	 short-term	effect	 (<	8	weeks),	4	=	clear	effect	 in	short-term	study	 (recovery	moment	
unknown),	and	5	=	clear	long-term	effect	(>	8	weeks).	Source:	Redrawn	from	data	after	Brock	
et	al.	(2000b)	and	van	Wijngaarden	et	al.	(2005b).
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performed	with	more	persistent	water-soluble	pesticides	like	atrazine	(for	an	over-
view,	see	Brock	et	al.	2000b),	the	ecological	threshold	concentrations	for	short-term	
and	long-term	exposure	regimes	are	more	difficult	to	compare	because	most	experi-
ments	were	performed	in	lentic	or	recirculating	lotic	test	systems,	in	which	a	single	
application	already	resulted	in	chronic	exposure.

6.2.5	 LatEncy	of	rEsponsEs

Delayed	responses	or	 latency	must	also	be	considered	when	extrapolating	effects.	
In	order	to	demonstrate	latency	(or	lack	thereof)	in	acute	studies,	observations	must	
continue	after	the	exposure	is	completed	and	the	organism	has	been	removed	from	
the	stressor	(Figure	6.4).	This	is	not	commonly	done	in	routine	acute	toxicity	testing,	
and	special	tests	may	have	to	be	designed	to	observe	this	response.	In	studies	char-
acterized	by	long-term	exposure	regimes,	latency	can	be	determined	by	observing	
the	responses	of	organisms	during	their	whole	life	cycle.	It	may	even	be	required	to	
make	observations	on	the	responses	of	the	offspring.

A	 latent	 response	 in	 an	 acute	 test	 may	 occur	 because	 the	 action	 of	 the	 toxic	
substance	causes	its	effects	through	a	chain	of	irreversible	reactions	that	take	some	
time	to	occur.	For	example,	in	experiments	in	which	grass	shrimps	(Palaemonetes 
pugio)	were	exposed	for	6	hours	to	the	insecticides	azinphos-methyl	and	endosulfan,		

tAbLe	6.5
Microcosm	and/or	mesocosm	effect	concentrations	(MeC)	as	
calculated	by	means	of	logistic	regression

estimate 	95%	confidence	limits

no	and	slight	effects	versus	clear	effects

Single MEC5% 0.036 (0.007	to	0.198)
MEC50% 0.261 (0.126	to	0.541)
MEC95% 1.862 (0.502	to	6.914)

Multiple MEC5% 0.023 (0.007	to	0.070)
MEC50% 0.052 (0.032	to	0.085)
MEC95% 0.119 (0.050	to	0.284)

Chronic MEC5% 0.003 (0.000	to	4.868)
MEC50% 0.043 (0.003	to	0.665)
MEC95% 0.544 (0.010	to	29.01)

Note:	MECs	with	95%	confidence	limits	are	expressed	in	toxic	units	(1	TU	=	L[E]C50	
of	the	most	sensitive	standard	test	species).	MECs	were	expressed	as	5,	50,	and	95	per-
centages	of	probability	of	effects	occurring	on	the	most	sensitive	endpoints	for	acetyl-
cholinesterase-inhibiting	and	pyrethroid	insecticides	(Figure	6.3).	MECs	were	calculated	
for	the	scenario	where	no	and	slight	effects	are	placed	against	clear	effects	(classes	1	and	
2	versus	classes	3,	4,	and	5).	Results	were	based	on	responses	found	in	studies	using	
single,	multiple,	and	chronic	insecticide	applications.

Source:	Adapted	from	van	Wijngaarden	et	al.	(2005b).
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the	highest	mortality	was	observed	in	the	postexposure	period	when	the	test	animals	
were	placed	in	a	pesticide-free	medium	(Moore	et	al.	1990).

The	presence	of	a	sensitive	life	stage	or	period	may	also	be	one	of	the	causes	
of	 latency.	For	example,	 the	effects	of	diflubenzuron	 (an	 insect	growth	 regulator)	
on	aquatic	macroinvertebrates	were	not	observed	until	molting	began,	some	2	to	4	
weeks	after	a	single	exposure	(Hurd	et	al.	1996).	When	larvae	of	the	trichopteran	
Limnephilus lunatus	were	exposed	 for	1	hour	 to	0.1	µg/L	 fenvalerate,	and	subse-
quently	placed	in	contaminant-free	artificial	streams,	there	were	few	mortalities,	but	
a	delay	 in	development	and	emergence	was	observed	(Liess	and	Schulz	1996).	 In	
aquatic	ecosystems	that	periodically	dry	out	in	summer,	such	a	delay	in	development	
time	may	have	severe	consequences	for	population	survival	(Liess	1998).

In	chronic	studies,	latency	may	result	from	delays	in	the	chain	of	events	between	
exposure	and	expression	of	effects.	In	some	cases	this	may	be	the	result	of	an	effect	
on	a	developmental	process	that	only	becomes	apparent	later	in	the	life	cycle	of	the	
organism,	or	even	in	its	offspring.	For	example,	selenium	is	an	essential	metal	that	
is	highly	toxic	at	high	concentrations,	particularly	to	the	early	life	stages	of	certain	
species	of	fish,	ducks,	and	wading	birds	(Lemly	2002).	Selenium	is	efficiently	trans-
ferred	from	the	female’s	diet	to	the	eggs,	where	it	can	result	in	teratogenic	deformities	
and	death,	effects	that	only	become	apparent	upon	hatching.	Adults	can	survive	and	
appear	healthy	despite	the	fact	that	massive	reproductive	failure	is	occurring	(Lemly	
2002).	There	is	also	evidence	that	the	fitness	of	Daphnia magna	neonates	may	be	
affected	by	certain	chemicals.	For	example,	a	dispersant	(naphthalene-sulfonic	acid	
with	 formaldehyde)	 showed	 clear	 effects	 on	 the	F1	 and	F2	 offspring	 of	Daphnia	

FIGURe	6.4	 Illustration	of	latent	(delayed)	and	nonlatent	toxicity	responses	for	short-term	
(top)	and	long-term	(bottom)	exposures.
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(Hammers-Wirtz	and	Ratte	2000).	The	dispersant	induced	an	increase	in	offspring	
number	of	approximately	50%	that	was	coupled	with	a	decrease	in	offspring	quality	
(smaller	size,	higher	mortality,	and	fewer	F2	offspring;	Hammers-Wirtz	and	Ratte	
2000).	In	an	experiment	with	the	estrogen	mimic	diethylstilbestrol,	reduced	fitness	in	
the	second	generation	of	daphnids	was	also	observed	(Baldwin	et	al.	1995).	Studying	
the	fitness	of	the	F1	and	F2	generations	is	not	taken	into	account	in	the	conventional	
Daphnia	 reproduction	 test.	To	evaluate	 the	fitness	of	 the	F1	generation,	either	an	
additional	test	(starting	with	F1	neonates)	is	necessary,	or	a	multigeneration	popula-
tion	growth	experiment	must	be	performed	(Hammers-Wirtz	and	Ratte	2000).

Latency	of	responses	to	toxicants	may	also	become	apparent	in	conjunction	with	
other	stressors	(e.g.,	food	shortage	and	temperature	shifts)	that	cause	increased	meta-
bolic	demands	resulting	in	increased	use	of	stored	body	lipids	and	thus	increased	bio-
availability	of	stored	lipophilic	toxicants.	A	well-known	example	is	dieldrin	toxicity	
in	eider	ducks	triggered	by	the	use	of	fat	stores	(Walker	et	al.	2001).	Similar	effects	
have	been	 reported	 for	 toxic	metals	and	fish.	For	example,	 selenium	 toxicity	may	
be	induced	in	certain	species	of	warm-water	fish	(Centrarchidae)	when	lower	water	
temperatures	and	shorter	photoperiods	in	winter	reduce	feeding	activities	and	conse-
quently	result	in	metabolic	distress,	a	phenomenon	referred	to	as	the	“Winter	Stress	
Syndrome”	(Lemly	2002).	It	is	also	reported	that	short-term	exposure	to	chemical	
and	 natural	 stress	 conditions	 during	 and	 after	 the	 exposure	 may	 affect	 long-term	
population	survival.	For	example,	exposure	to	environmentally	relevant	concentra-
tions	of	endosulfan	for	96	hours	(0.8	µg/L)	resulted	 in	significant	effects	within	a	
cohort	of	Litoria citropa	tadpoles.	Short,	pulsed	exposure	to	this	sublethal	concentra-
tion	in	conjunction	with	fluctuating	temperatures	had	long-term	impacts	on	fitness.	In	
addition,	both	variable	temperatures	and	endosulfan	increased	a	tadpole’s	subsequent	
vulnerability	to	predatory	odonates	when	tested	more	than	3	weeks	later.	In	other	
words,	a	short-term	and	pulsed	exposure	to	a	sublethal	endosulfan	concentration	in	
natural	conditions	may	have	the	potential	to	manifest	fitness	effects	after	cessation	of	
the	contaminant	exposure	due	to	multistress	conditions	(Broomhall	2002).

Knowledge	about	the	mechanism	of	action	of	a	substance,	and	of	specific	sensi-
tive	periods	in	the	life	cycle	of	organisms,	may	be	all	that	is	required	to	determine	if	
the	substance	has	latent	effects	or	not.	For	substances	where	the	mechanism	of	action	
is	well	known,	the	question	of	latency	in	the	target	organism	can	usually	be	deduced.	
However,	 in	organisms	 that	 lack	 the	 receptor	system,	another	mechanism	may	be	
responsible	 for	 toxicity,	 and	 this	may	 or	may	 not	 show	 latency.	 The	only	 models	
that	can	be	used	to	address	extrapolation	of	latent	toxicity	at	this	time	are	physical	
models	such	as	specially	designed	bioassays	and	tests.	Latency	should	be	addressed	
if,	through	analogy	to	similar	substances	or	knowledge	of	mechanisms	of	action,	it	is	
suspected	to	occur.	In	cases	where	latency	is	known	not	to	occur	in	compounds	with	
a	similar	toxic	mode	of	action,	it	might	be	disregarded.	Uncertainty	factors	that	can	
be	used	for	these	types	of	extrapolations	have	not	yet	been	developed.

At	an	ecosystem	level,	complex	interactions	within	and	between	populations	and	
nonlinear	biological	dynamics	may	create	 a	 latency	period	between	 the	 exposure	
event	 and	 certain	 effects	 (Landis	 et	 al.	 1996;	 Matthews	 et	 al.	 1996),	 particularly	
when	considering	the	indirect	effects	of	chemical	stress.	Populations	of	organisms	
may	be	affected	by	 toxicants	 in	an	 indirect	way	when	a	 reduction	or	 elimination	
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of	 toxicant-susceptible	 species	 results	 in	 a	 disturbance	 of	 biological	 interactions	
and	processes.	Ecosystem	changes	 that	follow	and	result	 from	direct	 toxic	effects	
are	 termed	“indirect	effects,”	or	“secondary	effects”	 (Hurlbert	1975).	The	 taxa	 in	
which	 indirect	 effects	 are	 observed	 in	 different	 (model)	 ecosystem	 experiments	
subject	to	the	same	stressor	may	differ	considerably,	as	well	as	the	time	frames	in	
which	these	indirect	responses	can	be	recorded.	For	example,	in	2	different	types	
of	macrophyte-dominated	microcosms	(with	and	without	weekly	nutrient	additions)	
that	were	treated	once	with	35	µg/L	chlorpyrifos,	a	fast	decline	(within	a	few	days)	
in	 arthropod	 populations	 (e.g.,	 daphnids	 and	 insects)	 was	 observed	 due	 to	 direct	
toxic	 effects.	 In	 both	 types	 of	 microcosms	 this	 decline	 was	 rapid	 (within	 1	 to	 2	
weeks),	followed	by	an	increase	in	periphytic	algae	due	to	the	release	from	grazing	
by	arthropods.	In	the	test	systems	without	weekly	nutrient	additions,	an	algal	bloom,	
dominated	by	blue-greens,	developed	that	persisted	for	approximately	8	to	10	weeks,	
followed	 by	 a	 bloom	 of	 filamentous	 green	 algae.	 Blue-green	 algae	 are	 not	 a	 pre-
ferred	food	source	for	nonarthropod	grazers,	so	snails	only	increased	in	abundance	
16	weeks	after	the	insecticide	application,	which	is	when	the	periphyton	was	domi-
nated	by	green	algae	(Brock	et	al.	1992).	In	contrast,	 in	the	microcosms	enriched	
with	nutrients,	 a	periphyton	bloom	dominated	by	green	algae	and	diatoms	devel-
oped	immediately	and	persisted	for	4	weeks.	This	bloom	was	controlled	by	2	spe-
cies	of	nonarthropod	grazers,	the	oligochaete	worm	Stylaria lacustris	and	the	snail	
Lymnaea stagnalis	(Brock	et	al.	1995).	Notably,	the	abundance	of	Stylaria lacustris	
increased	between	1	and	3	weeks	post	chlorpyrifos	application,	during	which	time	
the	periphytic	algae	had	also	increased,	and	declined	again	7	weeks	post	insecticide	
application,	when	densities	of	Lymnaea stagnalis	started	to	increase.	The	increased	
numbers	of	snails	may	have	contributed	to	the	decline	of	Stylaria	through	competi-
tion	for	food.	That	Lymnaea stagnalis	responded	later	to	the	increase	in	periphyton	
than	Stylaria	might	be	explained	by	its	 longer	generation	 time.	The	2	microcosm	
experiments	described	above	clearly	illustrate	latency	of	indirect	effects,	as	well	as	
the	context-dependent	time	frames	of	the	indirect	responses	observed.

Extrapolation	of	 latent	 indirect	 effects	 of	 contaminants	 in	 ecosystems	 can	be	
addressed	using	physical	models,	such	as	specially	designed	microcosm	and	meso-
cosm	experiments,	or	computer	models	that	simulate	food	webs.	These	integrated	
ecosystem	models,	which	are	simplifications	of	ecosystems,	can	be	used	to	predict	
effects	of	toxicants	on	the	structure	and	functioning	of	ecosystems.	Species	in	food	
webs	may	be	aggregated	in	functional	groups.	In	this	case,	the	temporal	dynamics	in	
response	to	toxicant	stress	are	predicted	at	the	functional	group	level,	and	usually	not	
at	the	level	of	individual	populations.	An	overview	of	integrated	modeling	of	eutro-
phication	and	organic	contaminant	fate	and	effects	in	aquatic	ecosystems	is	given	by	
Koelmans	et	al.	(2001).	Examples	of	aquatic	food-web	models	are	AQUATOX	(Park	
1999),	CATS	(Traas	et	al.	1998),	and	CASM	(Naito	et	al.	2003).	Integrated	dynamic	
food-web	models	offer	the	advantage	of	studying	the	dynamics	of	toxicant	effects	
in	time,	incorporating	both	direct	and	indirect	effects.	The	downside	of	these	mod-
els	is	the	large	number	of	parameters	that	they	require.	According	to	Traas	(2004),	
further	development	of	these	models	needs	to	focus	on	simplifying	the	estimation	of	
population	parameters,	improving	methods	for	calibration,	and	quantifying	predic-
tion	uncertainty.
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6.3	 teMPoRAL	VARIAbILItY	AnD	eCotoXICoLoGICAL	
DAtA	eXtRAPoLAtIon

6.3.1	 DEvELopmEntaL	variation	in	sEnsitivity	of	inDiviDuaLs		
anD	popuLations

In	the	environment,	chemicals	may	stress	populations	at	different	periods	of	the	year	
and	during	different	phases	of	 the	populations	of	 the	development.	Consequently,	
when	extrapolating	ecotoxicological	data,	it	is	important	to	be	aware	of	the	possible	
temporal	variability	in	sensitivity	associated	with	different	life	stages.

It	is	frequently	reported	that	the	developmental	stage	of	an	organism	cannot	be	
ignored	when	studying	the	relation	between	exposure	concentration	and	effects.	For	
example,	in	a	study	where	the	first	and	last	larval	instars	of	the	trichopteran	Hydro-
psyche angustipennis	were	exposed	to	the	insecticide	diazinon,	it	was	shown	that	the	
younger	life	stages	were	up	to	22	times	more	sensitive	than	the	older	ones.	In	addi-
tion,	ranking	the	48-hour	LC50s	available	in	the	literature	for	this	compound	indi-
cated	that	differences	between	species	within	a	taxonomic	group	are	often	smaller	
than	differences	between	instars	of	the	same	species	(Stuijfzand	et	al.	2000).	In	sev-
eral	studies	with	other	chemicals,	including	metals	and	organic	contaminants,	it	was	
also	 found	 that	younger	stages	of	aquatic	 invertebrates	are	usually	more	sensitive	
than	older	ones	(Connor	1972;	Sanders	1972;	Green	et	al.	1986;	Mayer	and	Ellersieck	
1986;	McCahon	and	Pascoe	1988;	McCahon	et	al.	1989;	Ringwood	1992;	Williams	
and	 Hall	 1999;	 Meier	 et	 al.	 2000;	 Schulz	 and	 Liess	 2001).	 However,	 exceptions	
to	this	rule	have	been	reported	among	invertebrates	(Kiffney	and	Clements	1996;	
Hutchinson	et	al.	1998b;	Handersen	and	Wratten	2000;	Arizzi	Novelli	et	al.	2002;	
Blanck	et	al.	2003).	The	higher	susceptibility	of	early	developmental	stages	may	be	
due	to	their	greater	body	surface	area	per	unit	body	mass	(for	adsorption	and	uptake	
of	contaminants),	their	relatively	higher	metabolic	rates,	or	their	less	advanced	devel-
opment	of	detoxification	or	excretion	mechanisms,	or	because	they	are	in	the	process	
of	growth	and	development,	where	chemical	signaling	is	important.

Several	compilations	of	vertebrate	toxicity	data	have	confirmed	the	consensus	
described	above	for	invertebrates	that	adult	full-grown	individuals	are	less	sensitive	
to	toxicants	than	are	individuals	at	early	life	stages,	although	exceptions	also	exist	
(Mayer	and	Ellersieck	1986;	Hutchinson	et	al.	1998b).	Based	on	fish	NOEC	data	in	
the	ECETOC	database,	fish	larvae	were	more	sensitive	than	embryos	for	68%	of	the	
substances,	whereas	fish	larvae	were	of	greater	than	or	equal	sensitivity	to	juvenile	
fish	for	85%	of	the	substances.	Based	on	fish	EC50	data,	juveniles	were	more	sensi-
tive	than	adults	for	92%	of	the	substances	(Hutchinson	et	al.	1998b).	Amphibians	may	
be	more	or	less	sensitive	to	chemical	stressors	later	in	development.	Premetamorphs	
of	larval	Xenopus laevis	were	less	sensitive	to	chlorpyrifos	than	were	metamorphs	
(Richards	and	Kendall	2002).	The	sensitivity	of	tadpoles	of	Bufo woodhousii fowleri	
to	DDT	increased	as	animals	matured	(Sanders	1970),	whereas	that	of	tadpoles	of	
Rana sphenocephala	to	toxaphene	decreased	with	age	(Hall	and	Swineford	1980).	
In	a	study	on	the	impact	of	a-cypermethrin	on	various	life	stages	of	Rana arvalis	
tadpoles,	it	was	observed	that	individuals	exposed	to	this	insecticide	in	earlier	life	
stages	(as	eggs	or	newly	hatched	tadpoles)	metamorphosed	earlier,	whereas	exposure	
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throughout	their	whole	development	prolonged	metamorphosis	(Greulich	and	Pflug-
macher	2003).	Cyclical	activity	such	as	reproduction	and	molting	may	make	organ-
isms	more	sensitive	at	certain	times	of	the	year,	or	life	cycle,	than	at	others,	and	the	
spectrum	of	sensitivity	may	be	confined	to	certain	classes	of	substances	such	as	the	
endocrine	modulators	(Tillitt	et	al.	1998;	IPCS	2002).

Standard	toxicity	tests	typically	use	early	life	stages,	as	it	is	assumed	that	they	
are	more	sensitive,	and	their	use	in	effect	assessment	procedures	will	increase	the	
number	of	species	and	populations	that	will	be	protected	in	ecosystems.	The	organ-
isms	used	in	standard	toxicity	tests	are	usually	cultured	in	the	laboratory,	thereby	
minimizing	temporal	variability	in	the	quality	of	the	test	individuals.	Where	the	test	
individuals	are	obtained	from	the	field,	however,	their	history	may	affect	sensitivity.	
Factors	 that	may	lead	to	variability	 in	 toxicity	 tests	 include	 the	source	and	health	
status	of	organisms	and	the	time	of	the	year,	both	of	which	influence	the	physiologi-
cal	condition	of	the	test	organisms.	Reduction	in	adult	vigor	due	to	pressures	from	
the	external	environment	has	been	shown	to	affect	subsequent	larval	development	
and	sensitivity.	For	example,	adults	of	the	marine	bivalve	Mytilus edulis	subject	to	
high	 temperatures,	nutritive	stress,	and	 low	salinity	produced	 less	viable	gametes	
than	unstressed	adults	did	(Bayne	et	al.	1995),	which	may	explain	the	large	varia-
tion	 in	sensitivity	 to	copper	between	some	broods	of	M. edulis	 larvae	(Beaumont		
et	al.	1987).	In	addition,	extended	periods	of	contaminant	exposure	in	adult	M. edulis	
have	been	shown	to	alter	larval	sensitivity	via	maternal	and	genetic	processes	in	this	
cosmopolitan	species	(Beaumont	et	al.	1987;	Hoare	et	al.	1995).	These	phenomena,	
however,	may	be	context-and	species-dependent.	In	a	related	bivalve	species	(Mytilis 
galloprovincialis),	no	seasonal	differences	in	sensitivity	in	larval	development	tests	
to	several	inorganic	(e.g.,	zinc	and	cadmium)	and	organic	(e.g.,	sodium	dodecyl	sul-
fate	and	phenol)	toxicants	were	observed	(Williams	and	Hall	1999).

The	arrangement	and	condition	of	individuals	through	time	in	a	certain	habitat	
are	indicative	of	the	local	state	of	the	population.	This	suggests	that	the	sensitivity	of	
populations	may	vary	throughout	the	year,	or	that	the	habitat	is	only	suitable	for	the	
organism	at	different	times	of	the	year.	Chemical	stresses	that	affect	early	develop-
mental	stages	can	potentially	have	serious	consequences	on	population	recruitment.	
In	addition,	failure	to	consider	endpoints	above	the	level	of	the	individual	often	leads	
to	an	overestimation	of	risk,	but	in	some	cases	may	lead	to	an	underestimation	of	risk	
(Forbes	and	Calow	1999).	Extrapolating	time-	and/or	development-related	effects	of	
chemicals	on	individuals	can	be	done	by	building	and	using	quantitative	models.	An	
overview	of	how	population-level	effects	of	stressors	may	be	measured	or	projected	
from	individual	effects	is	provided	by	Maltby	et	al.	(2001).	Choosing	an	adequate	
population	model	for	use	in	a	risk	assessment	will	depend	on	several	factors.	Pri-
marily	the	model	should	address	the	seasonal	variation	in	demographic	structure	of	
the	population	of	interest.	An	overview	of	population	models	that	might	be	used	is	
provided	by	Bartell	et	al.	(2003)	and	Pastorok	et	al.	(2003).	The	models	comprise	
scalar,	 life	 history,	 and	 individual-based	 population	 models.	 When	 the	 effects	 of	
toxic	chemicals	are	age	or	stage	dependent,	life	history	models	can	be	considered	a	
realistic	extrapolation	tool.	For	some	examples	of	these	models,	see	Caswell	(2001)	
and	 Spencer	 and	 Ferson	 (1998).	Population-based	models	 have	 been	 discussed	 in	
greater	detail	in	Chapter	4.
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6.3.2	 sEasonaL	anD	succEssionaL	variations	in	sEnsitivity	of	communitiEs

Temporal	changes	in	environmental	conditions	due	to	diurnal	or	seasonal	rhythms	
or	long-term	succession	influence	not	only	fate	and	bioavailability	of	toxicants,	but	
also	the	physiological	states	of	organisms,	the	age	structure	of	populations,	and	the	
composition	of	assemblages	 that	may	be	 subject	 to	chemical	 stress.	 In	 laboratory	
microcosms,	the	timing	of	toxicant	addition	has	been	shown	to	affect	community	
sensitivity.	Responses	appear	to	be	strongly	influenced	by	developmental	stage,	spe-
cies	density,	and	differences	in	water	chemistry	at	the	time	of	addition	(Kindig	et	al.	
1983;	Swartzman	et	al.	1990;	Taub	et	al.	1991).	This	corresponds	with	the	theory	of	
Odum	(1981)	that	the	response	of	a	biotic	community	to	perturbations	varies	with	the	
stage	of	its	development	(i.e.,	the	stage	in	ecological	succession).

During	succession,	biological	assemblages	may	become	better	adapted	to	resist	
the	nominal	stresses	that	occur	in	the	particular	kind	of	environment	in	which	the	
ecosystem	is	developing.	In	the	trajectories	of	succession,	where	species	richness	and	
biomass	increase,	quick-response	mechanisms	and	feedback	loops	may	also	increase	
within	 the	 system.	 In	 other	 words,	 the	 increased	 functional	 complexity	 of	 more	
mature	 systems	does	 enhance	 the	 resistance	of	 the	 system	 to	 small	 or	 short-term	
perturbations,	as	compared	with	the	situation	in	early	or	pioneer	stages	of	ecologi-
cal	succession	(Odum	1981).	This	phenomenon	was	demonstrated	experimentally	in	
aquatic	microbenthic	biofilms.	Microbenthic	biofilms	are	consortia	of	autotrophic	
and	heterotrophic	organisms	imbedded	in	a	matrix	of	polymers	and	particles.	The	
stage	 of	 biofilm	 maturation	 strongly	 influenced	 sensitivity	 to	 zinc	 and	 cadmium	
exposure	(Ivorra	2000).	More	pronounced	effects	of	the	metal	on	the	young	than	on	
the	more	mature	biofilms	were	observed.	As	biofilms	develop,	 internal	cycling	of	
materials	increases	and	dependence	on	external	conditions	is	reduced.	In	the	more	
complex	mature	biofilms,	effects	of	metal	are	diminished	or	delayed	by	structural	
and	chemical	barriers	created	by	the	presence	of	more	 taxa,	mucus,	and	particles	
trapped,	as	well	as	by	an	altered	pH	regime	with	increased	biomass	and	photosyn-
thetic	activity	(Ivorra	2000).

When	evaluating	the	influence	of	the	time	of	year	on	responses	of	aquatic	commu-
nities	to	chemical	stress,	it	is	convenient	to	make	a	distinction	between	the	ecological	
threshold	concentrations	and	the	magnitude	of	effects	that	occur	above	these	thresh-
old	concentrations.	A	lake	enclosure	study	exploring	the	effects	of	a	single	application	
of	pentachlorophenol	(0,	4,	10,	24,	36,	54,	81,	and	121	µg/L)	to	planktonic	communi-
ties	in	spring,	summer,	autumn,	and	winter	indicated	that	threshold	concentrations	
for	effects	on	planktonic	communities	(NOECcommunity)	varied	little	with	season	(24	to		
direct	 toxic	36	µg/L),	whereas	 indirect	effects	 (increase	 in	 the	alga	Cryptomonas)	
occurred	at	lower	treatment	concentrations	in	autumn	(54	µg/L	and	higher)	and	in	none	
of	the	treatments	in	winter	(Willis	et	al.	2004).	The	variations	in	plankton	community	
response	 to	pentachlorophenol	were	apparent	 in	 the	 following	order	of	decreasing	
sensitivity;	autumn	>	winter–spring	>	summer.	The	overall	small	variations	in	com-
munity	response	observed	were	considered	to	be	caused	by	physicochemical	condi-
tions	 and	physiological	 states	 such	as	pH	 rather	 than	major	differences	 in	 species	
assemblages	(Willis	et	al.	2004).	Similarly,	there	was	no	evidence	of	a	major	differ-
ence	in	the	direct	effects	of	spring	or	late-summer	application	of	lambda-cyhalothrin	
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(0,	10,	25,	50,	100,	and	250	ng/L)	to	ditch	enclosures.	Multivariate	analysis	revealed	
that	 threshold	 concentrations	 for	 the	 total	 invertebrate	 community	 were	 close	 to		
10	ng/L	 for	both	application	periods,	 although	at	 the	 lowest	 treatment	 concentra-
tion	(10	ng/L),	effects	were	observed	primarily	in	1	species	—	the	phantom	midge	
Chaoborus obscuripes (van	 Wijngaarden	 et	 al.	 2005b).	 In	 addition,	 major	 differ-
ences	 in	 indirect	 effects	 at	 higher	 concentrations	 could	 not	 be	 observed	 between	
spring	and	late	summer.	However,	recovery	of	sensitive	macroinvertebrate	popula-
tions	(e.g.,	Chaoborus obscuripes)	was	slower	after	the	late-summer	application	(van	
Wijngaarden	et	al.	2006).

Studies	where	timing	of	application	has	been	shown	to	be	important	include	those	
with	carbaryl	and	atrazine.	In	experimental	ponds,	carbaryl	addition	well	above	the	
threshold	concentration	for	direct	toxic	effects	at	different	stages	in	the	seasonal	cycle	
induced	distinct	dynamics	in	indirect	effects,	as	well	as	distinct	recovery	patterns	in	
zooplankton	communities.	It	was	suggested	that,	in	particular,	temperature,	competi-
tive	 interactions,	 and	population	 trends	were	 significant	 factors	 influencing	 interac-
tions	between	species	and	recovery	of	the	zooplankton	(Hanazato	and	Yasuno	1990).	
In	outdoor	microcosm	studies,	a	chronic	exposure	to	10	µg/L	atrazine	on	Lake	Geneva	
plankton	communities	disrupted	the	phytoplankton	community	directly	or	indirectly	
in	different	periods	of	the	year,	but	the	magnitude	and	nature	of	the	treatment-related	
effects	observed	differed	between	seasons.	Different	populations	of	algae	in	the	phyto-
plankton	community	were	inhibited,	stimulated,	or	apparently	unaffected	by	atrazine.	
The	clear-water	phase	(June)	was	the	period	when	the	algal	communities	were	the	most	
sensitive	to	restructuring	by	atrazine,	whereas	they	were	the	least	sensitive	during	the	
spring	blooms	(March	to	April;	Bérard	et	al.	1999).	Inhibition	of	photosynthesis	by	
atrazine	is	comparable	to	limiting	conditions	of	light,	and	the	toxicity	of	photosystem	
II	inhibition	is	lower	for	plants	that	are	adapted	to	low	light	conditions	(Guasch	and	
Sabater	1998).	So,	seasonal	changes	in	light	conditions	may,	at	least	in	part,	explain	the	
observed	seasonal	differences	in	sensitivity	of	phytoplankton	to	atrazine.	It	may	also	
be	that	the	collective	sensitivities	of	the	various	taxa	comprising	the	community	at	any	
one	time	may	be	more	or	less	sensitive	than	at	another	time.

The	 “Community-Level	 Aquatic	 Systems	 Studies:	 Interpretation	 Studies”	
(CLASSIC)	guidance	document,	 which	 deals	with	 the	 interpretation	of	 results	 of	
microcosm	and	mesocosm	tests	in	the	risk	assessment	procedure	of	pesticides,	rec-
ommends	 that	“regulatory”	model	ecosystem	experiments	be	conducted	 in	spring	
to	midsummer	(Giddings	et	al.	2002).	On	the	basis	of	the	limited	number	of	model	
ecosystem	experiments	described	above,	it	seems	that	threshold	concentrations	for	
effects	observed	in	early-season	studies	are	reasonably	predictive	for	threshold	con-
centrations	later	in	the	season.	Above	these	threshold	concentrations,	however,	the	
intensity	and	duration	of	 the	responses	(direct	and	indirect	effects)	may	vary	dur-
ing	different	periods	of	the	year.	Consequently,	the	extrapolation	of	NOECcommunity	
values	from	one	season	to	another	seems	to	be	possible	with	lower	uncertainty	than	
hazard	estimates	of	higher	concentrations	in	which	both	direct	and	indirect	effects	
are	involved.

Models	that	can	be	used	to	address	extrapolation	of	community-level	threshold	
concentrations	 and	 effect	 concentrations	 from	one	 season	 to	 another	 are	physical	
models	(e.g.,	enclosure	studies	performed	in	the	same	system	in	different	periods	of	
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the	year)	or	computer	models	that	simulate	the	dynamics	of	realistic	food	webs	and	
incorporate	seasonal	differences	 in	sensitivity	of	 functional	groups.	We	could	not	
find	examples	of	such	food-web	model	simulations	in	the	literature,	but	in	principle,	
food-web	models	such	as	IFEM	(Bartell	et	al.	1988),	AQUATOX	(Park	1999),	and	
C-COSM	(Traas	et	al.	2004)	can	be	adapted	to	do	this.	Pastorok	et	al.	(2003)	tabu-
lated	the	application	of	various	types	of	ecosystem	models	used	to	assess	effects	of	
toxic	chemicals.

6.3.3	 rEcovEry

An	advantage	of	field	studies	is	that	information	can	be	obtained	about	recovery	of	
disturbed	populations	and	ecosystem	functions.	Recovery	 time	 is	a	highly	attrac-
tive	measurement	endpoint	in	ecological	and	ecotoxicological	studies	because	it	is	
comprehensible	to	regulators,	managers,	and	the	general	public.	The	phenomenon	of	
recovery	is	particularly	important	in	cases	where	exposure	to	a	stressor	declines	due	
to	physical	(e.g.,	hydrological),	physicochemical	(e.g.,	hydrolysis),	or	biological	(e.g.,	
bacterial	breakdown)	processes	that	result	in	the	disappearance	of	the	stressor.

When	 defining	 recovery,	 a	 distinction	 between	 actual	 and	 potential recovery	
can	be	made.	Actual	 (or	 ecological)	 recovery	 implies	 the	 return	of	 the	perturbed	
measurement	endpoint	 (e.g.,	 species	composition,	population	density,	or	dissolved	
oxygen	concentration)	to	the	window	of	natural	variability	in	the	ecosystem	of	con-
cern,	or	to	the	level	that	is	not	significantly	different	from	that	in	control	or	reference	
systems	of	a	microcosm	or	mesocosm	study.	This	does	not	mean,	however,	that	we	
should	consider	endpoints	as	being	recovered	if	the	statistical	difference	primarily	
disappears	 due	 to	 an	 increase	 in	 variability	 in	 control	 test	 systems.	 Potential	 (or	
ecotoxicological)	recovery	is	defined	as	the	potential	for	recovery	to	occur	follow-
ing	 the	disappearance	of	 the	stressor	 to	a	concentration	at	which	 it	no	 longer	has	
adverse	 toxic	effects	on	 the	measurement	endpoints	of	 interest	 (Brock	and	Budde	
1994;	Maltby	et	al.	2001).

At	the	ecosystem	level,	recovery	is	related	to	“ecological	resilience.”	According	
to	Gunderson	(2000),	ecological	resilience	is	1)	the	time	required	for	an	ecosystem	to	
return	to	an	equilibrium	or	steady	state	following	a	perturbation	or	2)	the	magnitude	
of	disturbance	that	can	be	absorbed	by	the	ecosystem	before	the	system	redefines	its	
structure.	In	this	second	definition,	the	concept	of	ecological	resilience	presumes	the	
existence	of	multiple	stability	domains.	Ecological	resilience	thus	refers	to	the	width	
or	limit	of	a	stability	domain	and	is	defined	by	the	magnitude	of	disturbance	that	a	
system	can	absorb	before	it	changes	stable	states.	For	example,	in	shallow	aquatic	
ecosystems	 different	 stable	 states	 may	 comprise	 communities	 dominated	 by	 sub-
mersed	macrophytes	(clear	water),	by	dense	mats	of	free-floating	plants	(e.g.,	Lemna	
covers),	or	by	phytoplankton	blooms	(turbid	water)	(Scheffer	1998).

It	is	argued	that,	in	an	ecotoxicological	sense,	returning	to	an	original	state	is	
not	a	property	of	complex	ecosystems	and,	consequently,	that	assumptions	such	as	
recovery	can	lead	to	unrealistic	predictions.	This	opinion	is	in	line	with	the	com-
munity	conditioning	hypothesis	(Matthews	et	al.	1996),	which	states	that	ecological	
communities	tend	to	preserve	information	about	every	event	in	their	history,	includ-
ing	 stress	 of	 chemicals.	 The	 historical	 information	 can	 be	 stored	 in	 a	 variety	 of	
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layers,	from	the	genetic	and	molecular	to	the	pattern	and	dynamics	of	interspecies	
interactions	(Landis	et	al.	1996).	Considering	the	view	that	no	2	ecological	structures	
will	ever	be	the	same,	an	important	question	is,	then,	whether	the	effects	of	chemical	
stress	can	be	distinguished	from	the	effects	of	other	natural	stress	factors.	When	the	
preserved	information	of	the	chemical	perturbation	is	of	a	smaller	“scale”	than	that	
caused	by	other	natural	stressors,	its	ecological	significance	is	difficult	to	interpret.	
For	this	reason,	we	consider	recovery	a	concept	that	cannot	be	ignored	in	ecological	
risk	assessment,	particularly	when	addressing	the	dynamics	of	populations.

When	studying	population	responses	to	chemical	stress,	it	may	be	convenient	to	
make	a	distinction	between	internal	and	external	recovery.	Internal	recovery	depends	
on	surviving	individuals	in	the	stressed	ecosystem	or	on	a	reservoir	of	resting	propa-
gules	 (e.g.,	 seeds	 and	 ephippia)	 not	 affected	 by	 the	 stressor.	 In	 contrast,	 external	
recovery	depends	on	the	immigration	of	individuals	from	neighboring	ecosystems	
by	active	or	passive	dispersal.

In	cases	where	the	toxicant	degrades	rapidly	and/or	its	bioavailability	decreases	
below	a	critical	 threshold	concentration,	 the	recovery	rate	of	affected	populations	
depends,	for	a	large	part,	on	the	life-cycle	characteristics	of	the	affected	species	of	
concern.	Important	life-cycle	properties	are	the	number	of	generations	per	year	and	
related	reproductive	strategies	(r-K),	the	presence	of	relatively	insensitive	(dormant)	
life	stages,	and	the	capacity	of	organisms	to	actively	migrate	from	1	site	to	another.	
In	general,	recovery	of	affected	populations	from	chemical	stress	may	be	rapid	if	the	
following	conditions	apply:

The	 substance	 is	 not	 persistent,	 the	 exposure	 regime	 is	 short	 term	 or	
pulsed,	and	the	time	between	pulses	is	long	enough	for	recovery.
The	physicochemical	environment	and	ecologically	important	food-web	
interactions	are	not	altered	by	the	stressor,	or	are	quickly	restored.
The	generation	time	of	the	populations	affected	is	short.
There	is	a	ready	supply	of	propagules	of	eliminated	populations	through	
active	immigration	by	mobile	organisms	or	through	passive	immigration	
by,	for	example,	wind	and	water	transport.

The	 relationship	 between	 life-cycle	 characteristics	 and	 recovery	 of	 species	 is	
illustrated	 in	Figure	6.5.	This	figure	presents	 the	 long-term	 response	of	4	 aquatic	
invertebrates	in	experimental	ditches	after	a	single	application	of	chlorpyrifos	(van	
den	Brink	 et	 al.	 1996).	 In	 this	 study,	 at	 the	highest	 treatment	 concentrations,	 the		
cladoceran	 Simocephalus vetulus	 (Figure	6.5C)	 recovered	 rapidly,	 as	 a	 result	 of	
its	short	generation	time	and	the	possession	of	a	relatively	insensitive	life	stage	in	
the	form	of	winter	eggs	(ephippia).	Insect	species	with	several	emergence	periods	
per	year,	such	as	Cloeon dipterum	(Figure	6.5A),	also	recovered	rapidly	compared	
with	insect	species	with	only	1	or	2	generations	per	year	(e.g.,	Caenis horaria;	Fig-
ure	6.5B).	Insects	usually	do	not	have	aquatic	life	stages	that	are	insensitive	to	chem-
ical	 stress,	but	 the	winged	adult	 stage	offers	 the	possibility	 to	 recolonize	 isolated	
aquatic	systems.	Where	a	species	cannot	easily	reach	an	isolated	system	and	does	not	
have	an	insensitive	aquatic	life	stage,	there	is	a	greater	probability	that	the	species	
will	disappear	from	the	isolated	system	for	a	longer	period	as	a	result	of	chemical	

•

•

•
•
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stress.	For	example,	Gammarus pulex (Figure	6.5D)	became	extinct	in	the	isolated	
experimental	ditches	treated	with	greater	concentrations	of	chlorpyrifos,	and	recov-
ery	only	occurred	after	this	species	was	reintroduced	(not	shown	in	the	figure).	In	
nonisolated	water	courses,	however,	Gammarus pulex	may,	after	local	elimination	
by	toxicants,	show	a	relatively	rapid	recovery	as	a	result	of	successful	recolonization	
by	active	swimming	from	upstream	or	downstream	refugia	(Liess	1998).

The	main	strategies	that	organisms	apply	to	survive	unfavorable	periods	are	dor-
mancy	 (escape	 in	 time)	 and	 dispersal	 (escape	 in	 space).	 In	 ephemeral	 freshwater	
habitats	in	particular,	these	adaptations	may	affect	the	ecological	impact	of	toxicants	
(Lahr	 2000).	 In	 temporary	 ponds	 in	 the	 Sahel	 (Africa)	 stressed	 by	 nonpersistent	
insecticides,	 the	average	time	to	recovery	for	adults	of	several	backswimmer	spe-
cies	(Anisops)	was	short,	approximately	2	weeks.	The	recovery	mechanism	in	this	
winged	insect	species	was	aerial	recolonization.	In	contrast,	fairy	shrimps	(Strep-
tocephalus sudanicus)	did	not	reappear	until	 the	next	rainy	season,	almost	1	year	
later.	Fairy	shrimps	produce	1	generation	per	season,	which	releases	its	resting	eggs	
in	the	sediment.	The	eggs	presumably	need	at	least	1	period	of	desiccation	before	
they	will	hatch.	According	to	Lahr	(2000),	reserves	of	cysts	in	ephemeral	habitats	
may	be	depleted	during	the	early	rainy	season	and	before	maturity	of	fairy	shrimps	
is	reached.	In	such	cases,	internal	recovery	will	not	occur.

Van	der	Geest	(2001)	related	the	available	toxicity	data	obtained	in	laboratory	
single-species	tests	to	the	recovery	times	of	the	corresponding	test	organisms.	He	
noted	that,	currently,	little	attention	is	paid	to	aquatic	insect	species	with	long	life	
cycles	(and	consequently	long	recovery	times)	such	as	several	species	of	mayflies,	
caddisflies,	 and	 stoneflies.	 For	 the	 reasons	 mentioned	 above,	 it	 seems	 logical	 to		
collect	data	on	 the	 life-cycle	 characteristics	of	 the	 species	 from	 the	 ecosystem	at	

FIGURe	6.5	 Dynamics	of	numbers	of	the	aquatic	stages	of	2	ephemeropteran	insects	Cloeon 
dipterum	(A)	and	Caenis horaria	(B),	and	of	the	cladoceran	Simocephalus vetulus	(C)	and	the	
amphipod	Gammarus pulex	(D).	Source:	Redrawn	from	data	from	van	den	Brink	et	al.	(1996).
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risk.	When	invertebrate	populations	are	at	 risk,	and	 the	acceptability	of	effects	 is	
based	 on	 the	 potential	 for	 recovery	 of	 affected	 populations,	 we	 should	 consider	
whether	the	populations	in	the	test	system	(e.g.,	microcosm)	are	representative	of	the	
univoltine	(1	generation	per	year)	and	multivoltine	(2	or	more	generations	per	year)	
populations	occurring	in	the	field.	In	a	macrophyte-dominated	ditch	system	in	The		
Netherlands,	at	least	59%	of	the	aquatic	insect	taxa	were	univoltine	(Van	der	Geest	
2001).	It	is	surprising,	however,	that	for	27%	of	the	species,	no	information	could	be	
found	on	the	number	of	generations	per	year.	Recently,	reasonably	comprehensive	
data	became	available	concerning	life	history	characteristics	of	typical	aquatic	spe-
cies	(see,	for	example,	Heneghan	et	al.	1999;	Usseglio-Polatera	et	al.	2000;	Liess	and	
Von	der	Ohe	2005;	Poff	et	al.	2006)	that	can	be	used	to	aid	the	characterization	of	
recovery	potential	of	aquatic	organisms.	From	the	PondFX	Aquatic	Life	Database	
(PondFX	n.d.),	some	broad	patterns	with	respect	to	the	size	of	aquatic	organisms	and	
their	generation	time	emerge	(Table	6.6).	Very	small	organisms	such	as	rotifers	and	
copepods	have	generation	times	much	shorter	than	those	of	larger	organisms	such	as	
mollusks	and	insects.	In	addition,	aquatic	organisms	with	shorter	generation	times	
are	reported	to	recover	faster	than	organisms	with	longer	generation	times	(Niemi		
et	al.	1990;	Barnthouse	2004).	Further	developments	of	this	database	are	provided	
by	Freshwater	Life	(n.d.).

tAbLe	6.6
Generation	times	for	various	groups	of	aquatic	
organisms

taxon Generation	time	in	days,	mean	(range)

Phytoplankton 1
Lemna 3
Rotifera 8	(6	to	35)
Cladocera 14
Copepoda 61	(14	to	73)
Oligochaeta 105	(51	to	730)
Amphipoda 73	(105	to	250)
Ostracoda 121	(51	to	362)
Gastropoda 513	(105	to	?)
Bivalvia 256	(105	to	?)
Coleoptera (209	to	?)
Diptera (81	to	503)
Ephemeroptera (81	to	730)
Hemiptera (81	to	503)
Trichoptera (162	to	1264)
Fish	(short	life	cycle) 181
Fish	(long	life	cycle) 1673

Source:	As	 derived	 from	 the	 PondFX	Aquatic	 Life	 Database	 (http://
www.ent.orst.edu/PondFX)	and	Barnthouse	(2004).
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It	follows	from	the	above	that	the	time	of	the	year	in	which	the	exposure	to	a	
chemical	stressor	takes	place	may	determine	the	extent	of	biological	recovery.	Pulsed	
exposures	can	have	greater	impacts	on	recovery	patterns	if	they	occur	during	critical	
life	stages	(particularly	in	the	case	of	univoltine	insects)	or	if	they	occur	in	autumn,	
when	lower	dispersal	activities	and	lack	of	winter	reproduction	may	delay	recovery	
until	 the	following	spring.	In	experimental	ponds	and	enclosures,	 it	appeared	that	
application	of	chemicals	at	different	times	of	the	year	may	induce	different	recovery	
patterns	of	the	same	invertebrate	species	(Hanazato	and	Yasuno	1990;	Willis	et	al.	
2004;	van	Wijngaarden	et	al.	2006).	In	most	field	studies,	the	time	of	occurrence	of	
a	specific	short-term	disturbance	changed	the	recovery	time	of	invertebrate	popula-
tions	by	less	than	1	year	(Niemi	et	al.	1990).

The	number	of	generations	per	year	of	 certain	 invertebrate	 species	may	vary	
with	latitude	and,	consequently,	with	temperature	and	the	length	of	the	growing	sea-
son	(Niemi	et	al.	1990).	For	example,	in	colder	regions,	the	same	insect	species	may	
be	univoltine,	whereas	in	warmer	regions	this	species	may	have	more	generations	
per	year.	Some	countries	may	have	a	sufficiently	wide	temperature	range	to	have	a	
range	of	single	and	multiple	generations	for	species	such	as	mayflies	(Huryn	1996).	
Consequently,	when	recovery	is	taken	into	account	in	the	assessment	of	acceptable	
concentrations,	differences	between	latitudes	may	be	of	importance	when	extrapo-
lating	data	from	temperate	to	colder	regions.

Estimates	of	recovery	potential	can	be	made	through	either	empirical	or	model-
ing	studies.	Suitable	empirical	studies	comprise	microcosm	and/or	mesocosm	tests	
in	which	the	immigration	of	affected	populations	may	be	manipulated,	for	example,	
by	reintroducing	organisms	or	by	preventing	external	recovery,	such	as	by	covering	
the	test	systems	with	nets	(see	Sherratt	et	al.	1999).	It	should	be	noted,	however,	that	
most	 microcosm	 and/or	 mesocosm	 experiments	 on	 the	 impact	 of	 chemical	 stress	
focus	on	the	responses	of	dominant	populations,	which	are	often	characterized	by	
a	 relatively	 short	 life	 cycle	 (e.g.,	 algae	 and	 invertebrates).	 Microcosm	 and	 meso-
cosm	studies	are	generally	less	suitable	to	study	the	recovery	of	populations	of	larger	
organisms	with	a	 long	 life	 span	 (such	as	vertebrates).	 In	addition,	 the	duration	of	
many	published	microcosm	and	mesocosm	studies	is	too	short	to	be	able	to	derive	
the	recovery	period	of	sensitive	populations.	Another	point	of	attention	in	the	inter-
pretation	and	extrapolation	of	responses	observed	in	microcosm/mesocosm	studies	
is	 that	most	experiments	utilize	 isolated	 test	systems.	This	means	 that	eliminated	
populations	with	a	 limited	dispersal	 capacity	cannot	 rapidly	 recolonize	 these	 test	
systems.	For	these	organisms,	observations	on	their	recovery	in	isolated	microcosms	
and	mesocosms	should	be	considered	as	a	worst-case	scenario.

It	appears	from	the	above	that	microcosm	and/or	mesocosm	tests	are	limited	by	
the	constraints	of	experimentation,	in	that	usually	only	a	limited	number	of	recovery	
scenarios	can	be	investigated.	Consequently,	modeling	approaches	may	provide	an	
alternative	tool	for	investigating	likely	recovery	rates	under	a	range	of	conditions.	
Generic	models,	like	the	logistic	growth	mode	(for	example,	see	Barnthouse	2004)	and	
life	history	and	individual-based	(meta)population	models,	which	also	may	be	spa-
tially	explicit,	provide	mathematical	frameworks	that	offer	the	opportunity	to	explore	
the	recovery	potential	of	individual	populations.	For	an	overview	of	these	life	history	
and	 individual-based	models,	 see	Bartell	 et	 al.	 (2003)	 and	Pastorok	et	 al.	 (2003).		
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A	 recently	 developed	 metapopulation	 model	 to	 extrapolate	 responses	 of	 aquatic	
invertebrates	as	observed	in	mesocosms	to	assess	their	recovery	potential	in	the	field	
is	provided	by	Van	den	Brink	et	al.	(2007).	When	the	primary	interest	is	in	the	recov-
ery	of	processes	and	functional	groups,	food-web	models	are	the	required	mathe-
matical	tools	(for	an	example,	see	Traas	et	al.	2004).	Two	drawbacks	of	these	models	
are	that	they	require	detailed	information	on	the	species	and	functional	groups	of	
concern	and	that	they	are	very	specific	to	the	species	and	functional	groups	and	sites	
for	which	they	are	developed.

Modeling	 approaches	need	 to	 be	 tailored	 to	 the	 issue	 and	 level	 of	 detail	 that	
need	 to	be	addressed	 in	 the	risk	assessment.	With	a	simple	modeling	framework,		
Barnthouse	(2004)	showed	that	it	is	possible,	at	least	in	principle,	to	quantify	expected	
population	 recovery	 rates	 from	basic	 life	 history	 considerations.	A	 logistic	 popu-
lation	growth	model	was	used	 to	 compare	population	 recovery	 rates	 for	different	
types	of	aquatic	organisms	and	to	evaluate	the	influence	of	life	history,	disturbance	
frequency,	and	 immigration	on	 the	 time	 required	 for	populations	 to	 recover	 from	
simulated	chemical	exposures.	Generation	time	was	found	to	be	the	most	important	
determinant	of	population	recovery	rates.	Generation	time	is	a	function	of	develop-
mental	rate	and	longevity.	Estimates	of	these	2	parameters	are	much	more	widely	
available	than	are	estimates	of	age-	or	stage-specific	survival	or	reproduction	rates	
(Barnthouse	2004).

6.3.4	 aDaptation	to	chEmicaL	strEss

Sensitivity	of	populations	to	toxic	stress	may	be	influenced	by	the	exposure	history	
of	test	specimens.	Van	den	Brink	et	al.	(1997)	exposed	2	strains	of	the	alga	Chlam-
ydomonas reinhardtii	 to	 a	 concentration	 range	 of	 the	 photosynthesis-inhibiting		
herbicide	linuron.	One	strain	originated	from	a	linuron-free	medium,	and	the	other	
from	a	culture	previously	treated	with	a	relatively	high	concentration	of	linuron	(i.e.,	
150	 µg/L).	 Chlamydomonas reinhardtii	 from	 the	 pre-exposed	 strain	 had	 signifi-
cantly	larger	relative	growth	rates	when	exposed	to	linuron	concentrations	of	150	and		
500	µg/L	than	C. reinhardtii	from	the	nonexposed	strain	(Figure	6.6).	In	this	case,	
it	is	not	clear	whether	the	differences	in	response	to	the	toxicological	stress	were	the	
result	of	a	physiological	acclimation	of	individuals	of	the	algal	population	or	whether	
the	tolerance	was	caused	by	the	selection	of	relatively	insensitive	genotypes.

An	adaptation	can	be	defined	as	a	trait	that	enhances	an	individual’s	fitness	to	a	
certain	stressor.	Tolerance	is	the	ability	of	individuals	to	withstand	exposure	to	toxi-
cant	concentrations	that	would	normally	be	expected	to	cause	physiological	inhibition	
or	mortality.	Tolerance	 can	be	 acquired	by	an	 individual	due	 to	phenotypic	plastic	
responses	following	exposure	to	sublethal	concentrations	(physiological	acclimation)	
or	by	inheritance	(genetically	based	tolerance).	Genetic	adaptation	implies	that	a	popu-
lation	 has	 been	 selected	 for	 an	 increased	 mean	 tolerance	 through	 natural	 selection	
acting	upon	genetically	based	 interindividual	variation	 in	 tolerance	(Hoffmann	and	
Parsons	1991).	 In	 contrast	 to	genetically	based	 tolerance,	 physiological	 acclimation	
is	not	 inherited	by	offspring	or	 retained	by	 individuals	when	maintained	 in	uncon-
taminated	 habitats.	 Acclimation	 occurs	 when	 a	 prior	 exposure	 results	 in	 increased	
resistance	during	subsequent	exposures	due	to	the	induction	of	specific	detoxification	
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mechanisms	(Mulvey	and	Diamond	1991).	 In	practice,	however,	 it	may	not	be	easy	
to	make	a	proper	distinction	between	physiological	adaptation	and	genetically	based	
tolerance.	For	example,	Lam	(1996)	reported	differences	in	acute	toxicity	of	cadmium	
for	2	populations	of	the	gastropod	Brotia hainanensis,	and	although	these	differences	
persisted	into	newly	hatched	animals	of	the	F1	generation,	the	differences	disappeared	
by	the	time	the	F1	animals	were	7	days	old.	This	suggests	a	short-term	maternal	effect	
or	acclimation	response	rather	than	genetically	based	tolerance	(Lam	1996).

In	addition	 to	 the	example	presented	 in	Figure	6.6,	 several	 examples	of	 rapid	
adaptation	to	certain	toxicants	have	been	reported.	Rapid	microevolution	of	tolerance	
to	toxicants	has	been	demonstrated	in	a	number	of	algae,	vascular	plants,	and	arthro-
pods,	genetically	responding	to	the	use	of	pesticides	(Caprio	and	Tabashnik	1992;	
Kasai	and	Hanazato	1995b),	and	 in	pathogenic	bacteria	 responding	 to	antibiotics.		
Swift	 genetic	 adaptation	 was	 also	 found	 in	 cases	 of	 anthropogenic	 metal	 input.	
Experiments	with	 the	oligochaete	Limnodrilus hoffmeisteri	 (Klerks	and	Levinton	
1989)	and	the	midge	Chironomus riparius	(Postma	and	Davids	1995)	indicate	that	
adaptation	to	metals	can	develop	very	rapidly	within	a	few	generations,	with	similar	
observations	for	field	invertebrate	communities	(Courtney	and	Clements	2000)	and	
snails	pre-exposed	to	arsenic	(Golding	et	al.	1997).

Species	that	evolve	genetic	tolerance	are	frequently	opportunists	with	short	gen-
eration	times	and	large	numbers	of	eggs	and	seeds	(Luoma	1977).	This	may	simply	
reflect	 a	 greater	 number	 of	 opportunities	 for	 beneficial	 mutations.	 Many	 species,	
however,	apparently	do	not	have	the	potential	to	rapidly	develop	pollution	tolerance	
(Grant	2002).	Some	estimates	suggest	that	only	about	10%	of	plant	species	present	
on	adjacent	uncontaminated	sites	are	able	to	develop	metal-tolerant	forms	and	thus	
colonize	 severely	contaminated	sites.	 In	 these	 tolerant	 species,	genetic	adaptation	
to	 toxicant	 stress	usually	 involves	a	 single	gene	 rather	 than	polygenic	 inheritance	
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FIGURe	6.6	 Relative	 growth	 of	 2	 strains	 of	 Chlamydomonas reinhardtii;	 the	 unselected	
strain	originated	from	a	linuron-free	medium,	and	the	selected	strain	from	a	culture	previ-
ously	 treated	 with	 150	 µg/L	 linuron.	 Note:	 The	 2	 strains	 were	 exposed	 to	 0,	 15,	 50,	 150,	
and	500	µg/L	linuron	for	3	days.	Significant	differences	between	the	strains	(ANOVA,	p	≤	
0.05)	are	indicated	by	an	asterisk.Source:	Figure	redrawn	from	data	of	van	den	Brink	et	al.	
(1997).
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(Grant	2002).	Furthermore,	a	gene	for	tolerance	to	one	toxicant	is	of	little	value	in	a	
polluted	site	where	concentrations	of	more	than	one	pollutant	are	high	enough	to	be	
acutely	toxic.	Adaptation	to	complex	mixtures	of	toxic	chemicals	is	much	less	likely	
to	 occur,	 either	 because	 increase	 in	 resistance	 to	 one	 contaminant	 reduces	 resis-
tance	to	others	or	because	the	different	detoxification	mechanisms	place	competing	
demands	on	the	energy	budget	of	individuals	(Klerks	1999b).	For	some	toxicants,	
however,	it	is	reported	that	adaptation	to	one	contaminant	may	be	accompanied	by	
increased	resistance	to	another	contaminant	to	which	the	population	has	not	been	
exposed	(so-called	“co-tolerance”).	 In	genetic	 terms,	such	co-tolerance	 is	 referred	
to	as	a	pleiotropic	effect,	where	one	gene	affects	multiple	characteristics	(Millward	
and	Klerks	2002).	In	addition,	it	may	be	assumed	that	cotolerance	is	more	likely	to	
occur	for	groups	of	toxicants	that	are	similar	in	chemical	structure	or	in	their	mode	
of	action,	are	transported	by	the	same	carriers,	affect	the	same	target	sites	in	organ-
isms,	and	are	degraded	along	similar	routes	(Blanck	2002).

In	an	adapted	population,	amongst	other	factors,	the	persistence	of	genetic	adap-
tation	to	a	toxicant	depends	on	the	persistence	of	the	toxicant,	the	degree	of	genetic	
isolation	of	the	population,	and	the	fitness	cost	(if	any)	of	the	adaptation.	Isolated	
populations	with	low	dispersal	ability	tend	to	have	low	temporal	variability	in	the	
adapted	toxicant-tolerant	trait.	For	nonisolated	populations,	however,	it	is	reported	
that	gene	flow	among	populations	will	prevent	complex	fixation	of	an	adaptive	trait.	
For	example,	the	large	temporal	variation	in	cadmium	adaptation	in	chironomid	pop-
ulations	from	a	polluted	stretch	of	a	lowland	river	was	explained	by	the	influence	of	
gene	flow	from	upstream	nonpolluted	areas	(Groenendijk	1999).	In	general,	tolerant		
individuals	rapidly	disappear	when	released	in	clean	environments	due	to	competition	
with	nonadapted	strains.	For	example,	in	Chironomus riparius, both	larval	mortal-
ity	and	larval	development	time	increased	compared	to	reference	populations	when	
cadmium-tolerant	midges	were	cultured	in	a	clean	environment.	This	was	explained	
as	the	“cost”	of	being	tolerant	(Postma	et	al.	1995b).	Fitness	costs	associated	with	
tolerance	to	cadmium	were	related	with	changes	in	mineral	metabolism	that	caused	
an	 increased	 need	 for	 essential	 metals	 such	 as	 zinc	 (Postma	 et	 al.	 1995a).	 It	 has	
been	demonstrated	for	several	aquatic	and	terrestrial	species	that,	in	the	absence	of	
exposure,	toxicant-resistant	genotypes	have	reduced	fitness	relative	to	nonresistant	
genotypes	(van	Straalen	and	Hoffmann	2000).	In	addition,	increased	tolerance	due	
to	physiological	acclimation	is	likely	to	incur	energetic	costs	to	the	individual.

It	 can	be	 concluded	 from	 the	 above	 that	 adaptation	 to	 toxicant	 stress	may	be	
expected	when	the	following	occurs:

Toxic	stress	is	predominantly	caused	by	a	single	compound.
Exposure	 to	 the	chemical	 is	 relatively	high	and	 long	 term	or	 repeated	 in	
time.
The	genetic	basis	of	adaptation	involves	one	or	a	few	genes.
The	species	has	a	short	generation	time	and	a	large	number	of	offspring.
The	adapted	population	is	isolated	(limited	gene	flow).
The	 costs	 associated	 with	 tolerance	 are	 less	 than	 the	 advantage	 of	
decreased	 competition	with	nonadapted	 individuals	 and/or	 less	 tolerant	
populations.

•
•

•
•
•
•
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According	to	Weis	(2002),	however,	it	is	unwise	to	relax	standards	on	the	basis	
that	adaptation	can	be	expected,	for	the	following	reasons:

Resistance	does	not	develop	in	all	populations.
Adapted	populations	often	appear	stressed	by	the	contamination	in	spite	
of	the	adaptation.
Adapted	populations	may	have	reduced	genetic	diversity.
Adapted	populations	may	have	high	tissue	burdens	of	contaminants	and	
could	pass	these	up	the	food	chain.
The	selection	of	resistance	may	be	associated	with	fitness	costs	that	can	
translate	into	future	problems	for	the	adapted	population.

Prolonged	or	repeated	exposure	to	a	toxicant	may	affect	the	tolerance	not	only	of	
individual	populations	but	also	of	whole	communities.	Increased	community	tolerance	
as	a	result	of	prolonged	or	repeated	exposure	to	toxicants	has	been	observed	in	indoor	
multispecies	tests	and	in	outdoor	model	ecosystem	experiments.	For	example,	effects	
of	a	pulsed	treatment	with	the	photosynthesis-inhibiting	herbicide	linuron	on	oxygen	
metabolism	in	macrophyte-dominated	experimental	ditches	were	studied	by	Kersting	
and	Van	Wijngaarden	 (1999).	The	 experimental	 ditches	were	 treated	3	 times	with	
linuron	at	4-week	intervals.	After	each	treatment,	the	test	systems	were	kept	static	for	
1	week,	after	which	they	were	flushed	with	noncontaminated	surface	water	until	the	
next	treatment.	Gross	primary	production	(GPP)	had	an	EC50	of	21	µg/L	during	the	
static	period	after	the	first	treatment.	The	EC50	for	GPP	increased	to	36	µg/L	after	the	
second	treatment	and	to	80	µg/L	after	the	third	treatment.	Between	treatments,	GPP	
recovered	to	the	level	of	the	controls.	The	mechanism	of	decreased	sensitivity	after	
each	pulse	was	 interpreted	as	 adaptation	of	 the	 assemblage	of	primary	producers,		
similar	to	pollution-induced	community	tolerance	(PICT;	Blanck	2002).

Measurement	of	PICT	usually	 involves	carrying	out	 short-term	 (multispecies)	
toxicity	 tests	on	whole	communities	 from	clean	and	contaminated	sites.	Pollution	
tolerance	 is	 quantified	 by	 reduced	 sensitivity	 of	 the	 toxicant	 in	 these	 tests.	 The	
increased	tolerance	may	result	from	replacement	of	sensitive	species	by	less	sensitive	
ones,	development	of	heritable	tolerance	by	one	or	more	species,	and/or	short-term	
nonheritable	acclimation.	A	significant	increase	in	community	tolerance	compared	
to	 the	baseline	 tolerance	 at	 reference	 sites	 suggests	 that	 the	 community	has	been	
adversely	 affected	 by	 toxicants.	 In	 this	 way,	 PICT	 can	 establish	 causal	 linkages	
between	contaminants	and	effects	in	monitoring	studies	(Blanck	2002).

The	time	needed	to	develop	PICT	is,	among	other	factors,	dependent	on	expo-
sure	concentration	and	duration.	For	example,	in	enclosures	exposed	to	a	high	copper	
concentration	(0.24	µM),	increased	tolerance	to	copper	was	found	in	phytoplankton	
communities	after	2	days,	whereas	in	enclosures	 treated	with	a	 low	concentration	
(0.016	µM),	increased	tolerance	was	found	after	12	days	(Gustavson	and	Wängberg		
1995).	In	order	to	demonstrate	PICT,	the	duration	of	the	exposure	to	toxicants	should	
be	long	enough	to	allow	succession	of	the	community	of	interest	to	a	more	tolerant	
state.	This	may	vary	with	 the	generation	 times	of	 the	species	 that	 form	 the	com-
munity	 under	 investigation.	 The	 fact	 that	 the	 generation	 time	 of	 phytoplankton	
species	 is	 low	 (approximately	 1	 day;	 Table	6.5)	 explains	 the	 fast	 response	 of	 the	

•
•

•
•

•
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phytoplankton	community	exposed	 to	copper	 in	 the	study	described	above.	Also,	
the	temporal	resolution	of	disappearance	of	PICT	will	depend	on	the	succession	rate	
of	the	community	after	exposure	to	the	contaminant	has	disappeared.	In	a	bacterial	
community,	the	major	part	of	community	tolerance	(70%	to	90%)	was	lost	within	a	
week	when	metal-tolerant	communities	were	extracted	and	reinoculated	in	sterilized	
uncontaminated	soil	(Díaz-Ravina	and	Bååth	2001).	In	a	field	study	of	TBT	toler-
ance	 in	marine	periphyton,	 the	gradual	change	 in	 tolerance	was	strongly	coupled	
to	changes	of	TBT	concentrations	in	water	over	the	boating	season,	with	sampling	
intervals	of	about	a	month	(Blanck	and	Dahl	1996).

PICT	 has	 received	 significant	 attention	 in	 the	 last	 decade,	 particularly	 when	
applied	 to	 communities	 of	 periphyton,	 phytoplankton,	 bacteria,	 nematodes,	 and	
insects.	Overall,	these	organisms	have	short	generation	times	that	offer	opportuni-
ties	for	rapid	adaptations.	To	date,	mainly	metals,	herbicides,	and	biocides	have	been	
evaluated	in	PICT	studies	(Blanck	2002).

The	examples	of	dynamics	in	tolerance	of	individuals,	populations,	and	communi-
ties	to	toxicant	stress	presented	above	clearly	show	that,	in	ecological	risk	assessment,	
it	is	important	to	account	for	possible	physiological	and	genetic	adaptation	when	the	
organisms	were	previously	exposed	to	the	stressor	of	interest.	In	part,	this	may	explain	
the	variability	in	toxicity	for	the	same	species	reared	in	different	laboratories,	or	sam-
pled	in	different	periods	of	the	year	or	in	different	localities.	This	variability	in	toxic	
responses	may	complicate	attempts	to	extrapolate	effects	of	toxicants	from	laboratory	
toxicity	tests	to	natural	systems.	In	the	fish	species	Melanotaenia nigrans	(Gale	et	al.	
2003),	the	gastropod	Potamopyrgus antipodarum (Jensen	et	al.	2001),	the	crustaceans	
Artemia	and	Daphnia magna	(Barata	et	al.	2002b;	Forbes	1998),	and	the	duckweed	
Lemna gibba (Mazzo	et	al.	1998),	differences	in	tolerance	to	toxic	substances	among	
clones	 or	 subpopulations	 varied	 between	 two-	 and	 eightfold.	 These	 differences	 are	
relatively	small,	when	taking	into	account	that	the	intra-	and	interlaboratory	variations	
in	protocol	tests	with	the	same	standard	test	species	are	approximately	within	a	factor	
of	3	and	5,	respectively	(Rand	and	Petrocelli	1985;	Ferretti	et	al.	2004).

6.4	 sUMMARY	AnD	oUtLooK

6.4.1	 is	ExtrapoLation	across	timE-varying	ExposurE	rEgimEs	possibLE?

Extrapolation	 across	 time-varying	 exposure	 regimes	 is	 possible	 for	 well-studied	
compounds	with	known	modes	of	toxic	action.	However,	it	must	be	recognized	that	
such	extrapolation	may	not	always	be	accompanied	by	a	high	degree	of	certainty.

The	 response	 of	 organisms	 to	 toxic	 chemicals	 depends	 not	 only	 on	 exposure	
concentration	but	also	on	exposure	duration.	The	time	needed	to	reach	incipient	tox-
icity	is	dependent	on	the	type	of	chemical,	ambient	environmental	conditions	such	
as	temperature,	and	the	species	and	endpoints	selected.	Time-to-event	models	can	
be	used	to	extrapolate	observed	responses	in	time.	Individual	organism	characteris-
tics	and/or	environmental	circumstances	(temperature)	can	be	incorporated	in	these	
models	as	covariables	(Section	6.2.1).

In	 characterizing	 effects	 of	 contaminants	 to	 aquatic	 organisms,	 the	 possibil-
ity	 of	 reversibility	 of	 the	 toxic	 effect	 may	 be	 important,	 particularly	 when	 evaluating	
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the	risks	of	pulsed	and	multiple	exposures.	Reversibility	of	 the	effects	 is	reported	
to	depend	on	the	type	of	chemical,	the	exposure	concentration,	and	the	duration	of	the		
exposure	event.	Effects	on	organisms	may	be	similar	when	exposed	for	a	short	time	
to	a	greater	concentration	or	for	a	longer	time	to	a	smaller	concentration.	Such	reci-
procity	 relationships	may	be	used	 to	 estimate	 responses	 to	 shorter	 environmental	
exposures	where	they	are	less	than	those	used	in	acute	single-species	tests,	and	when	
dealing	 with	 compounds	 that	 are	 taken	 up	 slowly	 and	 that	 bind	 irreversibly	 (i.e.,	
some	kind	of	damage	repair	is	necessary,	and	elimination	of	the	compound	is	not	
sufficient	to	take	away	damage;	Section	6.2.2).

In	the	mechanistic	models	used	to	predict	effects	of	time-variable	exposure	to	
organisms,	a	distinction	can	be	made	between	1)	1-step	models	that	consider	the	
toxicokinetic	 terms	“uptake,”	“elimination,”	and	“critical	body	 residues”	and	2)	
2-step	models	 that	 besides	 toxicokinetics	 also	 address	 the	 toxicodynamic	 terms	
“injury”	and	“repair.”	A	disadvantage	of	these	models	is	that	their	parameteriza-
tion	is	compound-and	species-specific	and	hence	requires	many	experimental	data	
(Section	6.2.3).

In	laboratory	single-species	tests,	a	significant	relationship	may	exist	between	
acute	and	chronic	effects	in	some	organisms	and	for	some	types	of	chemicals.	How-
ever,	there	may	be	considerable	uncertainty	associated	with	predictions	of	chronic	
effects	 from	 acute	 effects.	 In	 part,	 this	 uncertainty	 can	 be	 explained	 by	 the	 fact	
that	different	responses	may	be	observed	in	acute	tests	(e.g.,	lethality)	and	chronic	
tests	(e.g.,	reproduction).	For	pesticides	and	aquatic	organisms,	an	uncertainty	factor	
larger	than	100	may	be	necessary	when	predictions	with	a	very	high	certainty	are	
required	(e.g.,	the	95th	centile).	Uncertainty	factors	up	to	100	may	suffice	for	90th	
centile	predictions,	and	UFs	of	10	for	50th	centile	predictions.	When	compared	with	
pesticides,	 the	 required	uncertainty	 factors	 to	predict	 chronic	 toxicity	 from	acute	
toxicity	data	may	be	higher	for	metals	and	organometals	and	lower	for	other	inorgan-
ics	and	organics.

For	most	pesticides	evaluated,	an	uncertainty	factor	of	10	to	15	seems	to	suffice	
to	extrapolate	a	median	acute	HC5	to	a	median	chronic	HC5,	at	least	when	based	
on	toxicity	data	of	sensitive	taxonomic	groups.	In	addition,	it	appears	from	model	
ecosystem	 experiments	 with	 pesticides	 that	 threshold	 concentrations	 for	 chronic	
exposures	are	approximately	a	factor	of	10	lower	than	those	for	acute	exposure.	For	
a	wider	generalization,	however,	more	data	are	required	on	compounds	that	differ	in	
toxic	mode	of	action	(Section	6.2.4).

Possible	delayed	responses	cannot	be	 ignored	when	interpreting	toxicity	 tests.	
These	 latent	 responses	 may	 become	 apparent	 in	 organisms	 after	 the	 exposure	 is	
completed	or	in	conjunction	with	other	stressors	(e.g.,	food	shortage	and	release	of	
toxicants	stored	in	body	lipids).	It	may	even	be	required	to	include	the	responses	of	
the	offspring	 in	 the	observations,	which	 is	not	often	done	 in	 routine	 toxicity	 test-
ing.	At	the	community	level,	complex	interactions	within	and	between	populations	
and	 nonlinear	 biological	 dynamics	 may	 create	 variable	 latency	 periods	 between	
the	exposure	event	and	 indirect	effects	 in	particular.	Latent	direct	effects	of	con-
taminants	can	be	addressed	by	specially	designed	bioassays.	Extrapolation	of	latent	
indirect	effects	can	be	addressed	in	model	ecosystem	experiments	or	by	computer	
models	that	simulate	food	webs	(Section	6.2.5).
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6.4.2	 can	tEmporaL	variabiLity	bE	aDDrEssED	WhEn	
ExtrapoLating	toxicity	Data?

When	exposure	concentrations	are	known	and	when	predictions	are	based	on	ade-
quate	information	on	the	structure,	function,	and	dynamics	of	the	populations	and	
communities	at	risk,	then	it	may	be	possible	to	quantify	variability	associated	with	
extrapolation	between	toxicity	data.

Young	stages	of	aquatic	invertebrates	and	fish	are	often	more	sensitive	to	toxi-
cants	 than	 older	 life	 stages.	 The	 greater	 sensitivity	 of	 the	 younger	 stages	 can	 be	
explained	by	greater	body	surface	area	per	unit	body	mass,	higher	metabolic	rates,	
and	 less	advanced	development	of	detoxification	and	excretion	mechanisms.	This	
suggests	that	the	sensitivity	of	populations	may	vary	throughout	the	year.	Failure	to	
consider	endpoints	above	the	level	of	individuals,	however,	may	lead	to	an	over-	or	
underestimation	of	risk.	Extrapolating	time-	and/or	development-related	effects	of	
chemicals	on	individuals	to	populations	can	be	achieved	using	quantitative	models.	
Especially	when	the	effects	of	toxic	chemicals	are	age	or	stage	dependent,	life	his-
tory	models	can	be	considered	a	realistic	extrapolation	tool	(Section	6.3.1).

When	evaluating	the	influence	of	the	time	of	year	on	responses	of	aquatic	com-
munities	to	chemical	stress,	it	is	convenient	to	make	a	distinction	in	threshold	concen-
trations	of	direct	toxic	effects,	and	in	the	magnitude	of	effects	that	occur	above	these	
threshold	concentrations.	Only	a	limited	number	of	(model)	ecosystem	experiments	
are	available	that	allow	a	comparison	of	responses	due	to	treatment	with	the	same	
chemical	in	the	same	type	of	test	system	at	different	periods	of	the	year.	These	studies		
indicate	 that,	 in	 freshwater	 communities,	 threshold	 concentrations	 for	 direct	 toxic	
effects	may	vary	little	with	the	season	(within	a	factor	of	2).	At	higher	exposure	con-
centrations,	however,	the	intensity	and	duration	of	the	responses	(direct	and	indirect	
effects)	may	vary	considerably	between	different	periods	of	the	year	(Section	6.3.2).

Recovery	potential	of	affected	population	and	ecosystem	functions	is	important	
in	cases	where	exposure	to	the	toxicant	is	not	constant	due	to	fast	dissipation	pro-
cesses.	The	recovery	rate	of	affected	populations	is	highly	dependent	on	life-cycle	
characteristics	of	 the	 affected	 species	of	 concern	 (e.g.,	 generation	 time,	 offspring	
number,	presence	of	dormant	 life	 stages,	 and	migration	capacity).	 In	 the	ecotoxi-
cological	 literature,	 relatively	 little	experimental	 information	can	be	 found	on	 the	
recovery	potential	of	species	with	a	long	and/or	complex	life	cycle.	In	addition,	for	
many	 aquatic	 species,	 basic	 information	 on	 life-cycle	 characteristics	 is	 not	 read-
ily	available.	The	number	of	generations	per	year	of	invertebrate	species	may	vary	
with	latitude.	Estimates	of	recovery	potential	can	be	made	through	either	empirical	
(e.g.,	mesocosm	experiments)	or	modeling	studies.	Generic	models,	like	the	logistic	
growth	model,	and	life	history	and	individual-based	(meta)population	models,	which	
may	be	spatially	explicit,	can	be	used	to	explore	the	recovery	potential	of	individual	
populations.	When	researchers	are	interested	in	the	recovery	of	ecosystem	processes	
(e.g.,	primary	productivity)	and	functional	groups,	food-web	models	are	the	required	
tools	(Section	6.3.3).

Sensitivity	of	populations	and	communities	to	toxic	stress	may	be	influenced	by	
exposure	history.	Tolerance	can	be	acquired	by	an	individual	due	to	physiological	
acclimation	or	by	genetic	adaptation.	At	the	community	level,	PICT	may	result	from	

73907_C006.indd   220 4/23/08   11:43:54 AM



Temporal Extrapolation in Ecological Effect Assessment of Chemicals 221

replacement	of	sensitive	species	by	less	sensitive	ones,	genetic	adaptation	of	one	or	
more	species,	and/or	physiological	adaptation	of	individuals.	Rapid	genetic	adapta-
tion	to	toxicant	stress	usually	involves	a	single	gene.	Experiments	have	demonstrated	
that	genetic	adaptation	 to	metals	and	pesticides	can	develop	within	a	 few	genera-
tions,	particularly	when	it	concerns	species	with	a	short	generation	time	and	a	large	
number	of	offspring.	In	general,	tolerant	individuals	disappear	rapidly	when	released	
in	clean	environments,	due	to	competition	with	nonadapted	strains.	Adaptation	to	
chemical	stress	may	be	one	of	the	reasons	for	the	observed	variability	in	toxicity	for	
the	same	species	reared	in	different	laboratories,	or	sampled	during	different	periods		
of	the	year	or	at	different	localities.	Reported	differences	in	tolerance	to	toxic	sub-
stances	among	clones	or	subpopulations	of	aquatic	organisms	varied	between	two-	
and	eightfold	(Section	6.3.4).
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7.1	 IntRoDUCtIon

Natural	 populations	 and	 communities	 are	 characterized	 as	 being	 spatially	 het-
erogeneous	 (Connell	 and	 Sousa	 1983;	 Sousa	 1984).	 This	 may	 result	 in	 a	 high	
degree	of	variability	in	their	response	to	chemical	stress.	It	is,	however,	neither	
financially	nor	practically	feasible	to	test	a	large	number	of	chemicals	on	a	large	
number	of	species	and	communities	in	different	localities.	Therefore,	the	spatial	
extrapolation	of	ecotoxicological	effect	data	 is	an	important	 issue	in	ecological	
risk	assessment.

Ecologists	 have	 long	 recognized	 the	 considerable	 differences	 in	 biological	
diversity	that	exist	between	ecoregions.	For	example,	a	larger	biological	diversity		
is	 reported	 for	 the	 tropics	 compared	 to	 temperate	 and	 polar	 zones	 (Hawkins	
2001).	 In	 addition,	 certain	 regions	 are	 characterized	 by	 a	 high	 degree	 of	 ende-
mism	 amongst	 their	 fauna	 and	 flora	 (e.g.,	 ANZECC	 ARMCANZ	 2000;	 Walker	
et	 al.	 2001).	 However,	 there	 are	 limited	 ecotoxicological	 data	 on	 nontemperate	
species	in	general,	and	on	endemic	species	in	particular.	Consequently,	ecotoxico-
logical	generalizations	developed	for	temperate	species	and	assemblages	in	North	
America	and	Europe	may	be	challenged	when	extrapolated	to	other	parts	of	 the	
world	with	different	climates	(e.g.,	 the	tropics	and	Antarctica)	and/or	a	different	
evolutionary	history	(e.g.,	Australia	and	New	Zealand).	Climatic	factors	in	these	
widely	 differing	 environments	 may	 markedly	 affect	 both	 the	 chemical	 fate	 and	
ecological	response	rates.

More	and	more	papers	are	becoming	available	in	the	ecological	literature	show-
ing	 that	 chaotic	 dynamics	 in	 population	 and	 community	 responses	 may	 play	 an	
important	 role	 (May	 1974a;	 Perry	 et	 al.	 2000;	 King	 et	 al.	 2004).	 Also,	 in	 recent	
years,	ecotoxicology	has	moved	from	a	static	view	to	a	dynamic	view,	in	which	the	
risks	of	chemicals	to	populations,	communities,	and	ecosystems	are	considered	in	
their	 temporal	 and	 spatial	 context	within	 landscapes	 (Fahrig	and	Freemark	1995;	
Johnson	2002).	At	the	landscape	level,	the	effect	of	a	toxic	event	can	extend	beyond	
the	area	of	direct	impact	due	to	metapopulation	dynamics,	but	may	disappear	faster	
due	to	external	recovery	processes.	The	aim	of	assessing	risks	of	chemicals	at	the	
landscape	level	is	to	make	inferences	about	the	longer	term	dynamics	of	larger	sys-
tems.	 This	 approach	 also	 implies	 a	 move	 from	 the	 ecological	 risk	 assessment	 of	
single	chemicals	to	that	of	realistic	combinations	of	multiple	stressors.

In	 extrapolation	 across	 spatial	 scales,	 a	 variety	 of	 models	 may	 be	 employed,	
including	physical	models	 (such	as	microcosms	and	mesocosms),	 statistical	mod-
els,	 and	computer	 simulations	 (Johnson	and	Rodgers	2005).	Recent	 technological	
innovations	 make	 spatially	 explicit	 risk	 assessment	 feasible	 at	 scales	 relevant	 to	
biological	populations	and	ecosystem	processes.	New	mapping	technologies	based	
on	 remote	 sensing	provide	 the	basis	 for	 detailed	 topographic	models	 from	which	
relevant	environmental	and	ecological	conditions	and	spatial	process	rates	can	be	
initially	deduced	or	hypothesized	(Power	et	al.	2005).

This	 chapter	 aims	 to	provide	 insight	 into	1)	our	 current	knowledge	of	 spatial	
variability	of	ecological	responses	to	chemical	stress,	and	2)	the	tools	that	can	be	
used	to	extrapolate	across	space.	The	focus	of	this	chapter	will	be	on	aquatic	organ-
isms	and	ecosystems,	and	it	is	divided	into	2	major	sections:
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Spatial	variability	and	ecotoxicological	data	extrapolation:	This	section	
describes	 the	 current	 knowledge	 and	 available	 extrapolation	 tools	 with	
respect	to	the	effect	assessment	of	the	same	type	of	stressor	in	test	systems	
of	different	sizes,	in	different	types	of	aquatic	ecosystem	within	a	region,	
and	in	comparable	ecosystems	in	different	geographical	regions.
Landscape	 ecotoxicology:	 This	 section	 describes	 current	 developments	
and	 extrapolation	 tools	 used	 in	 landscape	 ecotoxicology.	 Because	 eco-
logical	effect	assessment	of	chemicals	at	the	landscape	level	requires	the	
integration	of	both	spatial	and	temporal	aspects,	this	section	in	particular	
builds	further	on	the	data	presented	in	Chapter	6	on	temporal	extrapola-
tion	in	ecological	effect	assessment	of	chemicals.

7.2	 sPAtIAL	VARIABILItY	AnD	eCotoXICoLoGICAL	
DAtA	eXtRAPoLAtIon

7.2.1	 IntroductIon

Ecological	 risk	 assessment	 is	 well	 advanced	 in	 developed	 regions	 of	 the	 world	
(e.g.,	North	America	 and	Western	Europe),	 but	 it	 is	 less	 advanced	 in	many	devel-
oping	 nations	 (Calow	 1998b).	 Furthermore,	 whereas	 most	 of	 the	 data	 and	 science	
underpinning	 ecological	 risk	 assessment	 are	 based	on	North	American	 and	Euro-
pean	 ecosystems,	 much	 of	 the	 world’s	 biodiversity	 is	 concentrated	 in	 the	 tropics.	
Tropical	 forests,	 for	 example,	 are	 thought	 to	 contain	 more	 than	 half	 the	 world’s	
biodiversity,	 and	 almost	 a	quarter	 of	 the	world’s	 freshwater	fish	 species	 are	 found	
in	 the	Amazon	 (World	Conservation	Monitoring	Centre	1992).	 It	 is	not	 as	 though		
environmental	contaminants	only	pose	a	problem	in	northern	temperate	regions;	on	the	
contrary,	many	of	the	current	environmental	issues	affect	non–northern	hemisphere,	
nontemperate	 ecosystems	 (e.g.,	 Henriques	 et	 al.	 1997;	 Lacher	 and	 Goldstein	 1997;	
Dudgeon	2000;	Leonard	et	al.	2000).	The	dominance	of	ecotoxicological	information	
on	northern	temperate	species	and	ecosystems	raises	a	number	of	important	questions	
relating	to	the	spatial	extrapolation	of	ecotoxicological	data,	including	the	following:

Should	ecological	risk	assessments	be	based	on	toxicity	data	for	indigenous	
species	only,	or	can	existing	toxicity	data	for	nonindigenous	species	be	used?
To	what	extent	can	ecotoxicological	data	be	extrapolated	from	one	geograph-
ical	region	to	another,	and	what	are	the	constraints	on	this	extrapolation?

Here	we	explore	these	questions	by	initially	considering	the	geographical	distri-
bution	of	species,	before	reviewing	current	information	on	the	spatial	extrapolation	
of	 toxicity	data.	We	consider	 the	extent	 to	which	 the	sensitivity	of	 temperate	and	
tropical	species	to	environmental	contaminants	differs,	and	then	consider	similari-
ties	in	species	sensitivity	between	hemispheres	(northern	hemisphere	versus	southern		
hemisphere)	and	within	climatic	regions	(Palearctic	versus	Nearctic).	We	then	go	on	
to	consider	extrapolations	between	habitat	types	within	a	single	geographical	region	
(lotic	versus	 lentic)	before	exploring	 the	 importance	of	geographical	 location	and	
scale	in	experimental	multispecies	systems	(micro-	and/or	mesocosms).

•

•

•

•
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7.2.2	 Global	dIstrIbutIon	of	specIes

The	global	distribution	of	species	is	a	consequence	of	evolutionary,	geological,	and	
ecological	factors	and	processes,	and	has	been	influenced	by	human	activity.	The	
distribution	of	animals	can	be	classified	in	terms	of	6	zoogeographical	regions	(i.e.,	
Nearctic,	Neotropical,	Palearctic,	Oriental,	Australian,	and	Ethiopian;	Table	7.1)	and,	
for	plants,	in	terms	of	6	floral	regions	(Holarctic,	Neotropical,	Paleotropical,	Aus-
tralian,	Cape,	and	Antarctic)	(Cox	and	Moore	1993).	The	major	difference	between	
the	faunal	and	floral	 regions	 lies	 in	 the	recognition	by	plant	geographers	of	1)	an	
Antarctic	floral	region,	2)	the	location	of	the	boundary	between	Southeast	Asia	and	
Australia,	and	3)	the	recognition	of	a	Cape	floral	region	(Takhtajan	1986).

Whereas	some	groups	of	organisms	have	a	cosmopolitan	distribution	(the	mussel	
genus	Mytilus,	the	rodent	genus	Myomorpha,	and	Homo sapiens),	many	are	endemic	to	
a	continent	(e.g.,	Australian	monotremes),	island	(e.g.,	the	New	Zealand	kiwi),	or	single	
location	(e.g.,	Lake	Tanganyika	cichlids).	Endemism	is	low	in	Nearctic	and	Palearctic	
regions	compared	to	other	zoogeographical	regions.	For	example,	88%	of	Australian	
reptiles,	90%	of	Neotropical	freshwater	fish,	and	98%	of	Madagascan	amphibians	are	
endemic.	Furthermore,	of	the	approximately	8500	freshwater	fish	species	worldwide,	
approximately	21%	are	endemic	to	the	Amazon	and	12%	are	endemic	to	Lake	Malawi.	
In	contrast,	only	about	10%	of	Nearctic	birds	and	30%	of	Nearctic	freshwater	fish	are	
endemic	(World	Conservation	Monitoring	Centre	1992).

In	 general,	 biodiversity	 increases	 toward	 the	 tropics	 (Gaston	 et	 al.	 1995);	
however,	global	diversity	patterns	can	differ	between	 taxa.	For	 instance,	 a	 recent	
study	 of	 the	 geographical	 distribution	 of	 stream	 insects	 concluded	 that	 whereas		
Ephemeroptera	 were	 most	 diverse	 in	 the	 Ethiopian	 region,	 Plecoptera	 were	 most	
diverse	in	the	Nearctic.	Plecoptera	genera	richness	was	the	greatest	at	40°	latitude,	
whereas	Ephemeroptera	genera	richness	peaked	at	10°	and	30°	to	40°	latitude	(Vinson		
and	Hawkins	2003).	Differences	in	the	global	distribution	patterns	of	species	will	

tABLe	7.1
Wallace’s	zoogeographical	regions

Region Location

Nearctic North	American	continent	south	to	the	Tropic	of	Cancer
Paleartic Europe,	Asia	north	of	the	Himalayas,	northern	Arabia,	and	a	narrow	strip	

of	coastal	North	Africa
Neotropical South	America,	part	of	Mexico,	and	the	West	Indies.
Ethiopian	(Afrotropical) Africa	south	of	the	Atlas	Mountains	and	Sahara	Desert,	Madagascar,	and	

southern	Arabia
Oriental Asia	south	of	the	Himalayas:	India,	Indochina,	South	China,	Malaysia,	

and	the	western	islands	of	the	Malaysian	Archipelago
Australian Eastern	islands	of	the	Malaysian	Archipelago,	Australia,	Tasmania,		

New	Zealand,	Papua–New	Guinea,	and	South	Pacific	oceanic	islands.

Source:	Lincoln	et	al.	(1983).
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result	in	spatial	differences	in	community	composition	and	hence	potentially	to	spa-
tial	differences	in	sensitivity	to	environmental	contaminants.

Tropical	regions	not	only	are	the	most	biodiverse	and	have	the	highest	levels	of	
endemism,	but	 they	also	contain	many	of	 the	most	vulnerable	ecosystems.	Myers	
et	 al.	 (2000)	 identified	 25	 biodiversity	 hotspots,	 areas	 that	 featured	 exceptional	
concentrations	of	endemic	 species	and	 that	were	experiencing	exceptional	 loss	of	
habitat	(Figure	7.1).	Based	on	this	analysis,	the	5	main	hotspots	—	Tropical	Andes,		
Sundaland,	Madagascar,	Brazil’s	Atlantic	forest,	and	the	Caribbean	—	are	in	tropi-
cal	regions	(Neotropical,	Ethiopian,	or	Oriental)	and	contain	20%	of	all	plant	and	
16%	of	all	vertebrate	species	worldwide.	It	should	be	noted	that	this	prioritization	
scheme	was	based	on	vascular	plants	and	vertebrates	(excluding	fish),	a	constraint	
imposed	by	data	availability,	and	hence	the	areas	identified	may	not	be	the	major	
“hotspots”	for	other	taxonomic	groups.	In	fact,	the	highest	levels	of	endemism	for	
freshwater	fish	species	are	found	 in	 the	Amazon	River	(circa	1800	species),	Lake	
Malawi	(circa	1000	species),	and	the	Zaire	River	(circa	500	species),	none	of	which	
are	contained	within	the	biodiversity	hotspots	identified	by	Myers	et	al.	(2000);	all	3	
are,	however,	captured	by	the	Global	200	priority	scheme.

Global	 200	 identified	 233	 ecoregions	 whose	 biodiversity	 and	 representative-
ness	(i.e.,	representative	of	distinct	habitat	types)	are	outstanding	on	a	global	scale	
(Olson	and	Dinerstein	1998).	More	than	half	(58%)	of	the	ecoregions	identified	are	
terrestrial,	16%	are	 freshwater,	and	26%	are	marine;	 the	dominance	of	 terrestrial	
ecoregions	is	due	in	part	to	the	higher	endemism	of	terrestrial	biota	and	the	lack	of	
biogeographic	information	for	freshwater	and	marine	organisms.	Of	the	36	freshwa-
ter	ecoregions	identified	by	Global	200,	approximately	half	are	Neotropical	or	Orien-
tal	(Figure	7.2)	and	include	the	major	rivers	of	the	world,	such	as	the	Amazon,	Zaire,	
Mekong,	Colorado,	 and	Yangtze,	 and	 lakes,	 such	 as	 the	 rift	 valley	 lakes,	Baikal,		
and	the	Great	Basin	lakes,	as	well	as	many	smaller	freshwater	ecosystems.

According	 to	 Olson	 and	 Dinerstein	 (1998),	 most	 temperate	 freshwater	 biota	
are	 threatened	 by	 invasion	 of	 exotics,	 pollution,	 dams,	 and	 habitat	 degradation.		

FIGURe	7.1	 Global	 distribution	 of	 25	 biodiversity	 hotspots.	 Source:	 Identified	 by	 Myers		
et	al.	(2000).
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However,	these	threats	are	not	restricted	to	temperate	freshwaters.	Habitat	destruction	
in	Asia	(Dudgeon	2000),	introduction	of	exotics	in	Africa	(Lowe-McConnell	1994),	
and	 long-range	 transport	of	pollutants	 to	polar	 regions	have	all	had	major	 impacts	
on	freshwater	ecosystems.	In	addition,	environmental	contaminants	including	those	
from	mining	activities	(Mol	et	al.	2001;	David	2003),	petroleum	industries,	and	agri-
culture	(Abdullah	et	al.	1997)	are	causing	problems	in	many	developing	regions.

7.2.3	 spatIal	extrapolatIon	of	toxIcIty	data	between	specIes

7.2.3.1	 temperate	versus	tropical

As	discussed	in	Chapter	6,	numerous	studies	have	demonstrated	that	toxicity	gener-
ally	increases	with	increasing	temperature	(Mayer	and	Ellersieck	1986;	Donker	et	al.	
1998;	Boone	and	Bridges	1999).	For	example,	a	study	of	temperature–toxicity	rela-
tionships	of	Australian	species	found	that	the	toxicity	of	chlorpyrifos	and	endosulfan	
to	fish	and	 invertebrates	generally	 increased	with	 increasing	 temperature,	but	 the	
trend	with	phenol	was	more	complex	(Patra	2000).	The	positive	correlation	between	
temperature	 and	 toxicity	 has	 led	 to	 the	 assumption	 that	 organisms	 from	 warm		
climates	will	be	more	sensitive	than	those	from	cold	climates	(Castillo	et	al.	1997;	
Peters	et	al.	1997).	However,	several	authors	have	noted	that	fish	endemic	to	cold-
water	habitats	were	slightly	more	sensitive	than	fish	from	temperate	and	subtropical	
habitats	(LeBlanc	1984;	Mayer	and	Ellersieck	1986).	Moreover,	Dyer	et	al.	(1997)	
concluded	that	temperate	fish	were	more	sensitive	than	tropical	fish,	although	this	
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FIGURe	7.2	 Geographical	distribution	of	priority	freshwater	ecoregions.	Source:	Redrawn	
from	data	from	Olson	and	Dinerstein	(1998).
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difference	was	driven	by	only	1	of	the	6	chemicals	investigated,	DDT	(Figure	7.3).	
Interestingly,	DDT	(Mayer	and	Ellersieck	1986)	and	some	of	the	pyrethroids	(NRCC	
1987)	are	among	the	few	chemicals	for	which	there	is	a	negative	correlation	between	
water	temperature	and	aquatic	toxicity.	Brix	et	al.	(2001)	also	found	a	latitudinal	gra-
dient	in	copper	sensitivity	in	fish,	with	tropical	fish	being	less	sensitive	than	temperate		
warmwater	fish,	who	were,	in	turn,	less	sensitive	than	temperate	coldwater	fish.

Very	few	studies	have	compared	the	sensitivity	of	temperate	and	tropical	inverte-
brates	to	environmental	contaminants.	Maltby	et	al.	(2005)	compared	species	sensi-
tivity	distributions	for	temperate	and	tropical	arthropods	exposed	to	the	insecticides	
chlorpyrifos,	fenithrothion,	and	carbofuran.	In	contrast	to	the	fish	studies	discussed	
above,	they	reported	a	tendency	for	HC5	values	to	be	lower	for	tropical	arthropods	
(Figure	7.4),	although	this	difference	was	not	statistically	significant.

Kwok	et	al.	(2007)	used	species	sensitivity	distributions,	constructed	with	acute	
toxicity	data	of	freshwater	animal	species,	to	determine	whether	temperate	data	sets	
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FIGURe	7.3	 Box	plot	of	LC50	values	for	coldwater,	temperate	fish	species	exposed	to	DDT.	
Source:	Redrawn	from	data	of	Dyer	et	al.	(1997).
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FIGURe	7.4	 Species	sensitivity	distribution	for	tropical	or	temperate	arthropods	exposed	to	
fenitrothion	in	acute	toxicity	tests.	Source:	Redrawn	from	data	of	Maltby	et	al.	(2005).
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are	adequately	protective	of	tropical	species	assemblages	for	18	chemical	substances.	
However,	they	did	not	construct	separate	SSDs	for	different	taxonomic	groups.	The	
best-fit	parametric	SSD	model	was	only	valid	for	10	chemicals	(ammonia,	cadmium,	
chromium,	lead,	mercury,	nickel,	zinc,	lindane,	malathion,	and	phenol)	with	a	sat-
isfactory	goodness	of	fit.	Furthermore,	 they	demonstrated	 that	 tropical	 tests	were	
conducted	at	a	significantly	higher	 temperature	 than	 temperate	 tests	 for	13	of	 the	
18	 tested	chemicals	 and	 that,	 in	general,	 the	quality	of	 tropical	 toxicity	data	was	
lower.	Nevertheless,	these	SSD	comparisons	demonstrated	trends	of	differences	in	
species	sensitivities	to	different	chemicals	between	tropical	and	temperate	aquatic	
organisms.	For	6	of	the	18	chemicals	examined	(ammonia,	arsenic,	zinc,	chlorpyri-
fos,	chlordane,	and	phenol),	tropical	organisms	tended	to	be	more	sensitive	than	tem-
perate	ones.	For	several	other	chemicals	tested,	however,	temperate	species	tended	
to	be	more	sensitive	than	tropical	ones.	Kwok	et	al.	(2007)	recommended	using	an	
assessment	factor	of	10	if	the	water	quality	standard	is	primarily	based	on	temperate	
species	and	a	priori	knowledge	on	the	sensitivity	of	tropical	species	is	very	limited	
or	not	available.	An	extrapolation	factor	of	1	would	protect	90%	of	species	for	more	
than	60%	of	chemicals.

Based	on	the	above	results,	there	is	no	evidence	to	support	the	contention	that	
tropical	fish	are	inherently	more	sensitive	to	environmental	contaminants	than	tem-
perate	fish	and	only	limited	evidence	to	suggest	that	tropical	invertebrates	may	be	
more	sensitive	than	temperate	invertebrates	to	selected	chemicals.	However,	 these	
observations	are	based	on	a	very	limited	number	of	studies,	and	there	are	insufficient	
high-quality	data	available	for	 the	 tropics	 to	rigorously	compare	 the	sensitivity	of	
temperate	and	tropical	species.

7.2.3.2	 northern	Hemisphere	versus	southern	Hemisphere

The	 majority	 of	 toxicity	 test	 data	 are	 generated	 using	 species	 from	 the	 northern	
hemisphere	(i.e.,	Holarctic).	For	example,	9	of	 the	12	freshwater	fish	species	used	
in	 the	ecological	 risk	assessment	of	atrazine	 (Solomon	et	 al.	1996)	and	27	of	 the		
40	freshwater	fish	species	used	in	the	risk	assessment	of	copper	(Brix	et	al.	2001)	
are	 from	 Holarctic	 habitats.	 Relatively	 few	 data	 are	 available	 for	 southern	 hemi-
sphere	 species,	 and	 consequently	 risk	 assessments	 conducted	 to	 protect	 southern	
hemisphere	ecosystems	have	to	utilize	toxicity	data	obtained	using	northern	hemi-
sphere	species	(Muschal	and	Warne	2003).	Does	this	matter?	Based	on	the	limited	
data	currently	available,	it	would	appear	not.

Hose	and	van	den	Brink	(2004)	demonstrated	 that	 there	was	no	difference	 in	
the	sensitivity	of	Australian	and	non-Australian	fish	species	to	endosulfan.	Further-
more,	although	southern	hemisphere	(Australian	region)	freshwater	fish	are,	on	aver-
age,	less	sensitive	to	copper	than	northern	hemisphere	(Nearctic	and	Palearctic)	fish,	
these	differences	are	not	statistically	significant	(Figure	7.5).	However,	more	studies	
are	required	to	assess	the	generality	of	these	observations.

7.2.3.3	 nearctic	versus	Palearctic

As	noted	above,	most	toxicity	data	are	available	for	Nearctic	and	Palearctic	(in	par-
ticular,	western	Palearctic)	species.	Although	there	are	similarities	in	the	fauna	and	
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flora	of	 these	2	 regions,	 there	are	also	differences	 in	biodiversity	and	community	
composition.	For	example,	the	freshwater	fish	faunas	of	the	Nearctic	and	Palearctic	
both	 include	 pike	 (Esocidae),	 salmonids	 (Salmonidae),	 smelts	 (Osmeridae),	 stick-
lebacks	 (Gasterosteidae),	 and	 sturgeons	 (Acipenseridae).	 Both	 regions	 also	 have	
catfish,	 but	 in	 the	 Nearctic	 they	 belong	 to	 the	 family	 Ictaluridae,	 whereas	 in	 the	
Palearctic	they	belong	to	the	family	Siluridae.	Oberdorff	et	al.	(1997)	compared	the	
biodiversity	of	freshwater	fish	assemblages	of	132	Holarctic	rivers	(91	western	Pale-
arctic	and	41	Nearctic)	and	concluded	that	the	western	Palearctic	rivers	had	a	lower	
species	diversity	than	the	Nearctic	rivers.

Few	 studies	 have	 compared	 the	 relative	 sensitivity	of	Nearctic	 and	Palearctic	
species.	 Reanalyzing	 toxicity	 data	 for	 atrazine	 (Solomon	 et	 al.	 1996)	 and	 copper	
(Brix	 et	 al.	 2001)	 reveals	 no	difference	 in	 the	median	 sensitivity	of	Palearctic	or	
Nearctic	fish	species	to	copper	but	a	greater	sensitivity	of	Nearctic	fish	to	atrazine	
(Figure	7.5).	Maltby	et	al.	(2005)	compared	the	sensitivity	distributions	of	Nearctic	
and	 Palearctic	 arthropods	 to	 4	 insecticides	 (chlorpyrifos,	 fenithrothion,	 diazinon,	
and	lindane).	There	was	a	tendency	for	the	HC5	values	generated	using	Palearctic	
species	to	be	less	than	those	generated	using	Nearctic	species	(e.g.,	Figure	7.6),	but	
these	differences	were	not	statistically	different.

These	data	indicate	that	the	sensitivities	of	Nearctic	and	Palearctic	species	may	
vary	but	that	these	differences	may	be	compound	and	taxon	specific;	Nearctic	fish	
were	more	 sensitive	 to	 atrazine,	but	Palearctic	 arthropods	were	more	 sensitive	 to	
fenitrothion.	However,	these	observations	are	based	on	data	for	a	very	limited	num-
ber	of	compounds	and	a	small	number	of	species	and	should	therefore	be	interpreted	
with	caution.	Further	research	is	required	to	determine	the	true	extent	of	similari-
ties	or	differences	in	the	relative	sensitivity	of	species	from	these	2	biogeographical	
regions.
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FIGURe	7.5	 Median	LC50	values,	and	interquartile	ranges,	for	freshwater	fish	exposed	to	
atrazine	or	copper	in	acute	toxicity	tests.	Note:	Fish	are	classified	according	to	biogeographi-
cal	region	(i.e.,	Nearctic,	Palearctic,	and	Australian),	and	the	number	of	species	in	each	cat-
egory	is	given	in	parentheses.	Source:	Atrazine	LC50	data	are	from	Solomon	et	al.	(1996),	
and	copper	data	are	from	Brix	et	al.	(2001).

73907_C007.indd   231 4/23/08   11:45:30 AM



232 Extrapolation Practice

7.2.3.4	 Lentic	versus	Lotic	Habitats

Freshwater	ecosystems	range	 in	size	from	large	 lakes	and	rivers	 to	small	streams	
and	ponds.	All	can	be	exposed	to	environmental	contaminants,	but	risk	assessment	
tends	to	focus	on	static	water	bodies,	the	rationale	being	that	these	provide	a	realistic	
worse	case.	But	do	they?

Relatively	few	studies	have	systematically	compared	the	composition	of	fresh-
water	communities,	and	even	fewer	have	compared	their	relative	sensitivity	to	envi-
ronmental	 contaminants.	 A	 recent	 study,	 comparing	 the	 biodiversity	 of	 wetland	
macrophytes	 and	 aquatic	 macroinvertebrates	 of	 different	 freshwater	 ecosystems		
(rivers,	streams,	ditches,	and	ponds)	within	a	lowland	agricultural	landscape,	con-
cluded	that	species	richness	was	greatest	for	rivers	and	least	for	ditches	(Williams	
et	al.	2003).	However,	this	depends	on	the	spatial	resolution.	Although	ponds	had	a	
lower	average	diversity	than	rivers,	their	community	composition	was	more	variable,	
and	hence	they	supported	the	greatest	number	of	species	at	a	regional	scale.	Further-
more,	 although	 there	was	considerable	overlap	 in	 the	 invertebrate	assemblages	of	
ditches	with	those	of	streams	and	ponds,	there	was	little	overlap	between	the	inver-
tebrate	assemblages	of	ponds	and	those	of	rivers	and	streams.	In	contrast	to	the	pat-
terns	in	invertebrate	communities,	there	was	considerable	similarity	in	the	wetland	
plant	assemblages	of	all	water-body	types.

Freshwater	invertebrates	in	the	orders	Ephemeroptera,	Plecoptera,	and	Trichop-
tera,	the	so-called	“EPT	taxa,”	are	generally	considered	to	be	sensitive	to	environ-
mental	contaminants,	whereas	Diptera	and	oligochaetes	are	considered	tolerant,	an	
assumption	underpinning	several	biotic	indices	of	water	quality	(Norris	and	Georges	
1993).	This	has	led	to	the	assertion	that	systems	with	a	high	proportion	of	EPT	taxa	
are	more	likely	to	respond	to	chemical	perturbation	than	those	with	a	low	proportion	
of	EPT	taxa	(Versteeg	et	al.	1999).	As	EPT	taxa	are	more	common	in	flowing	waters,	
it	may	be	expected	that	lotic	assemblages	will	be	more	sensitive	to	environmental	
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FIGURe	7.6	 Species	sensitivity	distributions	for	Palearctic	and	Nearctic	freshwater	arthro-
pods	exposed	to	fenitrothion	in	acute	toxicity	tests.	Source:	Redrawn	from	data	of	Maltby		
et	al.	(2005).
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contaminants	than	lentic	assemblages.	Maltby	et	al.	(2005)	assessed	the	influence	of	
habitat	(lentic	versus	lotic)	on	the	species	sensitivity	distributions	of	arthropods	to	
8	 insecticides	 (carbaryl,	 chlorpyrifos,	 diazinon,	 fenitrothion,	 lambda-cyhalothrin,	
lindane,	 parathion-ethyl,	 and	permethrin).	There	was	no	 consistent	 pattern	 in	 the	
relative	sensitivity	of	lentic	or	lotic	species	and	no	evidence	of	a	significant	differ-
ence	in	HC5	values	among	or	within	compounds.	For	example,	single-species	acute	
toxicity	 data	 were	 collated	 for	 freshwater	 arthropods	 exposed	 to	 lindane.	 Of	 the	
39	species	in	the	data	set,	16	were	found	only	in	lentic	habitats,	and	9	only	in	lotic	
habitats;	the	remaining	14	species	occurred	in	both	lentic	and	lotic	habitats	and	were	
therefore	excluded	from	the	analysis.	There	was	no	difference	in	species	sensitivity	
distributions	even	though	47%	of	the	lentic	species	were	Diptera	and	67%	of	the	lotic	
species	were	EPT	taxa	(Figure	7.7).	However,	field	and	mesocosm	studies	of	metal	
exposures	for	both	North	American	and	New	Zealand	lotic	invertebrate	communi-
ties	have	shown	particularly	high	sensitivity	for	mayfly	species	and	higher	tolerance	
for	 caddisflies	 and	 stoneflies	 (Hickey	 and	 Clements	 1998;	 Carlisle	 and	 Clements	
1999;	Clements	et	al.	2000).	These	studies	suggest	that	general	application	of	EPT	
indices	in	metal-polluted	environments	may	not	provide	sensitive	measures	of	com-
munity	impacts.

7.2.3.5	 saltwater	versus	Freshwater	species

Toxicity	data	 for	 saltwater	organisms	are	often	 insufficient	 to	assess	 risks.	Fresh-
water	toxicity	data	are	usually	more	plentiful,	and	their	use	may	provide	a	suitable	
surrogate	for	saltwater	data.	Wheeler	et	al.	(2002b)	used	species	sensitivity	distribu-
tions	to	determine	if	freshwater	data	sets	are	adequately	protective	of	saltwater	spe-
cies	assemblages	for	21	chemical	substances.	For	ammonia	and	metal	compounds,	
freshwater	organisms	 tended	 to	be	more	sensitive	 than	saltwater	species,	whereas	
the	opposite	was	true	for	pesticides	and	narcotic	compounds	(Wheeler	et	al.	2002b).	
De	Zwart	(2002),	who	compared	160	compounds,	including	92	pesticides,	concluded	
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FIGURe	7.7	 Species	sensitivity	distributions	for	lotic	and	lentic	arthropods	exposed	to	lin-
dane	in	acute	toxicity	tests.	Source:	Redrawn	from	data	of	Maltby	et	al.	(2005).
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that	there	was	no	significant	difference	in	the	average	sensitivity	of	freshwater	and	
saltwater	species.	In	the	studies	mentioned	above,	however,	the	comparisons	were	
not	based	on	SSDs	constructed	for	different	taxonomical	groups.

It	can	be	argued	that	for	compounds	with	a	specific	toxic	mode	of	action,	the	spe-
cies	compositions	of	the	data	sets	used	may	be	an	important	factor	when	interpreting	
species	sensitivity	distributions.	Maltby	et	al.	(2005)	compared	the	sensitivity	distri-
butions	of	freshwater	and	saltwater	arthropods	for	10	insecticides	and	found	no	sig-
nificant	overall	difference	in	median	HC5	estimates.	However,	for	permethrin	and	
chlorpyrifos,	saltwater	arthropods	were	significantly	more	sensitive	than	freshwater	
arthropods.	With	the	exception	of	Chironomus salinarius,	all	saltwater	arthropods	
in	these	data	sets	were	crustaceans,	whereas	the	majority	of	freshwater	arthropods	
were	 insects.	There	was	no	significant	difference	 in	 the	sensitivity	distribution	of	
freshwater	or	saltwater	crustaceans	to	either	chlorpyrifos	or	permethrin.	Thus,	the	
apparent	increased	sensitivity	of	saltwater	arthropods	was	due	to	differences	in	the	
taxonomic	composition	of	the	data	sets	being	compared,	rather	than	a	fundamental	
difference	in	the	response	of	freshwater	and	saltwater	taxa	to	insecticides	(Maltby		
et	al.	2005).	These	data	suggest	that	in	aquatic	effect	assessments	of	compounds	with	
a	specific	toxic	mode	of	action,	the	species	sensitivity	distribution	approach	can	be	
used	when	 the	SSDs	are	constructed	with	freshwater	and	saltwater	species	of	 the	
most	sensitive	taxonomic	group.

7.2.4	 sIze	and	complexIty	of	test	systems	and	communIty	responses

Experimental	aquatic	ecosystems	have	become	widely	used	tools	 in	ecotoxicology	
because	they	allow	for	a	greater	degree	of	control,	replication,	and	repeatability	than	
is	achievable	in	natural	ecosystems.	The	test	systems	in	use	vary	from	small	indoor	
microcosms	to	large	and	complex	outdoor	experimental	ecosystems.	However,	natu-
ral	freshwater	systems	may	also	vary	considerably	in	size	and	ecological	complexity.	
Before	addressing	the	spatial	extrapolation	of	results	of	model	ecosystem	experiments	
that	were	conducted	on	different	localities,	the	possible	influence	of	the	size	and	eco-
logical	complexity	of	test	systems	on	responses	to	chemical	stress	will	be	discussed.

Differences	 in	 model	 ecosystem	 size	 and	 complexity	 are	 reported	 to	 have	 a	
profound	effect	on	the	enclosed	community	(Petersen	and	Hastings	2001).	Impor-
tant	aspects	of	ecosystem	and	community	functions	may	be	controlled	by	keystone	
organisms	too	large	or	mobile	to	be	confined	in	experiments	that	are	smaller	than	
the	 ecosystem	 of	 concern,	 such	 as	 large	 predatory	 fish.	 In	 addition,	 problems	 in	
interpreting	micro-	and/or	meso-cosm	experiments	may	be	caused	by	inadequate	or	
erroneous	scaling	of	sediment–water	interactions	and	potential	artifacts	associated	
with	containerization	(wall	effects	and	water	renewal	times;	Stephenson	et	al.	1986;	
Schindler	 1998).	Furthermore,	 large	 freshwater	 ecosystems	 are	usually	 character-
ized	by	a	diversity	of	habitats	differing	in	abiotic	and	biotic	properties	(the	pelagic	or	
the	littoral	zone	of	lakes),	whereas	most	artificial	aquatic	ecosystems	usually	simu-
late	only	one	of	these	habitats.	

Belanger	(1997)	analyzed	data	from	more	than	150	studies	using	model	stream	
ecosystems	ranging	in	size	from	0.2	to	540	m	long	and	from	0.05	to	4.3	m	wide,	and	
with	a	volume	of	1.5	to	8	×	105	L.	He	concluded	that	although	larger	systems	could	
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be	 sampled	 more	 intensively	 and	 were	 more	 likely	 to	 contain	 fish,	 there	 was	 no	
relationship	between	test	system	size	and	the	species	richness	of	invertebrate,	algal,	
or	protozoan	assemblages.	Few	studies	have	compared	assemblages	in	model	streams	
and	natural	streams,	but	those	that	have	indicate	that	assemblages	in	model	streams	
are	representative	of	the	natural	streams	from	which	they	are	derived	(Belanger	et	al.		
1995;	Wong	et	al.	2004).	Model	ecosystems	that	simulate	lentic	aquatic	ecosystems,	
however,	usually	contain	species	characteristic	for	deeper	parts	of	freshwater	ponds	
and	 often	 lack	 the	 species	 assemblages	 typical	 for	 littoral	 zones	 (Williams	 et	 al.	
2002).	Lentic	model	ecosystems	used	to	assess	the	impact	of	chemicals	can	be	con-
veniently	 divided	 into	 plankton-	 and	 macrophyte-dominated	 systems.	 Compared	
with	macrophyte-dominated	systems,	plankton-dominated	communities	are	usually	
characterized	by	a	higher	proportion	of	short-lived	species	(phytoplankton	and	zoo-
plankton),	lower	biomass	but	higher	turnover	rates,	and	a	less	diverse	macroinverte-
brate	community	(Brock	and	Budde	1994).

The	spatial	scale	and	complexity	of	experimental	tests	systems	may	significantly	
affect	 the	 relationship	 between	 the	 fate	 and	 associated	 effects	 of	 contaminants.	
For	example,	in	experiments	introducing	methoxychlor	at	the	same	initial	concen-
tration	 to	enclosures	of	3	 sizes,	Solomon	et	al.	 (1989)	 reported	 that	 reductions	 in		
zooplankton	abundance	in	the	smallest	enclosures	were	numerically	less,	and	their	
recovery	rates	faster,	relative	to	the	larger	enclosures.	Also,	dissipation	of	methoxy-
chlor	 from	 the	 water	 column	 was	 faster	 in	 the	 smallest	 enclosures,	 which	 was	
partially	 attributable	 to	 differences	 in	 (wall)	 surface	 area–volume	 ratios	 between	
different	 test	systems	(Solomon	et	al.	1989).	Perez	et	al.	(1991)	examined	the	fate	
and	 ecological	 effects	 of	 the	 pesticide	 kepone	 in	 aquatic	 microcosms	 ranging	 in	
volume	from	9	to	140	L	and	in	which	water	depth	was	held	constant.	In	the	absence	
of	kepone,	 the	 test	 systems	 showed	 size-dependent	differences	 in	 the	 timing	and	
magnitude	of	the	phytoplankton	bloom.	Kepone	reduced	grazing	pressure	by	zoo-
plankton,	 resulting	 in	an	 increase	 in	phytoplankton	densities.	The	 time	course	of	
kepone	in	the	overlying	water	was	not	affected	by	microcosm	size,	but	the	concen-
trations	found	in	the	sediment	were	dependent	on	the	size	of	the	test	system	(Perez	
et	al.	1991).	Other	experimental	studies	with	hydrophobic	compounds	reported	that	
high	densities	of	aquatic	vascular	plants	may	enhance	dissipation	rates	from	water	
and	reduce	concentrations	in	sediments	(Crum	and	Brock	1994;	Leistra	et	al.	2003).	
According	to	Johnson	and	Rodgers	(2005),	there	is	a	need	for	more	experimental	
studies	specifically	designed	to	manipulate	scale	as	a	controlled	treatment	variable.	
Furthermore,	they	stated	that,	in	scaling,	the	exposure	requires	as	much	attention	as	
the	responses	observed.

These	examples	described	above	indicate	that	certain	properties	of	model	ecosys-
tems	may	affect	the	fate	and	exposure	concentrations	of	a	chemical	and,	consequently,	
the	treatment-related	effects	observed.	However,	an	important	question	remains:	“Can	
responses	of	model	ecosystem	experiments	be	extrapolated	between	different	types	of	
experimental	ecosystems	if	exposure	concentrations	are	similar?”

It	appears	from	several	model	ecosystem	experiments	with	insecticides,	where	
exposure	concentrations	are	similar,	that	threshold	concentrations	for	effects	may	be	
very	similar	between	different	types	of	test	systems,	at	least	when	they	contain	rep-
resentatives	of	sensitive	taxonomic	groups	(in	this	case,	arthropod	populations).	For	
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example,	both	the	observed	half-life	of	chlorpyrifos	of	approximately	1	day	and	the	
NOECcommunity	value	of	0.1	µg/L	observed	in	18-L	indoor	plankton-dominated	micro-
cosms	(van	Wijngaarden	et	al.	2005a)	were	very	similar	to	those	observed	in	large	60	m3		
outdoor	macrophyte-dominated	experimental	ditches	 (van	den	Brink	et	 al.	1996).	
The	 indoor	microcosms	were	constructed	with	water	and	sediment	material	 from	
the	experimental	ditches,	and	the	most	sensitive	measurement	endpoints	comprised	
responses	of	microcrustaceans.	Again,	 in	 these	experimental	ditches,	populations	
of	microcrustaceans	were	among	the	most	sensitive	measurement	endpoints,	along	
with	several	 insect	and	macrocrustacean	populations	 (van	den	Brink	et	al.	1996).	
Similarly,	there	was	no	evidence	of	a	major	difference	in	threshold	concentration	of	
chlorpyrifos	in	the	18-L	indoor	plankton-dominated	systems	that	differed	in	ambient		
water	 temperature	 and	 nutrient	 concentrations.	 In	 both	 types	 of	 test	 systems	 that	
simulated	 temperate	 and	Mediterranean	conditions,	 an	NOECcommunity	 of	0.1	µg/L	
was	observed	after	a	single	application	of	chlorpyrifos,	and	again	in	both	types	of	
test	systems	microcrustaceans	comprised	the	most	sensitive	measurement	endpoint	
(van	Wijngaarden	et	al.	2005a).	A	ditch	enclosure	experiment	exploring	effects	of	
lambda-cyhalothrin	 application	 to	 macrophyte-dominated	 and	 plankton-domi-
nated	communities	revealed	similar	dissipation	rates	of	this	compound,	as	well	as	
similar	threshold	concentrations	of	direct	toxic	effects	(close	to	10	ng/L;	Roessink	
et	al.	2005).

In	the	examples	described	above,	larger	differences	between	types	of	test	systems	
were	 observed	 at	 exposure	 concentrations	 well	 above	 the	 threshold	 concentration	
for	direct	toxic	effects.	For	example,	in	the	indoor	plankton-dominated	microcosms	
treated	with	chlorpyrifos	(van	Wijngaarden	et	al.	2005b),	some	clear	indirect	effects	
were	observed	after	treatment	with	1	µg/L	(algal	blooms	and	an	increase	in	Rotifera),	
whereas	no	indirect	responses	could	be	detected	in	the	more	complex	outdoor	exper-
imental	ditches	after	treatment	with	0.9	µg/L	and	6	µg/L	(van	den	Brink	et	al.	1996).	
Apparently,	when	evaluating	indirect	responses	of	chemical	stress,	laboratory	micro-
cosms	sometimes	show	exaggerated	responses	to	high	concentrations	of	toxicants.	
In	more	 structurally	 complex	outdoor	 test	 systems,	 a	greater	number	of	 feedback	
mechanisms	may	be	available	that	dampen	the	indirect	effects.	Also,	Roessink	et	al.	
(2005)	concluded	that,	at	higher	concentrations	of	lambda-cyhalothrin,	the	magni-
tude	and	duration	of	effects	differed	between	plankton-dominated	enclosures	(with	
a	community	characterized	by	 short-lived	organisms)	and	 structurally	more	com-
plex	macrophyte-dominated	enclosures.	These	observations	are	very	much	in	 line	
with	those	of	Section	6.3.2	on	seasonal	variation	in	sensitivity	of	communities.	The	
extrapolation	of	NOECcommunity	values	from	one	system	to	another	seems	to	be	pos-
sible	 with	 lower	 uncertainty	 than	 the	 extrapolation	 of	 hazard	 estimates	 of	 higher	
concentrations	in	which	both	direct	and	indirect	effects,	and	recovery	processes,	are	
involved.

Computer	models	 that	 simulate	 the	dynamics	of	 food	webs	might	 be	used	 to	
extrapolate	results	of	model	ecosystem	experiments	to	systems	differing	in	size	and	
ecological	complexity.	In	principle,	food-web	models	such	as	IFEM	(Bartell	et	al.	
1988),	AQUATOX	(Park	1999),	and	C-COSM	(Traas	2004)	can	be	adapted	 to	do	
this,	 at	 least	 when	 detailed	 information	 on	 the	 ecology	 and	 ecotoxicology	 of	 the		
species	and	functional	groups	of	concern	is	available.
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7.2.5	 GeoGraphIcal	extrapolatIon	of	model	ecosystem	experIments

Given	the	enormous	natural	variability	 in	 the	structure	and	function	of	freshwater	
communities,	 it	 is	 reasonable	 to	 question	 the	 geographical	 extrapolation	 of	 model	
ecosystem	experiments.	Because	most	model	ecosystems	enclose	parts	of	—	or	have	
been	seeded	with	components	of	—	natural	communities,	the	geographical	location	
of	micro-	and	mesocosms	will	determine	their	species	composition	and	hence	poten-
tially	their	sensitivity.	From	the	data	presented	in	the	previous	section	(7.2.4),	there	is	
little	doubt	that	structurally	different	ecosystems	respond	differently	to	toxic	stress	when	
exposed	to	concentrations	well	above	threshold	concentrations	for	direct	toxic	effects.	
The	question	is	how	unique	such	test	systems	are	with	respect	to	their	threshold	concen-
trations	for	direct	toxic	effects.	The	threshold	concentration	for	direct	effects	is	defined	
here	as	the	highest	concentration	tested	that	causes	no,	or	only	a	minor,	effect	on	the	most	
sensitive	measurement	endpoint.	For	pragmatic	reasons,	either	effect	class	1	or	effect	class	
2	responses	(see	Chapter	1,	Table	1.3)	might	be	used	as	threshold	concentrations.	When	
answering	the	question	raised	above,	it	is	very	important	to	compare	model	ecosystem	
experiments	characterized	by	similar	exposure	regimes.	For	this	purpose,	compounds	
were	selected	for	which	at	least	5	NOECecosystem	values	could	be	derived	from	adequately	
performed	model	ecosystem	experiments	and	that	could	be	related	to	a	specific	expo-
sure	regime	(short-term	or	long-term	exposure;	see	Tables	7.2	to	7.4).	These	compounds	

tABLe	7.2
threshold	concentrations	for	direct	toxic	effects	of	the	most	sensitive	
endpoints	(responses	of	populations	of	crustaceans	and	insects)	in	model	
ecosystem	experiments	that	studied	the	ecological	impact	of	short	term	
exposure	to	the	insecticide	chlorpyrifos

Application		
			regime Class	1 Class	2

threshold	
concentration

type	of	test	
system Location Reference

6	hour	pulse 0.1	mg/L — 0.1	mg/L Experimental	
streams

Australia Pusey	et	al.	
(1994)

Single 0.1	mg/L			 0.3	mg/L 0.17	mg/L Outdoor	
microcosms

Kansas,	
United	States

Biever	et	al.	
(1994)

Single 0.1	mg/L — 0.1	mg/L Experimental	
ditches

The	
Netherlands

van	den	
Brink	et	al.	
(1996)

Single 0.1	mg/L — 0.1	mg/L Lab	
microcosms,	
temperate

The	
Netherlands

van	
Wijngaarden	
et	al.	(2005b)

Single 0.1	mg/L — 0.1mg/L Lab	
microcosms,	
Mediterranean

The	
Netherlands

van	
Wijngaarden	
et	al.	(2005b)

Single — 0.5	µg/L 0.5	mg/L	 Lab	microcosms Minnesota,	
United	States

Stay	et	al.	
(1985)

Note:	For	explanation	of	effect	classes,	see	Table	1.3	of	Chapter	1.
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comprise	 the	 surfactants	 dodecyl	 trimethyl	 ammonium	 chloride	 (C12TMAC)	 and	
linear	alkylbenzene	sulfonate	(LAS);	the	metal	copper;	and	the	pesticides	atrazine,	
chlorpyrifos,	and	lambda-cyhalothrin.

Dyer	and	Belanger	(1999)	demonstrated	that	experimental	stream	assemblages	
had	 a	 similar	 sensitivity	 to	 municipal	 effluent	 as	 natural	 stream	 communities	 in	
the	 same	 region	 (Ohio,	United	States).	There	 is	 also	evidence	 that	 threshold	con-
centrations	for	the	surfactant	C12TMAC	do	not	differ	much	between	model	stream	
experiments.	Less	 than	a	 twofold	difference	 in	NOECecosystem	values	(range	180	to	
300	µg/L)	 is	 reported	 for	 long-term	exposure	 to	C12TMAC	derived	 from	5	artifi-
cial	stream	studies	performed	in	different	parts	of	the	United	States	(Versteeg	et	al.	
1999).	A	critical	literature	review	of	6	experimental	stream	studies	with	LAS,	how-
ever,	revealed	a	fifteenfold	difference	in	normalized	NOECeco	values	in	the	range	of	
74	to	1113	µg/L	(Belanger	et	al.	2002).	In	addition,	7	lentic	model	ecosystem	studies	
with	LAS	are	described	in	this	review	paper.	These	studies,	however,	are	more	dif-
ficult	to	interpret	due	to	differences	in	exposure	regime	employed	and	measurement	
endpoints	selected	(Belanger	et	al.	2002).

tABLe	7.3
threshold	concentrations	for	direct	toxic	effects	of	the	most	sensitive	
endpoints	(community	metabolism	and	responses	of	populations	of	
primary	producers)	in	model	ecosystem	experiments	that	studied	the	
ecological	impact	of	long-term	exposure	to	the	herbicide	atrazine

Application
			regime Class	1 Class	2

threshold	
concentration

type	of	test	
system Reference

Single	 — 5	mg/L 5	mg/L Recirculating	lab	
streams

Gruessner	and	
Watzin	(1996)

Constant 14	mg/L 25	mg/L 18.7	mg/L Flow	through	lab	
streams

Nyström	et	al.	
(2000)

Single — 2	mg/L 2	mg/L Mesocosms	
(lentic)

Seguin	et	al.	
(2001)

Single — 10	mg/L 10	mg/L Lentic	lab	
microcosms

Johnson	(1986)

Single 5	mg/L 50	mg/L 15.8	mg/L Lentic	lab	
microcosms

Brockway	et	al.	
(1984)

Single 20	mg/L — 20	mg/L Lentic	lab	
microcosms

Stay	et	al.	(1985,	
1989)

Repeated 5	mg/L — 5	mg/L Lentic	lab	
microcosms

van	den	Brink		
et	al.	(1995)

Repeated 5	mg/L 10	mg/L 7.1	mg/L Lentic	field	
enclosures

Jüttner	et	al.	(1995)

Repeated	 10	mg/L — 10	mg/L Lentic	lab	
microcosms

Pratt	et	al.	(1988)

Note:	For	explanation	of	effect	classes,	see	Table	1.3	of	Chapter	1.	Because	atrazine	is	relatively	per-
sistent	in	the	water	of	lentic	test	systems	and	recirculating	experimental	streams,	these	studies	could	
also	be	used	to	assess	effects	of	long	term	exposure.
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A	 threefold	 difference	 in	 threshold	 concentrations	 is	 reported	 for	 long-term	
exposure	 to	 copper	 (adjusted	 to	 50	 mg/L	 CaCO3	 hardness)	 derived	 from	 1	 lentic	
mesocosm	and	6	artificial	stream	studies	conducted	in	the	United	States	and	Europe	
(Versteeg	et	al.	1999).	The	NOECecosystem	values	of	these	studies	with	copper	were	in	
the	range	of	2.1	to	6.6	µg/L.

Recently	 2	 reviews	 of	 model	 ecosystem	 experiments	 with	 herbicides	 (Brock		
et	al.	2000a)	and	insecticides	were	performed	(Brock	et	al.	2000b;	van	Wijngaarden	
et	al.	2005b).	The	following	criteria	were	applied	in	the	selection	of	the	studies:

The	test	system	represents	a	realistic	freshwater	community,	and	popula-
tions	of	various	trophic	levels	are	present.
The	description	of	the	experimental	setup	is	adequate	and	unambiguous.
The	exposure	concentrations	are	well	described.
The	investigated	endpoints	are	sensitive	to	the	substance,	and	effects	can	
reasonably	be	expected	to	be	related	to	the	mode	of	action	of	the	pesticide.
The	effects	are	statistically	significant	and	show	an	unambiguous	concen-
tration–effect	relationship,	or	the	observed	effects	are	in	agreement	with	a	
dose–effect	relationship	from	additional	studies.

The	responses	observed	for	the	most	sensitive	measurement	endpoints	(univariate	
or	multivariate)	at	each	exposure	concentration	were	assigned	to	the	5	effects	classes	

•

•
•
•

•

tABLe	7.4
summary	of	threshold	concentrations	(geometric	mean,	range,	95%	
confidence	limits,	and	spread)	for	6	toxicants

Compound
exposure	
regime

Geometric	
mean

Range	
(min–max	

ratio)

95%	
confidence	

limits	
(spread) Reference

C12TMAC Long	term 231	mg/L	
(n	=	5)

180	to	300	
mg/L	(1.7)

192	to	277	
mg/L	(1.4)

Versteeg	et	al.	(1999)

LAS Long	term 365	mg/L	
(n	=	6)

74	to	1113	
mg/L	(15)

157	to	849	
mg/L	(5.4)

Belanger	et	al.	(2002)

Cu Long	term 3.8	mg/L	
(n	=	7)

2.1	to	6.3	
mg/L	(3)

2.9	to	5.3	
mg/L	(1.8)

Versteeg	et	al.	(1999)

Atrazine Long	term 8.4	mg/L	
(n	=	9)

2	to	20	mg/
L	(10)

5.3	to	13.4	
mg/L	(2.5)

Table	7.3

Chlorpyrifos Short	term 0.14	mg/L	
(n	=	6)

0.1	to	0.5	
mg/L	(5)

0.08	to	0.24	
mg/L	(2.9)

Table	7.2

Lambda	
cyhalothrin

Short-term	
repeated	pulses

6.9	ng/L	
(n	=	6)

2.7	to	10.0	
ng/L

4.3	to	11.2	
ng/L	(2.6)

Brock	et	al.	(2006)

a	The	toxicants	are	the	surfactants	dodecyl	trimethyl	ammonium	chloride	(C12TMAC);	linear	alkylben-
zene	 sulfonate	 (LAS);	 the	metal	 copper	 (Cu);	 and	 the	pesticides	 atrazine,	 chlorpyrifos,	 and	 lambda	
cyhalothrin	as	observed	in	aquatic	model	ecosystem	experiments.
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described	in	Table	1.3	(Chapter	1).	Effect	class	1	(effects	could	not	be	demonstrated)	
and	effect	class	2	(slight	effects,	usually	observed	on	a	single	sampling	date	imme-
diately	post	application	only)	were	used	to	derive	threshold	concentrations	for	direct	
toxic	effects.	For	the	insecticide	chlorpyrifos,	6	model	ecosystem	experiments	were	
available	(1	lotic	and	5	lentic	studies)	from	which	reliable	ecological	threshold	concen-
trations	for	short-term	exposure	could	be	derived	(Table	7.2).	These	threshold	concen-
trations	ranged	from	0.1	to	0.5	µg/L	(a	fivefold	difference).	For	the	herbicide	atrazine,	
no	less	than	9	suitable	model	ecosystem	experiments	(2	lotic	and	7	lentic)	were	avail-
able	 that	 allowed	 comparison	 of	 threshold	 concentrations	 for	 long-term	 exposure	
(Table	7.3).	 These	 threshold	 concentrations	 differed	 tenfold	 and	 ranged	 from	 2	 to		
20	µg/L.	Brock	et	al.	(2006)	summarized	the	results	of	several	lentic	model	ecosys-
tem	experiments	performed	with	the	nonpersistent	pyrethroid,	lambda-cyhalothrin.	
All	studies	were	characterized	by	multiple	applications	(repeated	pulse	exposures),	
and	the	effect	classes	1	to	2	threshold	concentrations	ranged	from	2.7	to	10	ng/L.

The	variability	 in	observed	 threshold	concentrations	 for	effects	was	 relatively	
small	(min–max	ratio	<	5)	for	the	compounds	C12TMAC,	copper,	chlorpyrifos,	and	
lambda-cyhalothrin,	and	relatively	large	for	atrazine	(10)	and	LAS	(15).	In	part,	this	
can	be	explained	by	experimental	limitations	such	as	the	ecological	complexity	of	
the	 test	 systems	used	and	 the	 range	 in	exposure	concentrations	and	measurement	
endpoints	selected.	Other	confounding	factors	may	be	related	to	seasonal	and	suc-
cessional	variations	in	sensitivity	of	communities	and	ambient	environmental	factors	
such	as	temperature	and	light	conditions	(see	Section	6.3.2),	as	well	as	to	the	expo-
sure	history	of	the	populations	that	inhabit	the	test	systems	(see	Section	6.3.4).	It	can	
be	argued	that	outliers	should	not	unduly	influence	the	conclusions.	For	this	reason,	
analogous	to	the	method	used	by	Blanck	et	al.	(2003),	we	calculated	the	95%	confi-
dence	limits	and	took	the	ratio	of	the	upper	and	lower	confidence	limits	(the	spread)	
as	a	measure	of	the	variability	(Table	7.4).	These	ratios	(spreads)	can	be	considered	
as	measures	of	uncertainty	in	the	geographical	extrapolation	of	threshold	concentra-
tions	for	effects.	It	can	be	concluded	from	the	data	presented	in	Table	7.4	that	the	
geographical	uncertainty	factor	(spread)	for	threshold	concentrations	is	in	the	range	
of	1.4	to	5.4	for	the	compounds	and	model	ecosystem	experiments	selected.

Our	observations	are	similar	to	those	of	Blanck	et	al.	(2003),	who	studied	the	
variability	in	zinc	tolerance	in	periphyton	communities	sampled	from	15	European	
river	stretches	using	the	PICT	concept.	Due	to	differences	in	water	chemistry,	(his-
tory	of)	metal	pollution,	species	composition,	and	other	biotope	characteristics,	the	
regional	uncertainty	factor	for	Zn	was	estimated	to	range	from	1.7	to	4.3,	and	the	
interregional	uncertainty	factor	from	2.4	to	8.6,	when	extrapolating	periphyton	toler-
ances	from	river	to	river	(Blanck	et	al.	2003).

7.3	 LAnDsCAPe	eCotoXICoLoGY

7.3.1	 IntroductIon

The	 spatial	 distribution	 of	 pollutants	 in	 ecosystems	 and	 landscapes	 tends	 to	 be	
patchy	or	aggregated.	In	most	areas,	exposure	to	pollutants	occurs	at	relatively	low	
concentrations	over	extended	periods	of	time;	however,	a	limited	number	of	areas	
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may	contain	high	concentrations	of	pollutants	 that	may	be	persistent	or	occur	 for	
short	periods	of	time	(Widianarko	1997).	In	addition,	the	physicochemical	proper-
ties	that	control	exposure	and	organisms	are	not	uniformly	distributed	in	landscapes.	
In	well-defined	 landscape	units	 like	undisturbed	watersheds,	 species	 are	more	or	
less	predictably	structured	according	to	gradients	in	current	velocity	and	substrate	
composition	of	sediments.	In	riverine	systems,	resource	requirements,	such	as	dif-
ferent	types	of	organic	matter,	predict	the	shifts	in	the	relative	abundance	of	feeding	
guilds	over	the	longitudinal	profile	of	a	river,	as	described	by	the	river	continuum	
concept	 (Vannote	et	al.	1980).	The	ways	 in	which	 tolerances	and	requirements	of	
species	interact	and	match	the	conditions	and	resources	provided	by	certain	habitats	
are	addressed	in	the	niche-assembly	concept.	Actual	ecological	communities,	how-
ever,	are	governed	by	both	niche-assembly	and	dispersal-assembly	rules,	along	with	
ecological	drift	(Hubbell	2001).	An	example	of	how	the	distribution	of	fish	species	
in	a	watershed	was	affected	by	toxicants	is	provided	by	Napier	(1992)	and	Chapman		
et	 al.	 (1993).	 Downstream	 of	 an	 acid	 rock	 drainage-affected	 stream	 in	 inland		
Australia	(due	to	mining	activities),	the	tributaries	in	a	forested	catchment	appeared	
to	support	a	variety	of	small	native	fish	species	that	were	less	common	elsewhere.	
Apparently,	 the	main	 stream,	 subject	 to	 chemical	 stress,	was	not	 able	 to	 act	 as	 a	
conduit	for	invasive	introduced	species	such	as	trout	or	mosquitofish.	Due	to	acidic	
water	(pH	2.7)	and	very	high	concentrations	of	copper,	zinc,	cadmium,	and	lead,	the	
only	form	of	macroscopic	life	in	the	stream	for	the	first	12	to	16	km	was	a	metal-
tolerant	 alga	Hormidium	 sp.	There	was	a	 steady	 increase	 in	 the	mean	number	of	
macroinvertebrate	taxa	with	distance	downstream,	aided	by	freshwater	inputs	from	
tributaries.	By	32	km	downstream	of	the	abandoned	mine,	concentrations	had	fallen	
below	Australian	water	 quality	 criteria	 current	 at	 the	 time,	 yet	 the	macroinverte-
brate	community	still	lacked	some	sensitive	species	of	Ephemeroptera	and	Mollusca	
(Napier	1992;	Chapman	et	al.	1993).

Examination	of	 the	effects	of	 toxic	chemicals	at	scales	 larger	 than	 those	usu-
ally	considered	in	environmental	toxicology	has	led	to	the	establishment	of	a	new	
approach	 in	 ecotoxicology	 (i.e.,	 landscape	 ecotoxicology).	 This	 approach	 has	 its	
focus	on	the	spatiotemporal	configuration	of	populations,	communities,	and	ecosys-
tems	in	the	landscape	as	affected	by	the	spatiotemporal	distribution	of	toxic	chemi-
cals	in	the	subjected	landscape.	Typically,	in	landscape	ecotoxicology	the	problem	
is	one	of	scaling	up:	moving	from	short-term	studies	of	small	areas	(e.g.,	performed	
in	 the	 laboratory	 or	 in	 specific	 outdoor	 experimental	 ecosystems)	 to	 make	 infer-
ences	about	the	longer	term	dynamics	of	larger	systems	(Johnson	2002).	According	
to	Spromberg	et	al.	(1998),	the	temporal	and	spatial	heterogeneity	of	organisms	and	
environmental	toxicants	is	purposefully	minimized	in	laboratory	and	field	experi-
ments,	whether	they	are	single-species	tests	or	elaborate	mesocosm	tests.	The	reason	
for	minimizing	this	variability	is	to	generate	sufficient	statistical	power	to	conduct	
meaningful	 statistical	 analyses	 with	 practical	 numbers	 of	 samples	 and	 replicates.	
This,	however,	excludes	the	heterogeneity	of	both	abiotic	and	biotic	parameters,	a	
fundamental	property	of	real	ecological	systems.

In	a	chemically	disturbed	 landscape	unit,	 exposure	concentrations,	as	well	as	
population	and	community	 responses,	may	show	clear	 spatial	patterns.	Assessing	
risks	at	a	landscape	scale	(e.g.,	watershed),	however,	requires	the	development	of	a	
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conceptual	model	for	the	identification	of	chemical	stressors	against	a	background	
of	other	physicochemical	and	habitat	factors	that	may	shape	biological	communities.	
Such	 a	model	 can	only	be	developed	 after	 characterization	 and	 condition	 assess-
ment	of	 the	 landscape	unit	of	 interest.	The	characterization	of	 the	 landscape	unit	
will	assist	in	problem	definition	and	in	identifying	suitable	targets	for	quantification	
of	 adverse	biological	 effects.	Geographical	 Information	System	 (GIS)	 software	 is	
an	 important	 tool	 to	conduct	spatially	explicit	 risk	assessments	 for	environmental	
problems	ranging	from	small	to	large	landscape	units,	to	regions.

7.3.2	 GIs	and	rIsk	maps

A	spatially	explicit	environmental	risk	assessment	is	one	in	which	the	estimates	of	
risk	differ	for	different	sites	in	well-defined	landscape	units	and	may	be	used	to	refine	
the	generic,	usually	conservative,	first-tier	risk	assessment.	The	approaches	usually	
rely	on	GIS	software	packages.	GIS	software	packages	are	collections	of	tools	rep-
resenting	specific	assumptions	about	spatial	correlations	in	the	landscape	unit	under	
investigation.	For	example,	a	spatial	analysis	of	the	Mississippi	cotton	landscape	in	
the	United	States	was	used	to	estimate	realistic	exposure	concentrations	in	aquatic	
ecosystems	of	pyrethroid	insecticides	used	on	cotton.	Image-processing	techniques	
and	GIS	were	applied	to	investigate	the	number	and	size	of	the	water	bodies	in	the	
landscape	and	their	proximity	to	the	agricultural	fields	with	cotton.	Results	showed	
that	 these	 techniques	 can	be	used	cost-effectively	 to	 characterize	 the	 agricultural	
landscape,	and	provide	verifiable	data	to	refine	conservative	model	assumptions	to	
assess	exposure	concentrations	(Hendley	et	al.	2001).	These	approaches	might	also	
be	used	to	provide	a	more	realistic	evaluation	of	the	potential	for	effects.	To	accom-
plish	this,	however,	information	needs	to	be	incorporated	on	the	spatiotemporal	vari-
ability	in	the	species	composition	of	the	aquatic	habitats	at	risk,	and	their	sensitivity	
to	these	pyrethroid	insecticides.

The	 cotton	 landscape	 example	 presented	 above	 reveals	 that	 landscape-level	
risk	assessment	can	be	conducted	by	investigating	the	influence	of	the	surrounding	
landscape	on	the	emission	of	insecticides	to	the	water	bodies	of	concern	in	order	
to	characterize	more	realistically	actual	exposure	concentrations.	This	relatively	
simple	approach	addresses	variability	within	 the	 landscape,	but	pays	 less	 atten-
tion	 to	 the	 interactions	 between	 water	 bodies.	 A	 more	 complex	 approach	 is	 to	
assess	the	fate	and	effects	of	a	chemical	(or	combination	of	stressors)	for	the	entire	
watershed	and	to	consider	this	watershed	as	a	true	continuum.	The	latter	approach	
may	include	all	water	bodies	within	a	watershed	and	addresses	their	interdepen-
dence,	for	example,	by	studying	the	flow	of	water,	chemicals,	matter,	and	organ-
isms	between	these	systems.	An	example	of	such	a	watershed	approach	is	the	study	
of	Pandovani	et	al.	(2004).	They	used	a	landscape-level	approach	to	assess	aquatic	
exposure	 via	 spray	 drift	 of	 chlorpyrifos-methyl	 in	 the	 watershed	 of	 the	 Simeto	
River	in	Sicily	(Italy).

GIS	 may	 also	 be	 used	 to	 assess	 the	 site-specific	 bioavailability	 of	 toxicants	
and	their	ecological	risks.	For	example,	Prusha	and	Clements	(2004)	related	metal	
concentrations	 in	 the	 lotic	 insect	Arctopsyche grandis	 to	physicochemical	charac-
teristics	measured	in	16	streams.	GIS	was	used	to	calculate	landscape	attributes	in	
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these	streams	where	DOC	concentrations	were	measured.	Multiple	linear	regression	
showed	that	the	percentage	of	forested	area	explained	47%	and	59%	of	the	variation	
in	maximum	and	mean	DOC	concentrations,	respectively.	The	maximum	concen-
tration	of	DOC	was	negatively	correlated	with	the	concentrations	of	Zn	and	Cd	in	
Arctopsyche.	The	results	indicate	that	the	percentage	of	forested	area	within	a	water-
shed	can	be	used	 to	describe	DOC	concentrations,	which	 in	 turn	 influence	metal	
bioavailability.

Landscape	analysis	allows	the	development	of	“risk	maps”	that	show	the	spatial	
distribution	of	concentrations	of	toxic	chemicals.	This	information	can	be	combined	
with	information	on	the	spatial	distribution	of	ecological	features,	allowing	potential	
“hotspots”	to	be	identified	(see	Figure	5.3	in	Chapter	5	as	an	example).	Risk	maps	
may	have	applications	 in	 the	development	of	 spatially	differentiated	management	
strategies.	The	main	reason	why	risk	maps	are	useful	is	that	they	present	complex	
spatial	 information	 in	 a	 manner	 that	 is	 easily	 interpreted.	 However,	 according	 to	
Woodbury	(2003),	risk	maps	can	also	be	misleading	because	they	may	suggest	that	
there	is	more	information	than	actually	exists.	To	judge	whether	a	map	of	predicted	
values	is	appropriate,	it	may	help	to	indicate	on	the	map	where	data	were	collected	
and	to	show	data	only	for	the	area	that	might	influence	the	analysis.

GIS	and	risk	maps	are	useful	tools,	but	they	are	not	standard	methods	or	a	pana-
cea	to	conduct	spatially	explicit	risk	assessments.	Woodbury	(2003)	described	the	
following	do’s	 and	don’ts	 that	help	 to	 improve	 the	 credibility	of	 spatially	 explicit	
environmental	risk	assessments.

Do’s

Account	for	errors	in	spatial	data.
Recognize	that	interpolation	and	other	steps	in	an	analysis	represent	mod-
els	with	specific	assumptions.
Use	available	explanatory	data	first	before	performing	spatial	interpolation.
Use	related	data	that	are	sampled	more	densely	to	improve	interpolated	
estimates.
Use	maps	to	communicate	information	about	uncertainties	in	spatial	data	
and	uncertainties	in	spatially	explicit	analyses.

Don’ts

Conflate	data	and	models.
Ignore	physical	barriers	or	other	reasons	why	spatial	correlations	may	dif-
fer	in	different	locations.
Ignore	issues	of	scaling	and	aggregation.
Ignore	the	propagation	of	errors	in	GIS	analyses.

7.3.3	 spatIally	explIcIt	and	metapopulatIon	modelInG	approaches

Upscaling	 in	 environmental	 risk	 assessment	 concerns,	 amongst	 other	 things,	 the	
extrapolation	 of	 ecotoxicological	 data	 derived	 from	 laboratory	 tests	 and	 model		
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ecosystem	experiments	to	larger	areas	by	means	of	spatially	explicit	modeling	tools.	
Spatially	explicit	models	increase	ecological	realism	by	incorporating	landscape	struc-
ture	and	habitat	quality	explicitly	and	by	considering	the	size	and	the	distance	between	
the	landscape	patches	of	concern,	and	the	properties	of	the	landscape	between	these	
patches,	which	might	affect	dispersal	or	movement	of	organisms	in	the	landscape.	
Variation	in	habitat	quality	can	be	incorporated	using	spatially	referenced	data	sets	
or	 land	 use	 patterns,	 landscape	 characteristics,	 and	 stressor	 distributions.	 In	 this	
respect,	 spatially	explicit	population	models	 linked	 to	GIS	are	promising	 tools	 to	
estimate	the	potential	risks	of	major	chemical	stressors	and	of	multiple	stressors	at	
the	landscape	level,	particularly	for	mobile	wildlife	species	that	occupy	a	large	ter-
ritory	and	different	types	of	habitats	in	the	landscape	(Bartell	et	al.	2003;	Pastorok	
et	al.	2003;	Topping	et	al.	2003).	An	overview	of	techniques	and	models	that	can	be	
used	in	the	ecological	risk	assessment	of	riverine	landscapes	is	provided	by	Leuven	
and	Poudevigne	(2002).

Metapopulation	models	explicitly	deal	with	environmental	heterogeneity	in	the	
distribution	of	habitats	and	organisms	 in	 the	 landscape.	According	 to	Hanski	and	
Gyllenburg	(1993),	a	metapopulation	is	a	“population	of	populations”	of	the	same	
species	connected	through	immigration	and	emigration.	In	discontinuous	habitats,	
corridors	can	connect	habitat	patches	and	integrate	them	into	networks	where	popu-
lations	can	sustain	in	metapopulations.	The	minimum	viable	population	(MVP)	size	
is	a	population	size	below	which	patch	extinction	occurs.	The	carrying	capacity	(CC)	
is	that	population	size	that	can	just	be	maintained	without	a	tendency	to	increase	or	
decrease.	A	subpopulation	may	serve	as	a	sink	if	 it	 is	below	the	MVP	and	drains	
immigrants,	or	it	may	serve	as	a	source	for	nearby	patches	by	providing	immigrants	
to	them.	The	addition	of	a	toxicant	to	a	source	patch	will	have	a	greater	impact	than	
the	same	toxicant	addition	to	a	sink	patch.

In	densely	populated	areas,	or	 in	areas	characterized	by	intensive	agriculture,	
many	rare	and/or	protected	species	are	currently	restricted	to	small	areas	of	mar-
ginal	habitat	quality.	These	small	populations	run	a	high	risk	of	extinction	due	to	
stochastic	events	(Lande	1993).	Moreover,	with	habitats	of	marginal	quality,	 their	
long-term	 population	 growth	 rate	 will	 be	 small,	 making	 them	 even	 more	 vulner-
able	to	stochastic	events	(Klok	2000).	Small	populations	are	threatened	by	a	variety	
of	 factors	 that	endanger	 their	persistence.	Schaffer	 (1981)	 recognized	4	stochastic	
extinction	pressures:

Demographic	stochasticity
Environmental	stochasticity	(habitat	quality	degradation)
Genetic	stochasticity	(inbreeding)
Natural	catastrophes	(e.g.,	lethal	disease)

Reduction	in	habitat	quality	by	persistent	pollutants	can	decrease	the	survival	
and	reproduction	of	individuals	that	predominantly	dwell	on	or	near	the	polluted	site	
and,	in	this	way,	increase	the	extinction	probability	of	populations.	This	can	become	
effective	through	direct	exposure	or	through	transfer	of	the	pollutants	through	the	
food	web.	In	mobile	species,	this	also	depends	on	the	relative	proportion	of	contami-
nated	sites	 in	 the	 total	 range	of	 landscape	elements	 that	 individuals	use	 to	 forage	

•
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within	their	territory,	the	availability	of	alternative	food	sources,	and	the	extent	of	
habitat	fragmentation.

Populations	of	endangered	species	often	consist	of	small	numbers	 that	may	be	
trapped	 in	 the	 so-called	 “extinction	 vortex.”	 This	 means	 that	 the	 combination	 of	
inbreeding,	demographic	stochasticity,	and	genetic	drift	leads	to	feedback	loops	that	
make	small	populations	even	smaller	(Caughley	1994).	According	to	Klok	(2000),	the	
minimum	viable	population	size	is	species	specific	because	the	life	history	of	a	spe-
cies	can	have	a	large	impact	on	the	outcome	of	the	aforementioned	stochastic	events.	
Moreover,	the	MVP	size	will	also	depend	on	the	quality	of	the	habitat	and,	conse-
quently,	on	the	temporal	and	spatial	distribution	and	availability	of	pollutants.

Metapopulation	models	have	been	used	to	examine	the	dynamics	of	populations	
resulting	from	chemical	stress.	To	date,	most	ecotoxicological	studies	that	have	used	
metapopulation	models	addressed	the	dynamics	and	response	of	terrestrial	populations	
of	wildlife	and	arthropod	species.	For	example,	Sherratt	and	Jepson	(1993)	showed	that	
the	persistence	of	a	phytophagous	predator	population	in	the	landscape	is	enhanced	if	
only	a	few	fields	are	sprayed	by	a	pesticide,	the	application	rate	of	the	pesticide	is	low,	
or	the	intrinsic	toxicity	of	the	pesticide	is	low.	Another	important	finding	was	that	pes-
ticide	application	patterns	can	cause	the	prey	insect	population	to	reach	higher	densities	
than	would	occur	otherwise.	Dispersal	rates	of	the	predator	and	the	prey	are	important	
factors	determining	the	prey	population	densities.	Mauer	and	Holt	(1996)	used	several	
types	of	metapopulation	models	to	investigate	the	importance	of	migration	and	other	
factors	determining	 the	 impacts	of	pesticides.	An	 increase	 in	migration	 rate	 among	
patches	decreased	the	persistence	of	the	population,	and	an	increase	in	the	rate	of	repro-
duction	increased	the	persistence	of	the	population	in	the	landscape.	The	more	toxic	the	
pesticide	and/or	when	more	fields	were	sprayed,	the	less	persistent	was	the	population.

Spromberg	et	al.	(1998)	used	a	toxicant-treated	metapopulation	model	to	explore	
the	range	of	possible	dynamics	of	populations	in	contaminated	field	sites.	A	single-
species	metapopulation	model	was	developed,	and	the	distribution	of	the	chemical	
was	assumed	to	be	limited	to	one	patch	and	contagious	within	that	patch.	Both	per-
sistent	and	degradable	toxicants	were	modeled.	Five	principal	conclusions	resulted	
from	the	simulation	studies:

Mortality	 in	 one	 subpopulation	 has	 ecologically	 significant	 effects	 on	
nondosed	subpopulations	(“action	at	a	distance”).
When	uncontaminated	 sites	 are	 indirectly	 affected	by	 the	migration	of	
biota	from	contaminated	sites,	these	uncontaminated	sites	cannot	be	ref-
erence	systems.
The	arrangement	of	the	patches	is	critical	to	the	dynamics	of	the	systems	
and	the	overall	impact	of	a	toxicant.
Due	to	the	contagious	distribution	of	the	toxicant	and	the	stochastic	func-
tion	describing	exposure	and	effects,	multiple	discrete	outcomes	often	are	
possible	from	the	same	initial	conditions	(e.g.,	ranging	from	extinction	to	
the	reaching	of	the	carrying	capacity	for	a	patch).
If	sufficient	cleanup	is	not	possible,	it	may	be	necessary	to	isolate	the	con-
taminated	patch,	allowing	the	formerly	connected	patches	to	regain	more	
typical	population	dynamics.

•
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Recently,	metapopulation	models	have	been	successfully	applied	to	assess	the	
risks	of	contaminants	to	aquatic	populations.	A	metapopulation	model	to	extrapo-
late	responses	of	 the	aquatic	 isopod	Asellus aquaticus	as	observed	 in	 insecticide-
stressed	mesocosms	to	assess	its	recovery	potential	in	drainage	ditches,	streams,	and	
ponds	is	provided	by	van	den	Brink	et	al.	(2007).	They	estimated	realistic	pyrethroid	
concentrations	in	these	different	types	of	aquatic	ecosystems	by	means	of	exposure	
models	used	in	the	European	legislation	procedure	for	pesticides.	It	appeared	that	
the	rate	of	recovery	of	Asellus	in	pyrethroid-stressed	drainage	ditches	was	faster	in	
the	field	than	in	the	isolated	mesocosms.	However,	the	rate	of	recovery	in	drainage	
ditches	was	calculated	to	be	lower	than	that	in	streams	and	ponds	(van	den	Brink	
et	al.	2007).	In	another	study,	the	effects	of	flounder	foraging	behavior	and	habitat	
preferences	on	 exposure	 to	polychlorinated	biphenyls	 in	 sediments	were	 assessed	
by	Linkov	et	al.	(2002)	using	a	tractable	individual-based	metapopulation	model.	In	
this	study,	the	use	of	a	spatially	and	temporally	explicit	model	reduced	the	estimate	
of	risk	by	an	order	of	magnitude	as	compared	with	a	nonspatial	model	(Linkov	et	al.		
2002).

7.3.4	 prospectIve	and	retrospectIve	rIsk	
assessment	at	the	landscape	level

Any	 ecological	 risk	 assessment	 at	 the	 landscape	 level	 has	 to	 start	 with	 the	 ques-
tion,	“What	has	to	be	protected?”	This	protection	aim	preferably	needs	to	include	a	
spatial	component	(e.g.,	protecting	the	aquatic	biodiversity	from	pesticide	stress	in	
watercourses	neighboring	agricultural	fields).	It	may	also	include	a	temporal	com-
ponent:	 for	example,	consider	only	effects	on	 the	densities	of	aquatic	populations	
to	be	acceptable	 in	drainage	ditches	neighboring	agricultural	fields	 that	show	full	
recovery	within	a	certain	time	period	(e.g.,	8	weeks)	but	do	not	allow	these	effects	
in	main	watercourses	connected	to	these	ditches	(see	Section	1.3.1	in	Chapter	1	for	
a	discussion	on	this	topic).

All	approaches	to	assessing	ecological	risks	of	toxicants	at	the	landscape	level	
heavily	rely	on	the	proper	linking	of	exposure	concentrations	(or	regimes)	to	eco-
toxicological	 and	 ecological	 data.	 Relevant	 exposure	 concentrations	 in	 the	 land-
scape	 unit	 of	 concern	 can	 be	 obtained	 either	 by	 chemical	 monitoring	 (which	 is	
expensive),	by	applying	fate	models	to	derive	PECs	(characterized	by	uncertainty),	
or	by	a	combination	of	monitoring	and	modeling.	For	example,	in	the	probabilistic	
aquatic	ecological	risk	assessment	of	atrazine	in	North	American	surface	waters,	
both	monitoring	data	and	model	predictions	are	used	in	 the	exposure	assessment	
(Giddings	et	al.	2005).

It	 is	clear	that	an	accurate	exposure	prediction	at	the	landscape	level	requires	
models	calibrated	and	validated	for	the	landscape	unit	of	interest	and	that	the	input	
parameters	used	have	a	high	precision	and	accuracy	for	the	area	of	interest	(see	Sec-
tion	1.7	in	Chapter	1).	However,	in	a	prospective	risk	assessment	for	new	chemicals	
not	yet	placed	on	the	market,	chemical	monitoring	data	are	not	yet	available,	and	
exposure	predictions	at	the	landscape	level	may	be	characterized	by	a	relatively	high	
uncertainty	because	 the	scale	and	 intensity	of	 the	use	of	 these	chemicals	are	not	
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yet	known.	When	performing	prospective	risk	assessments	at	the	landscape	level,	
a	 cost-effective,	 generic	 method	 to	 get	 insight	 into	 possible	 exposure	 concentra-
tions	is	the	development	of	exposure	scenarios.	For	example,	within	the	European	
Union,	 harmonized	 approaches	 for	 conducting	 aquatic	 exposure	 assessments	 for	
agricultural	pesticides	have	been	developed.	These	are	documented	in	the	“FOCUS	
Surface	Water	Scenarios”	report	(FOCUS	2001).	The	realistic	worst-case	scenarios	
developed	 aim	 to	predict	 exposure	 concentrations	 in	ponds,	 ditches,	 and	 streams	
for	different	agricultural	landscapes	of	Europe,	taking	into	account	agronomic	and	
climatic	conditions	relevant	to	crops.	Currently,	10	scenarios	for	the	compartment	
surface	water	have	been	designed,	which	collectively	 represent	agriculture	 in	 the	
European	Union	and	which	are	used	for	the	European	registration	procedure	of	pes-
ticides	(FOCUS	2001).	When	applying	the	exposure	scenario	approach	at	the	land-
scape	level,	the	fate	model-specific	driving	climatic,	soil	(and	slope),	and	ecosystem	
properties	needs	to	be	identified	for	the	areas	of	interest	using	a	sensitivity	analysis	
(see,	 for	 example,	 FOCUS	 2005;	 European	 Food	 Safety	 Authority	 2006).	 These	
model	 specific	 driving	 properties	 are	 of	 high	 numerical	 relevance	 for	 the	 model	
output.	A	similar	approach	has	been	used	in	the	identification	of	11	agroecological	
regions	in	the	United	States	that	are	used	in	modeling	exposures	to	pesticides	(Man-
gels	2001;	Giddings	et	al.	2005).

After	having	collected	data	on	(the	dynamics	of)	exposure	concentrations	in	the	
landscape	unit	of	concern	(by	either	monitoring	or	prediction),	 the	second	step	in	
the	risk	assessment	is	the	linking	of	exposure	and	effects.	Lack	of	a	clear	conceptual	
basis	for	the	interface	between	the	exposure	and	effect	assessment	may	lead	to	a	low	
overall	scientific	quality	of	the	risk	assessment.	This	interface	is	defined	by	Boesten	
et	al.	(2007)	as	the	type	of	concentration	that	gives	the	best	correlation	to	ecotoxico-
logical	effects	and	is	called	the	ecotoxicologically	relevant	concentration	(ERC).	The	
ecotoxicological	 considerations	 determining	 the	 ERC	 may	 include	 the	 following:		
1)	 In	which	environmental	compartment	do	 the	organisms	at	 risk	 live	(e.g.,	water	
or	sediment)?	2)	What	 is	 the	mode	of	action	of	 the	 toxicant?	3)	What	 is	bioavail-
able	for	the	organism	(see	Chapter	2,	Section	2.4)?	4)	What	is	the	influence	of	the	
exposure	pattern	(e.g.,	short	peaks	or	constant	concentration	over	long	periods)	on	
the	 type	and	degree	of	 the	effects?	And	5)	which	 information	 is	 available	on	 the	
“time	to	effect”	to	determine	whether	short-term	or	long-term	exposures	are	relevant	
(see	Chapter	6,	Section	6.2)?	For	instance,	for	a	lentic	aquatic	insect	living	associ-
ated	with	macrophytes,	the	ERC	could	be	the	maximum	concentration	over	time	of	
the	dissolved	 fraction	 for	a	 fast-acting	 insecticide	or	 some	 time-weighted	average	
(TWA)	concentration	for	a	slow-acting	fungicide	(e.g.,	 the	7-day	or	21-day	TWA).	
For	sediment-dwelling	insects	that	live	predominantly	in	the	top	centimeters	of	the	
sediment,	the	ERC	could	be	the	maximum	over	time	of	the	pore	water	concentration	
of	the	insecticide	in	the	top	2	cm	of	the	sediment.	Note	that	at	the	ecosystem	and	
landscape	levels,	the	ERC	may	be	different	for	different	populations,	life	stages	of	
species,	and	so	on.	After	the	ERCs	for	the	relevant	populations	have	been	selected,	
the	collected	exposure	data	can	be	linked	to	the	relevant	ecotoxicological	data.	Key	
is	that	the	same	type	of	ERC	should	be	used	consistently	in	the	exposure	estimates	
related	to	the	field	and	related	to	the	ecotoxicological	experiments	used	to	predict	
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the	risks.	To	do	this,	matrix	and	media	extrapolation	(see	Chapter	2),	and	models	
to	predict	effects	of	time-variable	exposure	(Chapter	6,	Section	6.1.3)	and	mixtures	
(Chapter	5),	may	be	required.

In	 translating	 measured	 and/or	 predicted	 exposure	 data	 of	 individual	 chemi-
cals	into	ecological	risks,	a	simple	approach	is	to	compare	the	exposure	data	with	
established	 water	 quality	 standards	 based	 on	 laboratory	 toxicity	 tests	 (e.g.,	 the	
standard	 test	 species–UF	approach;	 the	HC5	derived	 from	SSDs).	This,	 however,	
does	 not	 provide	 any	 insight	 into	 the	 concentration–response	 relationships	 at	 the	
ecosystem	 level.	 A	 more	 complex	 approach,	 which	 may	 give	 insight	 into	 eco-
logical	 responses	 that	 include	 direct	 and	 indirect	 effects	 and	 recovery,	 is	 the	 use	
of	 results	 of	 model	 ecosystem	 experiments	 performed	 with	 the	 toxicants	 of	 con-
cern,	or	with	other	 toxicants	with	a	similar	mode	of	action.	A	case-based	reason-
ing	(CBR)	approach	can	be	used	that	predicts	the	effects	of	a	given	concentration	
of	a	toxicant	based	on	the	outcome	of	already	performed	micro-	and/or	mesocosm	
experiments	with	 toxicants	with	 a	 similar	mode	of	 action,	 and	 that	 expresses	 the	
exposure	concentration	as	fractions	of	toxic	units.	Case-based	reasoning	is	a	problem-	
solving	paradigm	that	is	able	to	utilize	the	specific	knowledge	of	previously	expe-
rienced,	 concrete	 problem	 situations	 (cases)	 for	 solving	 new	 problems.	 A	 very	
important	feature	of	CBR	is	its	ability	to	learn.	By	adding	present	experience	into	
the	case	base,	improved	predictions	can	be	made	in	the	future	(Aamodt	and	Plaza	
1994).	 Recently,	 a	 case-based	 reasoning	 methodology,	 PERPEST,	 for	 the	 predic-
tion	 of	 pesticide	 effects	 on	 freshwater	 ecosystems	 has	 been	 developed	 (van	 den	
Brink	et	al.	2002c,	2006b).	Currently,	the	PERPEST	database	(PERPEST	n.d.)	con-
tains	 more	 than	 208	 herbicide	 and	 213	 insecticide	 cases	 derived	 from	 more	 than		
104	micro-	and/or	mesocosm	experiments.	Currently,	the	database	has	been	extended	
with	available	data	for	fungicides.	The	PERPEST	model	searches	for	analogous	situ-
ations	in	the	database	based	on	relevant	environmental	fate	characteristics	of	the	com-
pound,	exposure	concentration,	and	type	of	ecosystem	to	be	evaluated.	A	prediction	
is	provided	by	using	weighted	averages	of	 the	effects	 reported	 in	 the	most	 relevant	
literature	references.	PERPEST	results	in	a	prediction	showing	the	probability	of	no,	
slight,	or	clear	effects	on	the	various	grouped	endpoints	(van	den	Brink	et	al.	2002c).	
Figure	7.8	presents	an	example	of	how	the	PERPEST	model	can	be	used	to	evaluate	
the	risks	of	the	peak	concentrations	of	chemical-monitoring	data	of	the	herbicide	diu-
ron	in	several	waterways	in	the	Bommelerwaard	area	of	The	Netherlands.

Another	approach	in	translating	measured	and/or	predicted	exposure	data,	and	
other	relevant	information	at	the	landscape	level,	into	ecological	risks	is	the	use	of	
metapopulation-modeling	approaches	(e.g.,	the	INTASS	methodology	described	by	
Emlen	et	al.	2006;	studies	 referred	 to	 in	Section	7.3.3)	and	food-web	models	 (see	
Chapter	4,	Section	4.5.4).	For	an	overview	of	landscape	models	that	can	be	used	in	
risk	assessment,	see	Mackay	and	Pastorok	(2002).	In	prospective	risk	assessment	at	
the	landscape	and	regional	level	(e.g.,	for	pesticide	registration),	a	promising	approach	
might	be	to	develop	harmonized,	generic	risk	assessment	approaches	by	developing	
realistic	worst-case	 scenarios	 that	 combine	 fate-	 and	 effect-modeling	 approaches.	
Such	 a	 combined	 scenario	 approach	 allows	 one	 to	 extrapolate	 experimentally	
derived	fate	and	effect	endpoints	to	the	landscape	of	interest	(see,	for	example,	Probst		
et	al.	2005).
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7.3.5	 predIctInG	the	Impact	of	multIple	stressors

There	are	different,	complementary	approaches	to	assessing	ecological	risks	of	mul-
tiple	stressors	at	the	landscape	level.	The	reductionist	approach	aims	at	identifying	
risks	to	populations	and	ecosystems	of	concern	on	the	basis	of	accumulated	data	on	
simple	stressor–effect	 relationships,	and	by	 identifying	 the	main	stressors	of	con-
cern.	This	can	be	achieved	by	combining	field	observations	and	experimentation.	
Experimentation	has	the	advantage	of	providing	evidence	of	causation.

Belden	 et	 al.	 (2007)	 used	 a	 3-step	 approach	 to	 evaluate	 the	 relative	 toxicity	
and	 the	occurrence	pattern	of	pesticide	mixtures	 in	 streams	draining	agricultural	
watersheds.	First,	a	 landscape	of	 interest	was	 identified	as	 the	corn–soybean	crop	
setting	in	the	United	States.	Second,	the	relative	toxicity	of	mixtures	was	compared	

1 no effect

2 slight effect

3 clear effect,
recovery <8 weeks

4 clear effect,
recovery unknown

5 clear effect,
recovery >8 weeks

Community 
metabolism 
(n=27)

Fish and 
tadpoles 
(n=4)

Macrocrustaceans
& insects (n=5)

Macrophytes 
(n=15)

Molluscs
(n=6)

Periphyton 
(n=22)

Phytoplankton 
(n=19)

Zooplankton 
(n=19)

FIGURe	7.8	 Dynamics	in	exposure	concentrations	of	the	herbicide	diuron	in	6	waterways	as	
measured	in	the	Bommelerwaard	area,	The	Netherlands,	from	1990	to	2002	(data	from	Steen	
2002),	and	the	probability	of	effects	of	the	peak	concentrations	observed	(1.25	µg	diuron/L)	
as	predicted	by	PERPEST.
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with	the	relative	toxicity	of	the	highest	individual	pesticide.	Third,	occurrence	pat-
terns	of	pesticide	mixtures	were	identified	for	use	in	follow-up	mechanistic	studies.	
The	study	revealed	that	consideration	of	pesticide	mixtures	increased	the	estimated	
risk,	but	that	increased	risk	is	not	large	for	most	samples.	Nearly	all	important	pesti-
cide	mixtures	were	herbicides.	So,	focusing	on	a	“pesticide	usage	landscape”	allows	
simplifications	of	 the	analysis	of	potential	pesticide	mixtures	and	provides	results	
that	are	directly	applicable	 to	a	particular	geographical	area.	Belden	et	al.	 (2007)	
also	concluded	that	the	pesticide	mixtures	within	the	“corn–soybean	pesticide	land-
scape”	tended	to	be	less	complex	than	would	have	been	predicted	on	the	number	of	
pesticides	used	within	the	crop	system	or	on	uncensored	monitoring	data.

De	Zwart	(2005)	used	a	novel	method	to	predict	the	effects	of	multiple	stressors:	
caused	by	pesticides	based	on	a	GIS	map	of	agricultural	 land	use,	comprising	51	
crops.	Through	the	application	of	SSDs	for	aquatic	organisms,	in	combination	with	
rules	 for	 mixture–toxicity	 calculations,	 the	 modeled	 exposure	 results	 were	 trans-
formed	 to	 risk	 estimates	 for	 aquatic	 species.	 The	 majority	 of	 the	 predicted	 risks	
were	 caused	 by	 pesticides	 applied	 to	 potato	 cropland,	 and	 approximately	 95%	 of	
the	predicted	risk	was	caused	by	only	7	of	the	261	pesticides	currently	used	in	The	
Netherlands.

An	 inventory	 of	 the	 pesticide	 use	 patterns	 in	 dominant	 crops	 in	 agricultural	
landscapes	may	also	be	used	to	design	experiments	to	study	the	combined	effects	
of	a	realistic	combination	of	multiple	stress	effects	caused	by	pesticides	in	aquatic	
ecosystems.	Such	an	approach	was,	for	example,	followed	by	van	Wijngaarden	et	al.	
(2004)	and	Arts	et	al.	(2006).	These	authors	simulated	in	experimental	freshwater	
ecosystems	a	 realistic	exposure	 regime	 to	herbicides,	 insecticides,	 and	 fungicides	
used	in	bulb	and	potato	crops,	respectively.	The	pesticides	selected	and	the	dosage,	
frequency,	 and	 timing	of	application	were	based	on	normal	agricultural	practices	
in	these	crops.	To	interpret	the	observed	effects,	exposure	concentrations	were	also	
expressed	in	toxic	units.	Both	studies	revealed	that	most	of	the	observed	effects	were	
consistent	with	the	results	from	higher	tier	and	mesocosm	studies	with	the	individual	
compounds.	In	the	test	that	simulated	pesticide	input	from	both	the	potato	and	bulb	
crops,	the	most	severe	effects	on	the	aquatic	community	were	caused	by	a	pyrethroid	
insecticide.	Multiple	and	repeated	pesticide	stresses	played	a	small	role	within	the	
applied	pesticide	package,	because	of	the	rapid	dissipation	of	most	substances.	Both	
studies	suggest	that	risk	assessments	based	on	the	individual	compounds	would	in	
these	cases	have	been	sufficiently	protective	for	their	uses	in	a	crop	protection	pro-
gram	(van	Wijngaarden	et	al.	2004;	Arts	et	al.	2006).

If,	 through	 a	 proper	 landscape	 analysis,	 a	 realistic	 combination	 of	 multiple	
stressors	is	identified,	food-web	models	may	be	used	to	predict	and	extrapolate	their	
ecological	effects	to	relevant	ecosystems	of	the	landscape	unit	of	concern.	An	over-
view	of	models	that	can	be	used	for	the	integrated	assessment	of	eutrophication	and	
organic	contaminants	in	aquatic	ecosystems	is	provided	by	Koelmans	et	al.	(2001).	
Examples	of	aquatic	food-web	models	that	can	be	used	or	adapted	to	predict	effects	
of	multiple	stressors	are	IFEM	(Bartell	et	al.	1988),	AQUATOX	(Park	1999),	and	
C-COSM	(Traas	2004).

The	examples	described	above	mainly	concern	a	reductionist	approach	in	which,	
for	example,	“pesticide	 landscape”	information	is	combined	with	experimentation	

73907_C007.indd   250 4/23/08   11:45:42 AM



Spatial Extrapolation in Ecological Effect Assessment of Chemicals 251

and/or	 modeling.	 The	 alternative	 holistic	 approach	 takes	 the	 whole	 landscape	 or	
watershed	into	account	and	assumes	that	the	impairment	of	interrelated	ecosystems	
by	realistic	combinations	of	multiple	stressors	can	be	studied	using	indicators	with-
out	knowing	all	the	details	of	the	internal	structure	and	functioning	of	the	systems	at	
risk	(Leuven	and	Poudevigne	2002).	For	example,	an	emphasis	on	sustaining	water	
resources	has	led	to	the	development	of	ecosystem	indicators,	useful	in	determin-
ing	 the	“state	of	 the	watershed”	 (Richter	et	 al.	2003).	The	biotic	 indices	 (such	as	
the	 index	 of	 biotic	 integrity,	 the	 total	 number	 of	 invertebrate	 or	 EPT	 species	 per	
area,	or	the	presence	or	absence	of	key	indicator	species)	may	also	have	their	use	
in	 toxicological	 determinations	 of	 contaminant	 effects	 on	 the	 total	 system.	 This	
holistic	approach	heavily	 relies	on	field	monitoring	data	and	field	gradient	 analy-
sis	 approaches.	What	 is	 key	 in	monitoring	programs	and	field	gradient	 studies	 is	
the	understanding	of	effects	at	a	spatial	scale	that	matches	the	resource:	for	aquatic	
invertebrates,	this	may	be	on	the	scale	of	a	stream	or	shoreline	reach	(tens	of	meters),	
whereas	for	migratory	fish	like	salmon,	it	may	be	on	the	scale	of	the	watershed	or	
landscape	 (hundreds	 of	 kilometers;	 Naiman	 and	 Turner	 2000).	 In	 addition,	 link-
age	between	ecological	and	stressor	measures	requires	not	only	knowledge	of	 the	
cause–effect	relationships	but	also	an	understanding	of	ecological	response	times.	
Although	selection	of	appropriate	endpoints	is	dependent	on	the	intended	purpose	
of	the	ecosystem	measures	(Table	7.5),	assessment	indicators	for	effects	may	often	
represent	 intrinsically	 important	 species	 (e.g.,	 major	 fisheries).	 However,	 a	 major	
consideration	 for	 selection	 of	 species	 monitoring	 implementation	 is	 the	 response	
time	of	the	measure.	The	response	time	of	many	ecological	measures	may	be	long	

tABLe	7.5
Generic	considerations	for	selecting	ecosystem	measures	based		
on	their	purposes

						Purposes	for	
ecosystem	measures Key	characteristic When	to	use

Intrinsic	importance Measure	is	the	endpoint	
itself.

Population	levels	of	economic	species.

Early	warning	indicator Rapid	identification	of	
potential	effects.

Use	when	endpoint	is	slow	to	respond	or	has	
delayed	effect;	minimal	time	lag	in	
response	to	stressor	and	rapid	response	
rate;	low	signal	to	noise	ratio	of	the	
measure	and	low	discrimination;	screening	
tool;	and	false	positives	acceptable.

Sensitive	indicator Reliability	in	predicting	
response.

Use	when	endpoint	is	relatively	insensitive;	
high	stressor	specificity	and	high	signal	to	
noise	ratio;	minimizes	false	positives.

Process	or	functional	
indicator

Endpoint	is	a	process. Use	for	monitoring	chemical	or	physical	
processes;	complements	structural	
measures.

Source:	From	Harwell	et	al.	(1999).
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(e.g.,	 salmon	 population	 recovery),	 whereas	 others	 may	 be	 acceptably	 rapid	 (e.g.,	
those	of	invertebrate	populations)	relative	to	exposure	to	or	the	removal	of	stressors.	
A	long	time	lag	for	biological	response	will	favor	an	emphasis	on	monitoring	stressor	
measures	or	populations	with	rapid	responses	to	the	known	stressor.

An	example	of	a	holistic	approach	to	assess	and	predict	the	occurrence	of	chemi-
cal	stressors	in	aquatic	ecosystems	is	the	“species	at	risk”	(SPEAR)	concept	(Liess	
and	Von	der	Ohe	2005).	The	SPEAR	concept	emphasizes	 the	 importance	of	con-
sidering	 ecological	 traits	 and	 recolonization	 processes	 on	 the	 landscape	 level	 for	
ecotoxicological	risk	assessment.	Species	can	be	grouped	according	to	their	vulner-
ability	to	toxicants	by	using	the	following	ecological	traits:	sensitivity	to	toxicants,	
generation	 time,	 migration	 ability,	 and	 the	 presence	 of	 aquatic	 stages	 of	 insects	
during	periods	of	high	exposure.	Liess	and	Von	der	Ohe	(2005)	also	showed	 that	
the	abundance	of	SPEAR	species	in	pesticide-stressed	streams	is	increased	greatly	
when	forested	stream	sections	are	present	in	upstream	reaches.	This	positive	influ-
ence	of	forested	stream	sections	compensated	for	the	negative	effect	of	temporally	
high	pesticide	concentrations	through	recolonization.

7.3.6	 fIeld	monItorInG	and	verIfIcatIon	of	extrapolatIon	tools

Not	 only	 may	 long-term	 monitoring	 programs	 ensure	 that	 unexpected	 ecological	
impacts	 do	 not	 occur,	 but	 also	 the	 data	 may	 be	 used	 to	 validate	 and/or	 calibrate	
the	extrapolation	 tools	used	 in	 the	 risk	assessment	of	chemicals	 (Figure	7.9).	The	
selection	of	suitable	measurement	endpoints	 is	an	 important	step	when	setting	up		
monitoring	studies	to	assess	ecosystem	and	watershed	scale	effects	of	chemical	stress-
ors.	However,	interpretation	of	monitoring	data	is	often	complex.	Although	monitor-
ing	programs	can	be	considered	a	very	useful	reality	check	on	exposure	and	effect	
predictions,	uncertainties	associated	with	monitoring	data	concern	 sampling	con-
straints,	representativeness	of	the	monitoring	sites,	and	causality	between	stressors		
and	responses	of	ecological	indicators.
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Models
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FIGURe	7.9	 The	integrative	research	approach	to	assess	and	predict	stress	and	disturbance	
at	 the	 ecosystem	and	 landscape	 level	 and	 to	validate	 and	calibrate	 the	 extrapolation	 tools	
developed.	Source:	Redrawn	after	Brock	(1998).
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Minimizing	sampling	constraints	information	on	the	spatial	and	temporal	reso-
lution	of	the	monitoring	data	is	required,	especially	when	contamination	is	due	to	
nonpersistent	and/or	water-soluble	chemicals	like	pesticides.	For	example,	monitor-
ing	programs	 that	 rely	on	spot	sampling	 in	 rivers	may	fail	 to	pick	up	contamina-
tion	resulting	from	short-lived	storm	runoff	events	(Schulz	2004).	Monitoring	sites	
should	of	course	be	representative	for	the	systems	and	ecological	risk	assessments	of	
concern.	Causality	requires	not	only	an	overview	of	all	potential	stressors	that	may	
have	impacted	the	measurement	endpoints	of	concern,	but	also	basic	ecotoxicologi-
cal	information	on	the	individual	stressors.	Using	the	hazard	quotient	approach,	the	
list	of	potential	chemicals	that	actually	cause	ecological	risks	can	be	narrowed	down.	
A	proper	interpretation	of	chemical	and	ecological	monitoring	data	for	predicting	
site-specific	 ecological	 effects	 of	 contaminants	 usually	 requires	 multiple	 lines	 of	
evidence.	Using	more	than	one	indicator	increases	the	discriminatory	power	of	iden-
tifying	impaired	habitats	and	reduces	the	possibility	of	“false	negatives”	(Menzies		
et	al.	1996;	Hall	and	Giddings	2000;	Naiman	and	Turner	2000).

In	 the	published	 literature,	 several	monitoring	 studies	 are	described	 that	 suc-
cessfully	 linked	 dynamics	 in	 chemical	 exposure	 to	 catchment	 characteristics	 and	
responses	of	organisms.	For	example,	reported	aqueous-phase	insecticide	concentra-
tions	are	negatively	correlated	with	the	catchment	size,	and	relatively	high	concentra-
tions	(>	10	µg/L)	were	predominantly	found	in	smaller	scale	catchments	(<	100	km2).		
In	addition,	several	studies	revealed	a	clear	relationship	between	quantified,	nonex-
perimental	exposure	and	observed	effects	 in	situ	on	abundance,	drift,	community	
structure,	and/or	other	ecological	indicators	that	are	in	line	with	results	of	labora-
tory	toxicity	tests	and	micro-	and/or	mesocosm	experiments	(Schulz	2004).	Leonard	
et	al.	(1999,	2000)	found	that	populations	of	5	common	benthic	macroinvertebrate	taxa	
(mayflies	and	caddisflies)	in	the	Namoi	River,	Australia,	were	reduced	downstream	of	
irrigated	cotton-growing	areas	during	the	spraying	season.	Using	multivariate	analysis,		
this	 seasonal	 reduction	was	 related	 to	aqueous	concentrations	of	endosulfan	 (deter-
mined	from	passive	samplers)	and	concentrations	in	sediment.	The	passive	samplers	
confirmed	that	endosulfan	was	entering	the	river	through	surface	runoff	attached	to	
suspended	particles	during	storm	events.	The	b-endosulfan	isomer	remained	strongly	
adsorbed	 to	 the	 larger	 (>	63	 µm)	 particles,	 but	 the	 a-isomer	 readily	 desorbed	 and	
degraded	in	the	water	column	to	form	endosulfan-sulfate.	Toxicity	tests	with	a	local	
mayfly	confirmed	that	the	endosulfan-sulfate	would	have	been	the	most	likely	cause	
of	the	decrease	in	population	densities	in	macroinvertebrate	taxa	observed	(Leonard	
et	al.	2001).

Several	field	gradient	studies	revealed	predictive	relationships	between	chemical	
stressors	 and	 biotic	 responses.	 For	 example,	 exposure	 to	 mixtures	 of	 heavy	 metals	
has	shown	concentration–response	relationships	with	macroinvertebrate	community	
indices	(Hickey	and	Clements	1998;	Clements	et	al.	2000).	This	indicates	that	response	
thresholds	for	ecological	indicators	(e.g.,	species	diversity	and	EPT	taxa)	may	be	avail-
able	for	use	in	toxic	impacts,	providing	the	nature	of	the	toxicant	is	known	(e.g.,	metals,	
organics,	and	ammonia).	The	field	studies	have	shown	strong	concentration–response	
relationships	with	stressors,	with	metal	 response	 related	 to	 the	cumulative	criterion	
unit	 (CCU)	 value	 for	 the	 sum	 of	 the	 metals	 present	 (Hickey	 and	 Clements	 1998;		
Clements	et	al.	2000).	The	CCU	concept	was	discussed	in	greater	detail	in	Chapter	5.
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Other	field	gradient	approaches	have	been	successfully	utilized	for	a	range	of	stress-
ors	exposed	to	complex	effluent	gradients.	Such	studies	include	comparisons	of	commu-
nity	structures	upstream	and	downstream	of	contaminant	discharges,	between	reference	
and	polluted	sites,	and	along	concentration	gradients	of	an	environmental	stressor.	These	
include	river	invertebrate	community	impacts	from	inorganic	suspended	solids	(Quinn	
et	 al.	 1992),	 sewage	 lagoon	 effluents	 (Quinn	 and	 Hickey	 1993),	 responses	 of	 fresh-
water	mussels	 to	metals	 (Hickey	et	 al.	1995a),	 and	estuarine	 studies	on	 responses	of		
sediment-dwelling	shellfish	to	organic	contaminants	(Hickey	et	al.	1995b).	Such	gradient	
approaches	are	also	useful	in	determining	hydraulic	habitat	preferences	for	invertebrates	
(Quinn	and	Hickey	1994)	and	attached	algal	biofilms	(Biggs	and	Hickey	1994).	Although	
such	studies	require	careful	consideration	in	the	selection	of	sites	and	design,	the	analysis	
can	provide	strong	evidence	for	effect	thresholds	in	multistressor	environments.	Com-
monly	the	statistical	analysis	may	not	be	able	to	link	effects	with	a	single	variable	in	
complex	 effluent	 because	 high	 correlation	 frequently	 occurs	 between	 constituents	 in	
comparably	sourced	effluents,	and	effects	must	be	related	to	either	surrogate	measures	or	
those	with	the	highest	correlation.	Further	studies	may	be	required	in	such	situations	if	
management	options	require	a	clear	identification	of	the	major	stressor.

The	monitoring	studies	mentioned	above	can	be	considered	as	valuable	retro-
spective	tools	to	verify	the	field	relevance	of	risk	assessment	procedures	currently	in	
use,	including	the	extrapolation	tools	used	to	predict	chemical	stress	at	the	ecosys-
tem	and	landscape	levels.

7.4	 sUMMARY	AnD	oUtLooK

7.4.1	 can	toxIcIty	data	be	extrapolated	spatIally?

The	analyses	conducted	to	date	suggest	that,	although	the	composition	of	freshwater		
communities	 varies	 across	 biogeographical	 regions,	 climatic	 zones,	 and	 habitat	
types,	the	distribution	of	species	sensitivities	does	not	vary	markedly.	Tropical	fresh-
water	fish	species	are	not	generally	more	sensitive	to	environmental	contaminants	
than	temperate	fish	species.	When	compared	with	temperate	species,	there	is	a	trend	
of	a	slight	increase	in	the	sensitivity	of	tropical	invertebrates	to	a	few	selected	chemi-
cals	only,	whereas	for	a	few	other	chemicals	the	reverse	was	observed.	Overall,	the	
quality	of	tropical	toxicity	data	was	lower	than	that	of	temperate	ones.	There	is	no	
evidence	to	suggest	that	northern	hemisphere	and	southern	hemisphere	freshwater		
species	differ	systematically	in	their	sensitivity	to	pesticides	or	metals.	Within	tem-
perate	regions,	there	is	evidence	of	differences	in	sensitivity	between	Palearctic	and	
Nearctic	species,	but	this	is	taxon	specific	and	based	on	very	few	observations.	There	
is	no	evidence	 that	 lotic	arthropod	assemblages	are	generally	more	sensitive	 than	
lentic	arthropod	assemblages	to	insecticides,	even	though	they	contain	a	higher	pro-
portion	of	EPT	 taxa.	No	significant	overall	difference	was	 found	 in	median	HC5	
estimates	for	10	insecticides	when	comparing	the	SSDs	of	freshwater	and	saltwater	
arthropods,	at	least	when	based	on	the	most	sensitive	taxonomic	group	(e.g.,	crusta-
ceans;	Section	7.2.3).

There	 is	 no	 question	 that	 model	 ecosystems	 differing	 in	 size	 and	 complex-
ity	will	also	respond	differently	to	high	levels	of	chemical	stress.	In	part,	this	is	
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caused	by	differences	in	fate	and	dynamics	in	exposure	concentrations.	Under	con-
ditions	where	exposure	concentrations	are	similar,	however,	it	seems	that	threshold	
concentrations	for	effects	are	more	or	less	similar	between	different	types	of	test	
systems,	at	least	when	they	contain	enough	representatives	of	sensitive	taxonomic	
groups.	The	extrapolation	of	NOECeco	values	from	one	system	to	another	seems	
to	be	possible	with	lower	uncertainty	than	hazard	estimates	of	higher	concentra-
tions	in	which	both	direct	and	indirect	effects	and	recovery	processes	are	involved		
(Section	7.2.4).

In	aquatic	risk	assessment,	an	important	question	at	stake	is	how	unique	model	
ecosystem	experiments	are	in	their	threshold	concentrations	for	direct	toxic	effects.	
When	comparing	chemicals	for	which	at	least	5	aquatic	NOECeco	values	are	avail-
able,	it	appears	that	geographical	extrapolation	of	model	ecosystem	experiments	is	
possible.	The	proposed	geographical	uncertainty	factor	(spread)	for	threshold	con-
centrations	was	in	the	range	of	1.4	to	5.4	(Section	7.2.5).

Therefore,	there	is	no	evidence	to	support	the	contention	that	the	ecological	risk	
assessments	must	necessarily	be	based	on	indigenous	species	and	communities,	at	
least	when	 researchers	are	 interested	 in	 threshold	concentrations	of	effects.	How-
ever,	these	conclusions	are	based	on	very	limited	data	sets,	and	further	research	is	
required	to	establish	the	extent	to	which	they	can	be	generalized	across	geographical	
locations,	taxonomic	groups,	and	compounds.

7.4.2	 Is	there	a	future	for	landscape	and	watershed	ecotoxIcoloGy?

Probably	yes,	and	its	role	will	certainly	increase	when	implementing	strategies	and	
environmental	laws	to	manage	and	assess	risks	of	perturbations	(including	chemi-
cal	 stress)	 at	 the	watershed	 level,	 as	 required	by	 the	European	Water	Framework	
Directive.	Managing	the	impact	of	chemical	stressors	in	watersheds	and	landscapes	
is	not	an	easy	task	because,	at	this	scale,	multiple-stress	impacts	cannot	be	ignored.	
The	discipline	of	landscape	ecotoxicology	is	still	 in	its	 infancy,	and	widely	appli-
cable	tools	and	techniques	to	assess	multiple-stress	impacts	at	the	landscape	level	are	
scarce.	Nevertheless,	several	promising	tools	are	available	for	implementing	spatio-
temporal	considerations	into	the	risk	assessment	process.

Available	 tools	 for	 implementing	 spatiotemporal	 considerations	 into	 the	 risk	
assessment	 process	 comprise	 metapopulation	 models	 and	 spatially	 explicit	 models.	
When	 linking	 these	 models	 to	 GIS,	 the	 ecological	 realism	 of	 model	 predictions	 is	
increased.	In	addition,	GIS	is	an	excellent	means	of	compiling	and	sorting	data,	visual-
izing	spatial	relationships,	and	establishing	sampling	programs.	To	date,	metapopula-
tion	models	and	spatially	explicit	models	have	been	used	predominantly	to	assess	risks	
of	contaminants	and	habitat	quality	on	terrestrial	wildlife	species.	There	is,	however,	
no	reason	to	believe	that	these	models,	when	adapted,	cannot	be	used	to	assess	ecologi-
cal	risks	for	aquatic	populations.	Output	of	these	models	seems	to	be	valuable,	but	fur-
ther	testing	and	uncertainty	analysis	are	certainly	needed	(Sections	7.3.2	and	7.3.3).

When	studying	the	ecological	status	of	watersheds	and	landscapes,	monitoring	
techniques	and	indicators	are	widely	used	tools.	The	diagnostic	indicators	comprise	
indicator	 species	 and	 community	 metric	 approaches.	 To	 improve	 the	 interpreta-
tion	of	monitoring	programs	and	“ecosystem	health”	 indicators	 to	 assess	 risks	of	
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chemicals,	 the	 existing	 information	 in	 the	 region	 of	 concern	 should	 be	 appropri-
ately	mined,	and	data	gaps	filled.	This	can	be	done	by	constructing	databases	with	
information	on	 life-cycle	characteristics	of	species,	 their	occurrence	and	mobility	
in	the	landscape,	and	their	sensitivity	to	the	chemicals	of	concern.	In	the	prediction	
of	site-specific	ecological	impacts	of	chemical	stressors,	it	is	important	to	use	more	
than	one	indicator	to	increase	the	discriminatory	power	of	identifying	impaired	sites	
and	to	reduce	the	possibility	of	false	negatives.	The	most	powerful	applications	of	
landscape	 ecotoxicology	 are	 when	 experimental	 studies,	 chemical	 and	 ecological	
monitoring,	and	model	simulations	are	integrated	in	a	weight-of-evidence	approach	
(Sections	7.3.4	to	7.3.6).
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Extrapolations	are	integral	to	all	forms	of	risk	assessment	and	to	all	levels	of	refine-
ment	in	the	risk	assessment	process.	Short	of	testing	all	combinations	and	permuta-
tions	in	physical	experiments,	it	is	not	possible	to	conduct	risk	assessments	and	make	
risk	management	decisions	without	using	extrapolations	to	one	degree	or	another.

Extrapolation	 is	 commonly	 used	 in	 human	 health	 and	 ecotoxicological	 risk	
assessment,	either	in	a	formal	process	or,	more	commonly,	through	the	use	of	uncer-
tainty	 factors	 derived	 from	 empirical	 experience	 or	 observation.	 This	 book	 has	
attempted	to	characterize	the	extrapolation	process	as	applied	or	potentially	applied	
in	ecotoxicology	to	allow	the	user	to	better	understand	the	process.	Because	extrapo-
lations	 are	 strongly	 dependent	 on	 the	 availability	 of	 knowledge	 and	 information,	
not	all	extrapolations	will	be	appropriate	for	all	situations.	This	book	describes	the	
techniques	 that	 are	 available	 for	 a	 range	 of	 extrapolation	 problems.	 It	 also	 offers	
insight	into	the	practicability	of	use	of	those	methods	for	different	types	of	assess-
ment	problems.	It	presents	guidance	as	to	the	techniques	for	extrapolation	that	are	
most	appropriate	to	the	situation.	It	is	also	recognized	that	extrapolations	will	never	
be	 completely	precise	—	 toxicity	data	 from	which	many	 are	derived	will	 always	
show	small	variance.	Thus,	in	recommending	research	directions,	we	have	focused	
on	needs	related	to	extrapolations	with	large	uncertainty.	We	believe	that	these	rec-
ommendations	 will	 be	 helpful	 in	 developing	 future	 extrapolation	 procedures	 that	
will	reduce	uncertainty	and	improve	ecotoxicological	risk	assessment.
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Extrapolation	is	used	in	predictive	risk	assessment	procedures,	such	as	the	setting	of	
criteria	or	guidelines,	as	well	as	retrospective	risk	assessments,	where	organisms	have	
already	been	exposed	to	a	stressor.	Both	criteria	setting	and	risk	assessments	are	con-
ducted	via	tiers,	which	become	more	sophisticated	and	refined	as	one	utilizes	the	higher	
tiers.	As	a	result,	extrapolation	procedures	become	more	refined,	more	complex,	more	
demanding	of	data,	and,	hopefully,	more	realistic.	This	tiered	approach	is	presented	in	
all	chapters	and	in	the	technical	guidance	and	is	key	to	balancing	the	correct	degree	of	
complexity	in	the	assessment	to	the	goals	and	objectives	of	the	risk	assessment.

Exposure	and	effects	data	are	the	keys	to	risk	assessment,	and,	in	the	same	way,	
extrapolation	is	utilized	in	the	characterization	of	both	exposures	and	effects.	This	
book	was	organized	around	this	theme,	with	exposures	discussed	in	Chapter	2	and	
effects	in	the	chapters	that	follow.

8.1	 	MAtRIX	eXtRAPoLAtIons

Matrix	extrapolations	are	critical	in	understanding	the	bioavailability	and	fate	of	toxic	
substances	and	are	driven	by	interactions	between	the	matrix	and	the	toxicant.	These	
affect	the	uptake	of	substances	by	biota,	and	thus	increase	or	decrease	the	body	dose	
and	resultant	responses.	There	are	large	differences	in	the	methods	used	for	extrapolat-
ing	matrix	effects	between	organic	and	inorganic	substances.	Organic	compounds	nor-
mally	follow	the	rules	of	equilibrium	partitioning	between	the	large-molecule	organic	
constituents	of	the	matrix	and	the	lipid	content	of	the	exposed	organisms.	These	pro-
cesses	can	be	relatively	easily	modeled	because	the	input	data,	such	as	partition	coef-
ficients,	fugacities,	and	proportions	of	partitioning	compartments,	are	available.	For	
inorganic	toxicants,	mainly	heavy	metals,	speciation	governs	availability.	In	the	water	
compartment,	metal	speciation	can	be	addressed	in	a	mechanistic	way,	and	models	are	
available	to	calculate	the	proportion	of	the	metal	species	capable	of	entering	organ-
isms.	The	input	to	those	calculations	requires	a	quantification	of	various	water	chem-
istry	parameters	such	as	pH,	hardness,	DOC,	and	so	on.	For	 the	soil	and	sediment	
compartments,	the	bioavailable	fraction	of	the	metals	is,	in	general,	empirically	related	
to	soil	and	sediment	characteristics	such	as	pH,	cation	exchange	capacity,	and	calcium	
content.	In	general,	there	is	less	knowledge	of	soil	processes	that	govern	bioavailability	
than	is	the	case	for	water,	and	this	has	been	identified	as	a	research	need.

Three	general	levels	of	complexity	are	recognized	in	matrix	and	media	extrapo-
lation.	The	simplest	approach	assumes	that	all	toxicants	are	completely	available	to	
be	taken	up	by	the	biota.	In	this	case,	no	extrapolation	is	required.	The	second	level	
of	complexity	requires	the	calculation	of	bioavailable	fractions	of	toxicants,	whereas	
at	the	highest	level	of	complexity	the	influence	of	physiological	responses	to	toxicant	
uptake	is	considered.

8.2	 eXtRAPoLAtIon	oF	eFFeCts

8.2.1	 (Q)SARS

The	prediction	of	toxicity	through	the	use	of	quantitative	structure-activity	relation-
ships	 ([Q]SAR)	 is	 the	most	basic	of	 effect	 extrapolations	 and	 is	 applied	when	no	
toxicity	or	response	data	have	been	measured	for	the	substances	in	question.	(Q)SAR	
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extrapolation	 relies	 on	 relationships	 between	 the	 physicochemical	 properties	 of	 a	
substance	and	its	biological	properties.	Widely	used	in	the	initial	screening	of	indus-
trial	and	other	commercial	substances	for	potential	toxicity,	(Q)SAR	predictions	are	
often	subjected	to	large	uncertainty	factors	because	of	a	perceived	lack	of	confidence	
in	the	accuracy	of	the	predictions.	This	lack	of	confidence	is	not	deserved	in	all	situ-
ations.	Where	the	mechanism	of	action	of	the	substance	is	via	baseline	toxicity	or	
narcosis,	(Q)SAR	models	can	predict	responses	with	reasonable	accuracy.	However,	
where	other	mechanisms	of	toxicity	are	involved,	such	as	those	mediated	by	inter-
actions	 with	 a	 specific	 receptor,	 (Q)SARs	 may	 provide	 inaccurate	 extrapolations,	
unless	the	training	sets	on	which	they	are	based	are	extensive	and	the	toxic	mode	of	
action	is	specific	to	certain	functional	groups	or	moieties	on	the	molecule.	(Q)SARs	
for	substances	with	novel	modes	of	action	and	for	which	training	sets	are	not	avail-
able	will	be	the	least	accurate.

Despite	some	drawbacks,	(Q)SARs	can	be	useful	in	dealing	with	large	groups	
of	substances	when	no	data	are	available	as	well	as	for	setting	priorities	for	further	
characterization	and	in	suggesting	hypotheses	for	further	experimental	evaluation.	
Future	directions	in	(Q)SAR	include	the

addition	of	more	effect	data	for	more	substances	to	the	training	data	sets	
to	increase	accuracy.
integration	of	(Q)SARs	used	in	drug	design	and	pharmacology	to	incor-
porate	mechanisms	of	actions	that	are	conserved	across	taxa.
development	 of	 specific	 (Q)SARs	 to	 address	 measures	 of	 effect	 and	
responses	that	are	unique	to	ecotoxicology.

8.2.2	 ExtRApolAtion	AcRoSS	lEvElS	of	BiologicAl	oRgAnizAtion

Levels	of	biological	organization	(e.g.,	cell,	organ,	individual,	population,	and	com-
munity)	are	important	for	extrapolation,	because	more	extrapolation	data	are	avail-
able	 for	 lower	 levels	 of	 organization.	 Extrapolation	 across	 levels	 of	 organization,	
however,	presents	significant	challenges,	especially	where	these	levels	are	far	apart.	
Extrapolations	over	short	biological	distances	have	been	conducted	with	some	suc-
cess.	This	is	especially	the	case	where	the	bioindicator	is	a	biochemical	or	physiolog-
ical	response	(biomarker),	the	mechanisms	of	action	of	which	are	well	understood,	
and	 when	 the	 response	 is	 substance	 specific.	 Where	 greater	 biological	 distances	
occur,	or	the	mechanisms	of	action	are	nonspecific	and	poorly	understood,	extrapo-
lation	has	been	less	successful.	Thus,	extrapolation	of	population-level	effects	from	
biochemical	responses	in	single	organisms	is	generally	not	possible	and	will	present	
interesting	challenges	in	future	research.

Responses	from	single-species	laboratory	tests	have	provided	useful	information	
for	extrapolating	effects	to	populations	under	natural	conditions;	however,	these	data	
are	largely	derived	from	aquatic	species	that	are	used	in	standardized	tests.	Other	
groups	of	organisms,	such	as	terrestrial	arthropods,	are	poorly	represented	in	rou-
tine	testing,	and	their	biology	is	often	not	as	well	understood.	Population	and	food-
web	models	have	been	useful	in	extrapolating	from	laboratory	data	to	the	field	but	
may	require	too	many	parameters	to	be	widely	applied	outside	of	a	few	well-studied		
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species.	Generic	population	or	food-web	models	applied	to	classes	of	organisms	with	
similar	life	cycle	characteristics	may	be	useful.

Extrapolation	between	structure	and	function	is	an	area	in	ecotoxicology	that	is	
not	well	understood.	At	the	ecosystem	level,	current	protective	regulations	often	rely	
on	 the	“functional	redundancy”	concept,	applied	 in	conjunction	with	results	 from	
species-poor	model	systems	with	high	resilience.	Evidence	 from	recent	studies	 in	
ecology	suggests	that	functional	redundancy	exists	within	natural	communities,	but	
the	relative	contribution	of	different	species	to	specific	functions	is	far	from	equal,	
and	the	disappearance	of	certain	species,	such	as	dominant	species	or	keystone	spe-
cies,	can	have	large	effects	on	overall	system	function	and	the	occurrence	of	other	
species.

Extrapolation	between	levels	of	biological	organization	is	predicated	on	the	cor-
rect	choice	of	parameters	to	measure.	There	is	always	a	danger	in	basing	approaches	
on	untested	assumptions,	such	as	assuming	species	equivalence	when	applying	the	
species	sensitivity	distribution	(SSD)	model.	Lack	of	knowledge	of	biotic	interactions	
is	also	important:	for	example,	simply	because	A	influences	B	does	not	mean	that	B	
will	always	respond	to	a	change	in	A.	Although	we	may	have	a	good	understanding	
of	toxicological	effects,	such	as	mode	of	action,	and	this	is	important	for	understand-
ing	individual	and	ecological	responses,	there	is	a	greater	need	for	understanding	the	
ecological	consequences	of	the	responses	caused	by	substances	in	the	environment.

Future	research	directions	include

increasing	the	amount	of	toxicity	data	for	terrestrial	organisms	to	expand	
the	range	of	organisms	tested.
the	development	and	use	of	generic	food-web	models	for	classes	of	organ-
isms	with	similar	life	histories	and	characteristics.
research	to	better	categorize	the	functional	role	of	organisms	in	ecosys-
tems	so	that	these	may	be	better	integrated	into	risk	assessments.

8.2.3	 MixtuRE	ExtRApolAtion

In	the	environment,	organisms	are	seldom	exposed	to	single	substances;	in	fact,	mix-
tures	are	the	rule	rather	than	the	exception.	Mixture	extrapolation	is	necessary	for	
risk	assessment	purposes,	but	techniques	for	mixture	extrapolations	are	not	strongly	
validated,	except	for	those	for	some	classes	of	substances	in	single	species.	There	is	
an	almost	complete	lack	of	data	on	mixture	effects	at	the	community	and	ecosystem	
levels.	Nonetheless,	 the	available	data	indicate	strongly	that	mixture	extrapolation	
should	be	seriously	considered	as	an	alternative	to	no	mixture	extrapolation.

Our	current	understanding	of	mixture	extrapolation	is	based	on	simple	pharma-
codynamic	concepts	of	noninteractive	joint	action,	such	as	simple	similar	action	and	
simple	independent	action,	with	the	associated	extrapolation	models	concentration	
addition	and	response	addition.	These	models	are	used	for	various	types	of	extrapo-
lations.	Although	mode	of	action	 is	 important	when	considering	possible	mixture	
interactions	and	extrapolations,	the	concept	of	the	ecological	mode	of	action	needs	to	
be	expanded,	as	was	also	concluded	for	extrapolation	across	levels	of	biological	orga-
nization.	Mixture	 extrapolation	 should	 consider	 environmental	 (matrix)–chemical		
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interactions,	 toxicokinetic	and	 toxicodynamic	 interactions	 in	organisms,	and	eco-
logical	interactions	between	organisms	and	populations.

A	tiered	system	for	mixture	extrapolation	is	proposed.	The	lowest	tier	is	based	
on	extrapolation	using	toxicological	point-estimate	information	such	as	EC50	values.	
This	translates	into	the	use	of	toxic	units,	toxic	equivalencies,	and	similar	techniques.	
The	 use	 of	 the	 entire	 concentration–response	 relationships	 of	 the	 separate	 com-
pounds	is	recommended	for	Tier-2,	in	conjunction	with	the	use	of	either	concentra-
tion	or	response	addition	as	a	modeling	approach.	In	Tier-3,	a	mixed-model	approach	
can	be	considered,	 to	more	 specifically	address	considerations	on	 toxic	modes	of	
action.	In	the	latter	case,	the	approach	may	be	extended	to	allow	incorporation	of	
the	responses	of	different	ecological	receptors	(Tier-4).	Research	needs	have	been	
clearly	identified	in	community-level	mixture	assessments.

Suggested	research	directions	include	the

integration	 of	 ecological	 mode	 of	 action	 in	 the	 assessment	 of	 mixture	
toxicity.
incorporation	of	matrix–chemical	interactions,	toxicokinetic	and	toxico-
dynamic	 interactions	 in	organisms,	and	ecological	 interactions	between	
organisms	and	populations	into	the	assessment	of	the	effect	of	mixtures	
in	the	ecosystem.

8.2.4	 tEMpoRAl	ExtRApolAtion

The	response	of	organisms	in	the	environment	to	toxic	substances	depends	on	expo-
sure	concentration	and	exposure	duration.	The	time	needed	to	reach	incipient	toxic-
ity	 is	dependent	on	the	 type	of	chemical;	ambient	environmental	conditions,	such	
as	 temperature;	species	 tested;	and	endpoints	selected.	Extrapolation	across	 time-	
varying	exposure	regimes	is	possible	for	well-studied	compounds	with	known	modes	
of	toxic	action.	Several	key	properties	of	organisms	that	are	generally	not	well	char-
acterized	in	most	toxicity	tests	can	influence	temporal	extrapolations.	Key	amongst	
these	is	the	possibility	of	reversibility	of	the	toxic	effects,	which	can	be	important	
when	 evaluating	 the	 risks	 of	 pulsed	 and	 multiple	 exposures.	 Reversibility	 of	 the	
effects	depends	on	the	type	of	chemical,	exposure	concentration,	and	duration	of	the	
exposure	event.	Critical	body	residue,	in	combination	with	toxicokinetics,	has	been	
used	to	extrapolate	from	constant	to	pulsed	exposure	and	for	exposures	of	varying	
lengths.	Recent	developments	of	new	models	to	address	these	extrapolations,	such	as	
ACE	(Ellersieck	et	al.	2003),	are	promising.

Most	toxicity	data	for	ecological	effects	originate	from	acute	laboratory	tests	on	
single	species.	Although,	in	some	cases,	a	predictable	relationship	may	exist	between	
acute	and	chronic	effects	in	some	organisms	and	for	some	types	of	chemicals,	there	
is	still	some	uncertainty	associated	with	predictions	of	chronic	effects	from	acute	
effects.	In	part	this	uncertainty	can	be	explained	by	the	fact	that	different	responses,	
such	 as	 lethality,	 may	 be	 observed	 in	 acute	 and	 chronic	 tests	 where	 growth	 and	
development	 are	 normally	 assessed.	 Generalizations	 in	 these	 extrapolations	 have	
been	incorporated	into	regression	models	that	are	available	for	general	use.	However,	
for	some	substances,	uncertainty	factors	larger	than	100	may	be	required	for	lower	
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tier	extrapolations	from	acute	to	chronic	conditions.	Based	on	analyses	of	SSDs	fit-
ted	to	acute	and	chronic	toxicity	data	for	pesticides	tested	in	aquatic	organisms,	an	
uncertainty	factor	of	10	appears	to	suffice	to	extrapolate	a	median	acute	HC5	to	a	
median	chronic	HC5,	at	 least	when	based	on	 toxicity	data	of	sensitive	 taxonomic	
groups.	In	addition,	it	appears	from	model	ecosystem	experiments	with	pesticides	
that	threshold	concentrations	for	chronic	exposures	are	approximately	a	factor	of	10	
lower	than	those	for	acute	exposures.	For	a	wider	generalization,	however,	more	data	
are	required	on	compounds	that	differ	in	toxic	modes	of	action.

Possible	delayed	responses	cannot	be	ignored	when	interpreting	and	extrapolat-
ing	from	toxicity	tests.	These	latent	responses	may	become	apparent	in	organisms	
after	the	exposure	is	completed	or	in	conjunction	with	other	stressors.	It	may	even	
be	required	to	include	the	responses	of	the	offspring	in	the	observations,	which	is	
not	often	done	in	routine	toxicity	testing.	Complex	interactions	within	and	between	
populations	and	nonlinear	biological	dynamics	may	create	variable	latency	periods	
between	the	exposure	event	and	indirect	effects	in	particular,	further	complicating	
extrapolations	in	communities.

Life	history	models	may	be	useful	for	considering	age-	or	stage-specific	variabil-
ity	in	sensitivity	in	the	extrapolation	of	response;	however,	it	should	not	be	assumed	
that	smaller	or	younger	stages	are	always	the	most	sensitive.	The	few	studies	that	
have	addressed	the	impact	of	time	of	year	on	responses	of	aquatic	communities	to	a	
stressor	indicate	that,	in	freshwater	communities,	threshold	concentrations	for	direct	
toxic	 effects	 vary	within	 a	 factor	of	 2	 among	 seasons	—	well	within	 the	normal	
range	of	variation	observed	in	laboratory	toxicity	tests.	However,	at	greater	expo-
sures,	the	intensity	and	duration	of	direct	and	indirect	responses	may	vary	consider-
ably	between	different	periods	of	the	year	because	of	the	influence	of	climatic	and	
seasonal	factors	on	recovery.

Where	exposures	are	short	and	infrequent,	the	recovery	potential	of	affected	pop-
ulations	and	ecosystem	functions	is	important	in	extrapolating	potential	responses.	
Rate	of	recovery	is	highly	dependent	on	the	life-cycle	characteristics	of	the	affected	
species.	In	the	ecotoxicological	literature,	relatively	little	experimental	information	
can	be	found	on	the	recovery	potential	of	species	with	a	long	and/or	complex	life	
cycle.	In	addition,	for	many	aquatic	species,	basic	information	on	life-cycle	charac-
teristics	is	not	readily	available.	To	further	complicate	matters,	the	number	of	gen-
erations	per	year	of	invertebrate	species	may	vary	with	latitude.

Tolerance	can	be	acquired	by	an	individual	due	to	physiological	acclimation	or	
by	genetic	selection.	At	the	community	level,	pollution-induced	tolerance	may	result	
from	the	replacement	of	sensitive	species	by	less	sensitive	ones,	genetic	adaptation	
of	one	or	more	species,	and/or	physiological	adaptation	of	individuals.	Rapid	genetic	
adaptation	to	toxicant	stress	usually	involves	a	single	gene.	Field	observations	and	
experiments	have	demonstrated	that	genetic	adaptation	to	metals	and	pesticides	can	
develop	 within	 a	 few	 generations,	 particularly	 when	 the	 species	 in	 question	 have	
short	generation	times	and	large	numbers	of	offspring.

Research	directions	include

the	incorporation	of	mode	and	mechanism	of	action	information,	particu-
larly	recovery,	in	extrapolation	of	effects	for	time-varying	exposures.

•
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developing	a	better	understanding	of	the	mechanisms	of	latent	responses	
to	toxic	substances	so	that	these	can	be	predicted	and	integrated	into	risk	
assessment	extrapolations.
more	consideration	of	recovery	potential	of	species	and	communities	in	
the	risk	assessment	process.

8.2.5	 SpAtiAl	ExtRApolAtion

Because	 most	 of	 the	 routine	 toxicity	 testing	 of	 environmentally	 important	 sub-
stances	 is	 carried	 out	 using	 species	 from	 temperate	 regions,	 spatial	 extrapolation	
is	an	important	process	in	extending	risk	assessments	to	tropical	or	polar	regions.	
Although	the	composition	of	freshwater	communities	varies	across	biogeographical	
regions,	climatic	zones,	and	habitat	types,	studies	have	shown	that	the	distribution	
of	species	sensitivities	does	not	vary	markedly	as	long	as	the	comparison	is	confined	
within	similar	taxa.	Tropical	freshwater	fish	species	are	not	generally	more	sensitive	
to	 environmental	 contaminants	 than	 temperate	fish	 species.	There	 is	no	evidence	
to	 suggest	 that	 northern	 hemisphere	 and	 southern	 hemisphere	 freshwater	 species	
differ	 systematically	 in	 their	 sensitivity	 to	pesticides	or	metals.	Within	 temperate	
regions,	there	is	evidence	of	differences	in	sensitivity	between	Palearctic	and	Nearc-
tic	 species,	 but	 this	 is	 taxon	 specific	 and	 based	 on	 very	 few	 observations.	 There	
is	no	evidence	 that	 lotic	arthropod	assemblages	are	generally	more	sensitive	 than	
lentic	arthropod	assemblages	to	insecticides,	even	though	they	exhibit	differences	in	
taxonomic	makeup.	At	this	time,	there	is	no	evidence	to	support	the	contention	that	
the	ecological	risk	assessments	must	necessarily	be	based	on	indigenous	species	and	
communities,	at	least	when	interested	in	threshold	concentrations	of	effects	within	
taxa.	However,	 these	conclusions	are	based	on	very	 limited	data	sets,	and	further	
research	is	required	to	establish	the	extent	to	which	they	can	be	generalized	across	
geographical	locations,	taxonomic	groups,	and	compounds.

Size	of	 test	 system	causes	significant	differences	 in	 fate	and,	 therefore,	expo-
sure	concentrations.	However,	where	exposure	regimens	are	similar,	threshold	con-
centrations	for	similar	effects	in	different	types	of	test	systems	also	are	similar,	at	
least	when	they	contain	enough	representatives	of	sensitive	taxonomic	groups.	The	
extrapolation	of	NOECecosystemvalues	from	one	system	to	another	is	possible	with	lower	
uncertainty	than	in	hazard	estimates	of	higher	concentrations	in	which	both	direct	
and	indirect	effects	and	recovery	processes	are	involved.

Managing	the	impact	of	chemical	stressors	in	watersheds	and	landscapes	is	not	
an	easy	 task	because	multiple-stress	 impacts	cannot	be	 ignored	at	 this	scale.	The	
discipline	of	 landscape	ecotoxicology	 is	still	 in	 its	 infancy,	and	widely	applicable	
tools	 and	 techniques	 to	 assess	 multiple-stress	 impacts	 at	 the	 landscape	 level	 are	
scarce.	Nevertheless,	recent	advances	in	geomatics,	along	with	the	introduction	of	
several	promising	tools,	are	greatly	improving	the	capacity	to	incorporate	spatiotem-
poral	information	into	the	risk	assessment	process.	These	tools	include	geographic	
information	systems	(GIS),	remote	sensing,	and	global	positioning	systems	(GPS),		
which	provide	a	basic	approach	for	compiling	and	sorting	data,	visualizing	spatial	
relationships,	and	establishing	sampling	programs.

•
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To	date,	metapopulation	models	and	spatially	explicit	models	have	been	used	
predominantly	to	assess	risks	of	contaminants	and	habitat	quality	on	terrestrial	wild-
life	species.	There	is,	however,	no	reason	to	believe	that	these	models,	when	adapted,	
cannot	be	used	 to	assess	ecological	 risks	for	aquatic	populations.	Output	of	 these	
models	is	valuable,	but	further	testing	and	uncertainty	analyses	are	needed.

Diagnostic	indicators	such	as	indicator	species	and	community	metric	approaches	
are	useful	in	extrapolation	between	smaller	test	units	to	landscapes	and	between	land-
scapes	themselves.	The	use	of	these	indicators	in	extrapolation	can	be	improved	by	
constructing	databases	with	 information	on	 the	 life-cycle	characteristics	of	species,	
their	occurrence	and	mobility	in	the	landscape,	and	their	sensitivity	to	the	chemicals	of	
concern.	In	the	extrapolation	of	site-specific	ecological	impacts	of	chemical	stressors,	
it	is	important	to	use	more	than	one	indicator	to	increase	the	discriminatory	power	of	
identifying	impaired	sites	and	to	reduce	the	possibility	of	false	negatives	(type	2	errors,	
in	which	responses	are	present	but	not	observed).

Research	directions	include

increased	 and	 better	 testing	 of	 species	 from	 different	 regions,	 such	 as	
the	tropics	and	polar	regions,	to	better	characterize	differences,	if	any,	in	
organisms	from	these	regions.
better	 incorporation	of	geographical	 information	 in	 risk	 assessment	 for	
aquatic	organisms.
better	use	of	life-cycle	characteristics	of	species,	such	as	range	of	distribu-
tion	and	mobility,	in	extrapolation	of	effects	to	the	larger	landscape.

8.2.6	 guidAncE	on	ExtRApolAtion

There	are	many	extrapolation	methods,	of	different	complexities,	and	with	differ-
ent	purposes	and	suitabilities	for	prospective	and	retrospective	risk	assessments.	A	
compilation	of	the	methods	is	insufficient	to	guide	the	choice	of	procedures	to	use	
when	assessors	need	to	conduct	risk	assessments.	Therefore,	a	practical	and	prag-
matic	guide	to	extrapolations	and	their	everyday	use	is	provided	in	the	last	chapter.	It	
defines	a	general	stepwise	approach	to	identifying	the	types	of	extrapolation	(matrix	
and	media,	(Q)SARs,	mixtures,	etc.)	that	are	most	relevant	for	an	assessment	prob-
lem,	and	it	defines	an	overall	approach	to	the	assignment	of	tiers.

There	may	be	differences	between	the	Guidance	chapter	and	current	extrapola-
tion	schemes	used	in	existing	regulations.	This	relates	to	the	fact	that	current	regula-
tions	were	not	designed	to	result	in	a	set	of	systematically	and	globally	homogeneous	
approaches.	The	approach	here	was	to	derive	guidance	from	some	scientific	prin-
ciples	for	cases	where	guidance	is	lacking.	The	guidance	was	not	meant	to	replace	
currently	used	approaches	that	serve	their	purposes	well.	The	Guidance	chapter	was	
designed	to	serve	as	a	stand-alone	document,	but	it	is	obviously	closely	linked	to	the	
other	chapters	of	this	book	as	a	source	of	additional	information	and	theory.

8.2.7	 cAliBRAtion	And	vAlidAtion

As	in	all	other	areas	of	science,	validation	of	extrapolations	for	all	possible	situations	
is	not	possible.	Calibration	can	be	achieved	and	is,	in	fact,	considered	in	a	number	of	

•
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regression	models	used	in	extrapolation	as	well	as	in	the	traditional	use	of	an	uncer-
tainty	factor	 (UF),	although	 these	may	be	selected	 to	be	very	conservative.	As	one	
moves	from	the	lower	tiers	of	extrapolation	through	the	use	of	UFs	to	more	data-rich	
approaches	with	increasing	realism,	the	need	for	conservative	assumptions	decreases.	
However,	with	this	comes	an	increased	risk	of	a	false	negative	—	extrapolating	no	or	
low	risk	when	risk	actually	exists	or	is	significant.	One	of	the	major	questions	that	may	
be	asked	in	the	context	of	extrapolation	is	the	issue	of	validation;	this	question	was	one	
of	the	main	drivers	for	collecting	the	suite	of	extrapolation	methods	described	in	the	
chapters	of	this	book,	along	with	considering	prediction	accuracy	where	possible.

Extrapolation	results	are,	by	definition,	predictions	on	the	performance	of	enti-
ties	for	which	data	are	lacking.	Both	from	a	scientific	perspective	as	well	as	from	the	
perspective	of	practical	decisions	based	on	extrapolation,	there	is	a	need	to	consider	
not	only	the	outcomes	of	an	extrapolation	per	se	but	also	the	question	of	whether	
the	outcome	is	supported	by	a	certain	degree	of	validity.	All	this	relates	to	the	issue	
generally	referred	to	as	“validation.”

A	validated	model	is	generally	seen	in	practice	as	a	model	that

is	suited	to	execute	a	task	in	practice	and
yields	an	outcome	 that	 is	 trustworthy	as	 to	 representing	 the	assessment	
endpoint.

In	the	previous	chapters,	and	in	the	design	of	the	tiered	system	described	in	Chapter	10		
(Tables	10.2	to	10.4),	it	is	shown	that	models	differ	as	to	their	feasibility	of	use	in	
practice.	The	more	a	model	is	based	on	simple	and	uniform	theory	(whether	or	not	
the	theory	fully	covers	the	issue),	the	more	it	is	used	in	daily	practice.	For	example,	
empirical	formulae	that	describe	exposure	as	a	function	of	matrix	characteristics	can	
be	employed	often,	because	one	usually	has	information	on	the	most	relevant	param-
eter	values	at	the	site	of	interest.	In	contrast,	(semi)mechanistic	modeling	with	the	
biotic	ligand	approach	is	probably	better	suited	for	some	highly	specific	assessment	
problems,	because	it	requires	more	specific	data,	or	alternatively	assumptions,	before	
it	can	be	applied.	In	the	context	of	mixtures,	a	universal	fallback	option	has	always	
been	the	model	of	concentration	addition,	which	is	easy	to	use,	especially	when	it	is	
applied	in	the	format	of	point	estimates	for	toxicity,	like	through	dimensionless	toxic	
units.	This	shows	that	practical	adoption	of	extrapolation	models	in	part	depends	on	
practicability,	not	necessarily	on	validation.	Suter	et	al.	 (2002)	already	noted	 that	
regulatory	adoption	of	a	model	for	practical	use	can	be	an	argument	to	consider	a	
model	sufficiently	validated,	without	necessarily	meaning	that	a	model	is	perfect.

Further,	the	validation	of	a	model	needs	the	definition	of	the	criterion	for	estab-
lishing	that	a	model	has	been	validated.	How	well	should	a	model	predict	effects	pre-
cisely,	and	what	are	the	bounds	between	which	one	calls	a	model	(sufficiently)	valid?	
It	also	needs	the	definition	of	the	context	against	which	a	model	is	to	be	considered	
“valid.”	For	example,	“validation”	of	the	SSD	model	has	generally	been	based	on	
whether	the	so-called	“hazardous	concentration”	for	5%	of	the	species	(HC5)	is	a	
concentration	that	is	conservative	(sufficiently	protective)	compared	to	the	no-effect	
concentration	in	multispecies	mesocosm	or	field	tests.	In	that	sense,	the	model	has	
performed	 well	 for	 both	 aquatic	 and	 terrestrial	 systems	 (e.g.,	 Emans	 et	 al.	 1993;	
Okkerman	et	al.	1993;	Posthuma	et	al.	1998;	Versteeg	et	al.	1999;	van	den	Brink		
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et	al.	2002a;	Maltby	et	al.	2005).	No	case	study	performed	up	till	now	has	shown	that	
(regulatory)	unacceptable	effects	occur	at	concentrations	lower	than	the	risk	limit,	
probably	with	the	exception	of	the	study	of	Mulder	et	al.	(2004),	in	which	the	decline	
of	Lepidoptera	in	the	field	was	associated	to	changes	in	host	plants	responding	to	
low-level	exposures	where	each	metal	was	below	the	individual	HC5	for	Dutch	soils.	
However,	validation	studies	conducted	to	date	have	not	falsified	the	hypothesis	that	
the	SSD	model	is	always a	valid	approach	for	an	assessment.	When	a	more	refined	
question	 is	 asked	 —	 for	 example,	 “Does	 an	 SSD	 predict	 ecosystem	 performance	
at	a	known	concentration	 that	 is	higher	 than	 the	HC5?”	—	then	 the	performance	
of	SSDs	as	an	extrapolation	approach	appears	dependent	on	the	characteristics	of	
the	assessed	system.	SSDs	appeared	to	perform	relatively	well	in	predicting	acute	
responses	 in	aquatic	ecosystems,	but	 in	chronic	exposures	and	 in	soil,	 the	perfor-
mance	of	the	model	is	less	satisfactory	(van	den	Brink	et	al.	2002a).

The	 SSD	 example	 shows	 that	 one	 model,	 the	 SSD,	 can	 be	 considered	 suffi-
ciently	predictive	for	simple	questions	(e.g.,	“Is	 the	HC5	protective	of	community	
responses?”)	but	of	more	limited	—	or	even	insufficient	—	predictive	capacity	for	
specific	assessment	questions	such	as	those	regarding	the	effects	of	exposure	on	bio-
diversity.	This	shows	that	general	conclusions	on	the	“validity	of	a	model”	cannot	be	
drawn.	For	the	extrapolation	methods	for	which	validation	studies	have	been	done,	
the	examples	(and	limitations)	have	been	provided	in	the	preceding	chapters.

From	the	history	of	the	use	of	extrapolation	methods	and	validation,	it	is	evident	
that	the	design	of	a	method	preceded	the	validation;	at	least	in	those	cases	there	was	
an	attempt	at	validation.	However,	at	present,	the	issue	of	validation	is	not	an	integral	
part	of	 the	design	of	an	extrapolation	method.	 In	software	engineering,	 there	 is	a	
specific	design	phase	for	this	activity,	often	referred	to	as	beta	testing.	In	this	design	
phase,	the	“bugs”	that	remain	after	moving	from	the	training	(coding)	phase	to	the	
phase	of	practical	use	are	removed,	and	software	credibility	 is	often	considerably	
increased.	Such	a	general	approach	is	lacking	in	the	case	of	the	design	of	extrapola-
tion	methods.	This	may	decrease	 the	accuracy	and	adoption	of	extrapolation.	For	
example,	when	the	training	data	set	(through	which	a	method	was	developed)	is	not	
related	to	the	extrapolation	problem	under	investigation,	this	may	go	unnoticed	when	
the	 risk	assessor	does	not	pose	critical	questions	on	 the	 relevance	of	 the	 training	
data	set	for	the	problem	being	investigated.	For	example,	when	using	extrapolation		
formulae	on	the	partition	coefficient	of	metals	in	field	soils,	for	example,	as	a	func-
tion	of	pH	and	organic	matter	content,	the	set	of	field	soils	from	which	the	formulae	
were	derived	needs	to	be	considered.	This	is	a	“within-method”	type	of	scrutiny	of	
the	appropriateness	of	the	approach.	It	 is	recommended	to	undertake	such	critical	
investigations	 into	 the	methods	used:	on	which	principles	are	 they	 founded,	what	
data	were	used	as	a	training	set,	and	are	principles	and	data	appropriate	for	the	prob-
lem?	If	not,	which	type	of	bias	(e.g.,	magnitude,	or	direction)	might	be	expected?

With	this	in	mind,	a	number	of	new	directions	are	suggested:

Greater	attention	should	be	paid	to	the	design	of	extrapolation	methods	
with	 the	objective	of	validation,	 that	 is,	describing	 for	which	 situations	
the	approach	appears	accurate,	to	what	extent	accuracy	can	be	expected,	

•
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critical	tests	of	the	extrapolation	method	to	problems	outside	the	scope	of	
the	training	set,	and	so	on.
Greater	attention	should	be	paid	to	developing	standard	exposure	scenar-
ios,	particularly	for	areas	outside	the	temperate	regions.	These	scenarios	
could	be	tested	in	physical	models	(microcosms	or	mesocosms),	whereby	
lower	tier	methods	are	scrutinized	by	comparison	of	predicted	effects	to	
observed	effects	in	higher	tier	experimental	approaches.	They	could	also	
be	tested	by	ecoepidemiological	approaches,	although	that	would	require	
additional	attention	for	the	problem	of	disentangling	effects	of	toxic	sub-
stances	and	natural	variability	and	the	effects	of	other	stressors.

Finally,	the	authors	of	and	other	contributors	to	this	book	hope	that	it	will	be	useful	
and	that	it	will	increase	our	understanding	of	the	process	of	extrapolation	in	the	ecolog-
ical	context	as	well	as	stimulate	additional	research	into	refining	methods	of	extrapola-
tion.	We	thank	the	American	Chemistry	Council	for	their	support	of	this	project.
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9 Glossary

This glossary is provided to help readers with terminology and abbreviations that are 
commonly used in ecotoxicology and risk assessment.

abiotic:  Not associated with living organisms.
absorption:  1) Penetration of a substance into an organism by various pro-

cesses, some specialized, some involving expenditure of energy (active 
transport), some involving a carrier system, and others involving passive 
movement down an electrochemical gradient. In mammals, absorption is 
usually through the respiratory tract, or skin. 2) The process of 1 material 
(absorbent) being retained by another (absorbate). This may be the physi-
cal solution of a gas, liquid, or solid in a liquid; attachment of dissolved 
molecules of a gas, vapor, liquid, or dissolved substance to a solid surface 
by physical forces; or the like.

acute:  Responses occurring within a short period in relation to the life span of the 
organism (usually 4 days for fish). It can be used to define either the expo-
sure (acute test) or the response to an exposure (acute effect). For animals 
that are dosed orally, “acute” refers to instantaneous exposure. In humans, 
“acute” often refers to exposure in a 24-hour period.

acute  toxicity:  The harmful effects of a substance or mixture of substances 
occurring after a brief exposure, usually 48 to 96 hours. See also chronic 
toxicity.

adsorption:  An increase in the concentration of a dissolved substance at the 
interface of a condensed and a liquid phase due to the operation of surface 
forces. With pesticides, it is normally the increase in the concentration of 
a pesticide at the interface of soil colloidal clay or organic matter. Ant-
onym: desorption.

adverse  effect:  Change in the morphology, physiology, growth, development, 
reproduction, or life span of an organism, system, or subpopulation that 
results in impairment of the capacity to compensate for additional stress, 
or an increase in susceptibility to other influences.

analysis of effects:  A phase in an ecological risk assessment in which the effect 
measures are characterized along with associated uncertainties.

analysis of exposure:  A phase in an ecological risk assessment in which the spa-
tial and temporal distribution and intensity exposures are characterized 
along with associated uncertainties.

antagonism:  Antagonism arises when the combined effect of 2 or more substances 
is smaller than the combined individual effects of the substances.
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assessment endpoint:  An explicit expression of the environmental value to be 
protected. An assessment endpoint must include an entity and a specific 
property of that entity.

background concentration:  The concentration of a substance in environmental 
media that are not contaminated by the sources being assessed or any 
other local sources. Background concentrations are due to regional con-
tamination or natural occurrence.

battery toxicity testing:  The parallel application of a range of different toxicity 
tests.

benthos:  Nonplanktonic animals (not being suspended in water) associated with 
freshwater substrata (upper layer of the sediment in rivers and ponds) at 
the sediment–water interface.

bioaccumulation:  The net accumulation of a substance by an organism due to 
uptake from all environmental media, including food that occurs because 
the rate of intake exceeds the organism’s ability to remove the substance 
from the body.

bioassay:  Old term for toxicity test.
bioavailability:  The extent to which the form of a substance is susceptible to 

being taken up by an organism. A substance is said to be bioavailable if it 
is in a form that is readily taken up (e.g., dissolved) rather than a less avail-
able form (e.g., sorbed to solids or to dissolved organic matter).

bioconcentration:  1) The net accumulation of a substance by an organism due to 
uptake from the matrix, but excluding uptake from food. 2) The degree to 
which a substance will partition from the matrix into an organism.

bioconcentration factor (BCF):  Ratio between the concentration of a substance 
in an organism or tissue and the concentration in the environmental matrix 
(usually water) at apparent equilibrium during the uptake phase.

biomagnification:  An increase in the concentration of a substance in organisms 
higher in the food chain. The tissue concentration increases at each tro-
phic level in the food web when there is efficient uptake and slow rate of 
elimination.

biomarker:  Indicator signaling an event or condition in a biological system or 
sample and giving a measure of exposure, effect, or susceptibility. Such 
an indicator may be a measurable chemical, biochemical, physiological, 
behavioral, or other alteration within an organism.

biomass:  Material produced by the growth of microorganisms, plants, or 
animals.

centile:  Similar to a quantile, but with the proportion expressed as a percentage. 
The median is the 50th centile.

chronic:  Responses occurring after an extended time relative to the life span of 
an organism (conventionally taken to include at least one-tenth of the life 
span). Long-term effects are related to changes in metabolism, growth, 
reproduction, and/or the ability to survive. Also: exposures greater than 3 
dissipation half-lives of the substance in the organism.

chronic toxicity:  The harmful effects of a substance or mixture of substances 
occurring after an extended exposure. See also acute toxicity.
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community  (biotic):  A biotic community consists of all plants, animals, and 
microbes occupying the same area at the same time. However, the term 
is commonly used to refer to a subset of the community such as the fish 
community or the benthic macroinvertebrate community.

conceptual  model:  A representation of the hypothesized causal relationship 
between the source of contamination and the response of the endpoint 
entities.

contaminant:  A substance that is present in the environment due to release from 
an anthropogenic source and is believed to be potentially harmful.

critical body burden:  The concentration of a substance in an organism at the 
time of appearance of the symptoms or response.

critical toxicity values (CTVs):  Endpoints used to describe effects of substances 
of organisms for the purposes of risk assessment.

cumulative distribution function (CDF):  A function expressing the probability 
that a random variable is less than or equal to a certain value. The CDF 
is obtained by integration of the probability density function (PDF) for 
a continuous random variable, or summation of the PDF in the case of a 
discrete random variable.

cumulative effect:  Overall change that occurs after repeated doses or exposures 
to a substance or physical stressor.

cumulative risk:  Probability of any defined harmful effect occurring through a 
common toxic effect associated with concurrent exposure by all relevant 
pathways and routes of exposure to a group of chemicals that share a com-
mon mechanism of toxicity.

desorption:  Decrease in the amount of adsorbed substance (e.g., pesticide) at 
the interphase of the soil colloids (clay or organic matter). Antonym: 
adsorption.

deterministic  hazard  (risk)  assessment  (DHA):  An assessment of hazard 
where the hazard (incorrectly referred to as “risk”) is estimated from a 
single datum for effect and for exposure, and uncertainty in these 2 mea-
sures is not characterized.

direct  effect:  An effect resulting from an agent acting on the assessment 
endpoint or other ecological component of interest itself, not through 
effects on other components of the ecosystem. See also indirect 
effect.

domain:  Domain is the types and/or classes of compounds that may be studied 
by a (Q)SAR model.

ecological risk assessment (ERA):  A process that evaluates the likelihood that 
adverse ecological effects may occur or are occurring as a result of expo-
sure to 1 or more stressors.

ecosystem:   A collection of populations (microorganisms, plants, and animals) 
that occur in the same place at the same time, forming a functional sys-
tem. This collection potentially interacts with all biotic and abiotic enti-
ties in the system.

ecosystem  function:  A biologically based process such as carbon fixation, 
energy, or nutrient cycling taking place in an ecosystem.
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ecosystem structure:  The composition of the biological community in an eco-
system in terms of the number of species and the number of organisms. 
See food web.

ecotoxicity:  The property of a substance to produce adverse effects in an ecosys-
tem or more than 1 of its components.

ecotoxicology:  The study of toxic effects of substances and physical agents in 
living organisms, especially on populations and communities within 
defined ecosystems; it includes transfer pathways of these agents and their 
interaction with the environment.

effect criterion:  The type of effect or response observed in a toxicity test (e.g., 
immobility). 

effect measure:  A concentration at which a specific response is observed in a 
toxicity test, that is, the values derived from a toxicity test that character-
izes the results of the test (e.g., LC50 or NOEC).

effective  concentration  n (ECn) or effective  dose  n  (EDn):  Concentration 
(dose) that causes the designated response (e.g., a behavioral trait) in n% of 
the population observed. The EC50 is the median effective concentration, 
whereas the ED50 is the median effective dose. The EC values and their 
95% confidence limits are usually derived by statistical analysis of effects 
observed at several test concentrations, after a fixed period of exposure. The 
duration of exposure must be specified (e.g. 96-hour EC50). See also lethal 
concentration n (LCn) or lethal dose n (LDn).

endpoint  entity:  An organism, population, species, community, or ecosystem 
function that has been chosen for protection. The endpoint entity is 1 com-
ponent of the definition of an assessment endpoint.

environmental quality criterion (EQC):   The concentration of a potentially toxic 
substance that can be allowed in an environmental medium over a defined 
period. The term is used in this book as a general term, for which also “envi-
ronmental quality objective” (EQO) and “environmental quality standard” 
(EQS) are used as synonyms in different contexts.

estimated  environmental  concentration  (EEC):  Predicted concentration of a 
substance within an environmental compartment based on estimates of 
quantities released, discharge patterns, and inherent disposition of the pes-
ticide (fate and distribution) as well as the nature of the specific receiving 
ecosystems. Also known as expected environmental concentration (EEC).

expected environmental concentration (EEC):  That concentration of a stressor 
substance that is expected to be found in the environment being assessed. 
See predicted environmental concentration.

exposure:    The contact or co-occurrence of a stressor with a receptor organ-
ism, population, or community. For chemical agents and microorganisms, 
exposure is usually expressed in numerical terms of substance concentra-
tion, duration, and frequency. For physical agents such as radiation, expo-
sure is expressed as intensity.

exposure characterization:  The component of an ecological risk assessment that 
estimates the exposure resulting from a release or occurrence in a medium 
of a stressor. It includes estimation of transport, fate, and uptake.
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exposure pathway:   The physical route by which a stressor moves from a source 
to a biological receptor. A pathway may involve exchange among multiple 
media and may include transformation of the contaminant.

exposure  route:  The means by which a stressor enters an organism, such as 
inhalation, stomatal uptake, or ingestion.

extrapolation:  1) An estimation of a numerical value of an empirical (measured) 
function at a point outside the range of data that were used to calibrate the 
function. 2) The use of data derived from observations to estimate values 
for unobserved entities or conditions.

food  web:  Interrelationships between the individual populations of species 
related to the transfer of energy.

frequency distribution:  The organization of data to show how often certain val-
ues or ranges of values occur.

Geographic Information System (GIS):  A system that allows for the interrelation 
of quality data (as well as other information) from a diversity of sources based 
on multilayered geographical information-processing techniques.

hazard (toxic):  The set of inherent properties of a stressor or mixture of stressors 
that makes it capable of causing adverse effects in humans or the environ-
ment when a particular intensity of exposure occurs. See also risk.

hazard assessment  (HA):    Comparison of the intrinsic ability to cause harm 
with expected environmental concentration. In Europe, it is typically a 
comparison of predicted environmental concentration (PEC) with pre-
dicted no-effect concentration (PNEC). It is normally based on a single 
value for effects and exposure. It is sometimes incorrectly referred to as 
risk assessment.

hazard quotient (HQ):  A ratio between the exposure concentration or dose and 
the effect concentration or dose, where both are expressed in the same 
units. Incorrectly referred to as the risk quotient (RQ).

hazardous concentration p (HCp):  Hazardous concentration for p% (e.g., 5%, 
or HC5) of the species.

indirect effect:  An effect resulting from the action of an agent on some com-
ponents of the ecosystem, which in turn affects the assessment endpoint 
or other ecological component of interest. Indirect effects of substance 
contaminants include reduced abundance due to adverse effects on food 
species or on plants that provide habitat structure. See also direct effect.

intervention value:  A screening criterion (in The Netherlands) based on risks to 
human health and ecological receptors and processes. The ecotoxicologi-
cal component of the intervention value is the hazardous concentration 
50 (HC50), the concentration at which 50% of species are assumed to be 
protected.

joint action:  Two or more substances exerting their effects simultaneously. These 
effects may or may not be additive, synergistic, or antagonistic.

KOC:  See soil organic carbon partition coefficient.
KOW:   See octanol–water partition coefficient.
lethal  concentration  n (LCn)  or  lethal  dose  n  (LDn):  The concentration or 

dose of a substance in water that is estimated to be lethal to n% of the test 
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organisms. The LC50 is the median lethal concentration; the LD50 is the 
median lethal dose. The LC values and their 95% confidence limits are 
usually derived by statistical analysis of mortalities in several test concen-
trations, after a fixed period of exposure. The duration of exposure must 
be specified (e.g., 96-hour LC50).

life-cycle assessment  (LCA):  A method for determining the relative environ-
mental impacts of products and technologies based on the consequences 
of their life cycle, from extraction of raw materials to disposal of the prod-
uct following use.

line of evidence:  Two or more substances exerting their effects simultaneously. 
These effects may or may not be synergistic or antagonistic. Each 
line of evidence is qualitatively different from any others used in the 
risk characterization. In ecotoxicological assessments, the most com-
monly used lines of evidence are based on 1) biological surveys, 2) 
toxicity tests of contaminated media, and 3) toxicity tests of individual 
substances.

LOECecosystem:  The lowest concentration of a test substance to which an eco-
system is exposed that causes an observed and statistically significantly 
different effect on the most sensitive endpoint as compared with the 
controls.

log-normal distribution:  A distribution that is classically bell-shaped and sym-
metrical only when the data are transformed to a logarithm. See also nor-
mal distribution.

lowest-observed-adverse-effect concentration (LOAEC):  The lowest level of 
exposure to a substance in a test that causes statistically significant differ-
ences from the controls in a measured negative or adverse response. See 
also lowest-observed-effect concentration.

lowest-observed-effect concentration (LOEC):  The lowest concentration of a 
test substance to which organisms are exposed that causes an observed 
and statistically significantly different effect (adverse or not) on the organ-
ism as compared with the controls. “Level” is sometimes incorrectly 
substituted for “concentration.” See also lowest-observed-adverse-effect 
concentration.

maximum  allowable  toxicant  concentration  (MATC):  Geometric mean of 
the lowest-observed-effect concentration (LOEC) and no-observed-effect 
concentration (NOEC).

measure of effect:  See effect measure (equivalent to the earlier term “measure-
ment endpoint”).

measure of  exposure:  A measurable characteristic of a contaminant or other 
agent that is used to quantify exposure.

mechanism  of  action:  The process by which a physiological alteration is 
induced. It is often used interchangeably with the term toxic mode of 
action but is usually more specific. For example, the mode of action of an 
agent on a population may be lethality, and its mechanism of action may 
be acute narcosis, cholinesterase inhibition, or uncoupling of oxidative 
phosphorylation.
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mechanistic model:  A mathematical or functional representation of some com-
ponent of an ecosystem with parameters that can be adjusted to closely 
describe a set of empirical data.

median lethal concentration:  A statistically or graphically estimated concen-
tration of a stressor that is expected to be lethal to 50% of a group of 
organisms under specified conditions.

mode of action:  Biochemical effect that occurs at the lowest dose or concentra-
tion or is the earliest among a number of biochemical effects that could, 
understandably, lead to adverse effects in the organism. A more precise 
term is the “primary mode of action” of a substance. However, there may 
also be other biochemical effects that occur later or at higher doses (i.e., 
secondary modes of action) that also may contribute to adverse effects.

model:  A formal representation of some component of the world, or a mathe-
matical function with parameters that can be adjusted so that the function 
closely describes a set of empirical data.

model uncertainty:  The component of the uncertainty concerning an estimated 
value that is due to possible misspecification of a model used for the esti-
mation. It may be due to the choice of the form of the model, its param-
eters, or its bounds.

Monte Carlo simulation:  An iterative resampling technique frequently used in 
uncertainty analysis in risk assessments to estimate the distribution of a 
model’s output parameter.

NOECcommunity:  The highest concentration of a test substance to which a commu-
nity of organisms is exposed that does not cause any observed and statisti-
cally significant effects on the most sensitive endpoint in the community 
as compared with the controls.

NOECecosystem:  The highest concentration of a test substance to which an eco-
system is exposed that does not cause any observed and statistically 
significant effects on the most sensitive endpoint as compared with the 
controls.

no-observed-adverse-effect concentration  (NOAEC):  Greatest concentration 
or amount of a substance, found by experiment or observation, which 
causes no detectable adverse alteration of morphology, functional capac-
ity, growth, development, or life span of the target organism under defined 
conditions of exposure.

no-observed-effect concentration (NOEC):  Greatest concentration or amount 
of a substance, found by experiment or observation, that causes no altera-
tions (adverse or otherwise) of morphology, functional capacity, growth, 
development, or life span of target organisms distinguishable from those 
observed in normal (control) organisms of the same species and strain 
under the same defined conditions of exposure. “NOEC” customarily 
refers to the most sensitive effect unless otherwise specified. No effect 
level (NEL) and no effect concentration (NEC) are used as equivalent 
terms. Sometimes “level” is incorrectly used in place of “concentration.”

normal  distribution:  The classical statistical bell-shaped distribution that is 
symmetric and parametrically simple in that it can be fully characterized  
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by 2 parameters: its mean and variance. The normal distribution is 
observed in situations where many independent additive effects are influ-
encing the values of the variates. See also log-normal.

normalization:  Alteration of a substance concentration or other property (usu-
ally by dividing by a factor) to reduce variance due to some characteristic 
of an organism or its environment (e.g., division of the body burden of a 
substance by the organism’s lipid content to generate a lipid-normalized 
concentration).

octanol–water partition coefficient (KOW):  Partition coefficient for a substance 
in the 2-phase system octan-1-ol–water. The KOW indicates the relative 
hydrophobicity of a substance and its potential for bioconcentration or 
bioaccumulation.

partition coefficient:  Ratio of the concentrations of a substance in solution in 2 
phases that are in equilibrium. See also soil organic carbon partition coef-
ficient and octanol–water partition coefficient.

percentile:  Incorrect term for centile.
pesticide:  A substance (or device) used to kill, reduce, or mitigate the effect of 

one organism (the pest) on another (usually a plant, human, or domestic 
animal).

pKa:  The negative of the base-10 logarithm of the acid dissociation equilibrium 
constant, Ka, of a compound. Note: The smaller the number, the more 
acidic the compound.

pKb:  The negative of the base-10 logarithm of the basic reaction equilibrium 
constant of a compound. Note: The lower the number, the more basic 
(alkaline) the compound.

plant protection product (PPP):   A pesticide used to protect plants from dam-
age by pests.

pollution-induced  community  tolerance  (PICT):  Based on responses from 
short-term (multispecies) toxicity tests on whole communities from clean 
and contaminated sites. Pollution tolerance is quantified by reduced sensi-
tivity of the toxicant in these tests.

population:  An aggregate of interbreeding individuals of a species, occupying a 
specific location in space and time.

predicted  environmental  concentration  (PEC):  The concentration of a sub-
stance in the environment that is predicted or calculated from its proper-
ties, its use and discharge patterns, and the associated quantities.

predicted no-effect concentration (PNEC):  The maximum exposure concen-
tration that, on the basis of current knowledge, is likely to be tolerated by 
an organism without producing any adverse effect. Sometimes “level” is 
incorrectly used in place of “concentration.”

probabilistic  risk  assessment  (PRA):  Risk assessment where the probability or 
likelihood of adverse effects is estimated from more than 1 datum and the 
uncertainty is characterized. See also deterministic hazard (risk) assessment.

probability:  According to the frequentist view, probability is the frequency of 
an event in an infinite repetition of identical and independent trials. In 
the Bayesian view, probability is a measure for the degree of belief in 
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possible values of a random variable. In both views, probability is a mea-
sure of uncertainty of some outcome of an experiment, extrapolation, or 
prediction.

probability density function (PDF):  For a continuous random variable, the PDF 
expresses the probability that the random variable belongs to some very 
small interval. For a discrete random variable, the PDF expresses the prob-
ability that the random variable is equal to a specific (discrete) value.

problem formulation:  The phase in an ecological risk assessment in which the 
goals of the assessment are defined and the methods for achieving those 
goals are specified.

quantile:  The value of a random variable that corresponds to a specified propor-
tion of the probability density function of that random variable. Quantiles 
can be determined from the inverse cumulative distribution function. The 
median is the 0.50th quantile. The quartiles are the 0.25th, 0.50th, and 
0.75th quantiles. The centiles are the 0.01th, 0.02th, and so on, quantiles.

(quantitative) structure-activity relationship ([Q]SAR):   The use of (quantita-
tive) structure and activity relationships to estimate the toxic potency of a 
substance. See also structure-activity relationship.

random variable:   A probabilistic (i.e., uncertain) quantity that may assume dif-
ferent possible values in either a continuous or a discrete way.

receptor:  An organism, population, or community that is exposed to contami-
nants. Receptors may or may not be assessment endpoint entities. The 
term “receptor” is also used to refer to sites in proteins or membranes 
where a substance may bind and produce a biochemical or physiological 
effect.

recovery:  The extent of return of a population, community, or ecosystem func-
tion to a condition that existed before being affected by a stressor. Due to 
the complex and dynamic nature of ecological systems, the attributes of a 
“recovered” system must be carefully defined.

refugia:  Areas in a ecosystem that are not exposed to, or are exposed only to 
small concentrations (< NOEC) of, a stressor and from which affected 
areas can recover.

resiliency:   The degree to which a population of an organism or a community can 
tolerate a perturbation without the structure or function being affected.

risk  (toxic):  The predicted or actual probability of occurrence of an adverse 
effect on humans or the environment as a result of exposure to a stressor 
or mixture of stressors. See also hazard.

risk assessment (RA):  A process that entails some or all of the following ele-
ments: hazard identification, effects characterization, exposure character-
ization, and risk characterization. It is the identification and quantification 
of the risk resulting from a specific use or occurrence of a stressor, includ-
ing the establishment of concentration– or dose–response relationships 
and target organisms.

risk  characterization:  A phase of ecological risk assessment that integrates 
the exposure and stressor response profiles to evaluate the likelihood of 
adverse ecological effects associated with exposure to the contaminants.
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risk management:  The process of deciding what regulatory or remedial actions 
to take, justifying the decision, and implementing the decision.

risk quotient (RQ):   See hazard quotient.
safety factor:  A factor applied to an observed or estimated toxic concentration or 

dose to arrive at a criterion or standard that is considered safe. The terms 
“safety factor” and “uncertainty factor” are often used synonymously, but 
uncertainty factor is preferred. See also uncertainty factor.

soil  organic  carbon partition  coefficient  (KOC):  Ratio of concentrations of a 
substance sorbed in the organic matter component of soil or sediment to 
that in the aqueous phase at equilibrium. The KOC is calculated by divid-
ing the Kd value by the fraction of organic carbon present in the soil or 
sediment.

soil partition coefficient (Kd):  1) Experimental ratio of the concentration of a 
substance in the soil to that in the aqueous (dissolved) phase at equilib-
rium. 2) Distribution coefficient reflecting the relative affinity of a sub-
stance for adsorption by soil solids and its potential for leaching through 
soil. The Kd is valid only for the specific concentration and solid–solution 
ratio of the test. See also KOC.

speciation:  Determination of the exact chemical form or compound in which an 
element occurs in a sample. For example, whether arsenic occurs in the 
form of trivalent or pentavalent ions or as part of an organic molecule, 
and the quantitative distribution of the different chemical forms that may 
coexist.

species sensitivity distribution (SSD):  A probability density function (PDF) or 
cumulative distribution function (CDF) of the toxicity of a certain sub-
stance or mixture of substances to a set of species that may be defined as 
a taxon, assemblage, or community. Empirically, a PDF or CDF is esti-
mated from a sample of toxicity data for the specified species set.

stressor:  A chemical, physical, or biological agent that acts on and causes an 
adverse response in an organism.

structure activity relationship (SAR):   A process whereby the effect (toxicity) 
of a substance is estimated from its physical and chemical properties.

surface water:  All water naturally open to the atmosphere (rivers, lakes, reser-
voirs, streams, impoundments, seas, estuaries, etc.) and all springs, wells, 
or other collectors that are directly influenced by surface water.

susceptibility:  The relative condition of an organism or other ecological com-
ponent lacking the power to resist a particular stressor. It is inversely 
proportional to the magnitude of the exposure required to cause the 
response.

synergism:  Toxicological interaction in which the combined effect of 2 or 
more substances is greater than the simple sum of the effects of each 
substance.

test endpoint:  The responses measured in a bioassay or toxicity test. See also 
effect criterion.

toxic:  Capable of causing injury or harm to an organism.
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toxicity:  1) Capacity to cause injury to a living organism defined with reference 
to the quantity of substance administered or absorbed, the way in which 
the substance is administered and distributed in time (single or repeated 
doses), the type and severity of injury, the time needed to produce the 
injury, the nature of the organisms affected, and other relevant conditions. 
2) Adverse effects of a substance on a living organism defined with refer-
ence to the quantity of substance administered or absorbed, the way in 
which the substance is administered (e.g., inhalation, ingestion, topical 
application, or injection) and distributed in time (single or repeated doses), 
the type and severity of injury, the time needed to produce the injury, the 
nature of the organisms affected, and other relevant conditions.

toxicity  test:  The determination of the effect of a substance on a group of 
selected organisms under defined conditions. A toxicity test usually mea-
sures either 1) the proportions of organisms affected (quantal) or 2) the 
degree of effect shown (graded or quantitative) after exposure to a range 
of stressor concentrations or a mixture of stressors.

toxic mode of action (TMoA):  A phenomenological description of how an effect 
is induced. See also mechanism of action.

toxic unit (TU):  The concentration of a substance expressed as a fraction or pro-
portion of its effective concentration (measured in the same units). It may 
be calculated as follows: toxic unit = actual concentration of substance in 
solution/LC50. If this number is greater than 1.0, more than half of a group 
of exposed organisms will be killed by the substance. If it is less than 1.0, 
less than half of the organisms will be killed.

toxin:  A substance produced by an organism that causes injury or harm to 
another.

training data set:  A set of data used to develop a model or a data set used to 
develop a quantitative structure-activity relationship.

uncertainty:  Imperfect knowledge concerning the present or future state of the 
system under consideration; a component of risk resulting from imperfect 
knowledge of the intensity of effect or of its spatial and temporal pattern 
of expression.

uncertainty factor (UF):  A factor applied to an exposure or effect concentration 
or dose or hazard quotient to correct for unidentified sources of uncer-
tainty. See also safety factor.

xenobiotic:  Substance that is not natural to the organism in question. May be 
natural or anthropogenic in origins.

Note

This glossary was adapted from a number of sources, mainly Posthuma et al. (2002b) 
and Stephenson et al. (2006, with permission).
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10.1	 IntRoDUCtIon

Ecological	risk	assessments	cannot	be	done	without	applying	extrapolation	methods.	
Sufficient	data	to	execute	such	risk	assessments	are	usually	lacking.	For	example,	
there	may	be	no	toxicity	data	for	the	suspect	substance,	the	tested	species	may	differ	
from	the	species	in	the	assessed	ecosystem,	exposure	is	to	single	substances	in	test	
systems	but	mixtures	occur	in	the	field,	or	risks	are	to	be	assessed	for	communities	
rather	than	for	species.	The	lack	of	data	is	a	consequence	of	practical	and	ethical	
considerations.

Risk	 is	generally	considered	as	a	product	of	 the	probability	of	an	adverse	effect	
and	the	magnitude	of	that	effect.	In	ecotoxicology,	risk	depends	on	the	probability	and	
intensity	of	exposure	and	the	sensitivity	of	the	exposed	organisms,	whereby	the	inter-
pretation	of	risk	can	involve	aspects	of	space	and	time	and	value	judgments	(e.g.,	believ-
ing	that	1	species	is	more	important	than	another).	The	sensitivity	is	often	determined	in	
laboratory	toxicity	tests,	in	which	dose–	or	concentration–effect	curves	are	established.	
Extrapolation	methods	exist	for	both	components	of	risk	and	the	additional	aspects.

With	respect	to	exposures,	there	are	many	possible	toxicants.	More	than	100	000	
chemicals	exist	(Commission	of	the	European	Communities,	1990),	the	number	of	
possible	mixtures	is	almost	infinite,	and	the	exposure	of	biota	to	chemicals	is	influ-
enced	by	matrix	characteristics.	With	respect	to	sensitivity	and	responses	of	biota,	
there	is	great	natural	variability	among	species	and	ecosystem	types	and	in	the	array	
of	conditions	in	which	they	occur.	It	is	evident	that	an	array	of	extrapolation	types	is	
needed	for	risk	assessment.

Reviews	 on	 the	 issue	 of	 extrapolation	 demonstrated	 that	 indeed	 a	 plethora	 of	
extrapolation	methods	exists.	This	 is	noted	 in	earlier	 studies	and	overviews,	 such	
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as	 the	workshop	on	extrapolation	organized	by	 the	OECD	(OECD	1992)	 and	 the	
overview	 volumes	 of	 Suter	 on	 ecological	 risk	 assessment	 (Suter	 et	 al.	 1993)	 and		
site-specific	risk	assessment	(Suter	et	al.	2000).	Over	the	last	decades,	the	need	for	
and	 use	 of	 extrapolation	 techniques	 have	 increased.	 This	 situation	 occurred	 con-
comitantly	with	a	diversification	of	methods	that	are	applied	in	practice.	This	book	
provides	clear	examples	of	this.

Extrapolation	methods	are	used	for	various	types	of	risk	assessment.	Methods	
may	be	used	in	the	process	of	deriving	environmental	quality	objectives,	in	the	reg-
istration	of	new	substances,	and	in	the	process	of	site-specific	risk	assessment.	Suter	
(1993)	called	these	approaches	prospective	(the	former	2)	and	retrospective	(the	lat-
ter)	risk	assessments.	The	specific	process	in	which	extrapolation	methods	are	used	
has	implications	for	the	concepts	to	be	applied	and	the	data	to	be	used	as	input	in	
extrapolation.	Strictly	described	approaches	are	in	place	for	the	derivation	of	envi-
ronmental	quality	criteria	(EQCs)	and	the	registration	of	pesticides	and	newly	devel-
oped	substances.	The	prescribed	approaches	for	deriving	EQCs	can	differ	between	
jurisdictions.	The	approaches	for	retrospective	investigations	have	more	degrees	of	
freedom.	A	characteristic	of	the	latter	approach	is	that	the	methods	can	make	use	of	
measured	local	exposure	levels	and	can	estimate	local	risk	with	known	precision	(or	
known	uncertainty!).	The	latter	is	uncommon	for	EQCs.

The	 diversity	 of	 existing	 extrapolation	 techniques	 also	 relates	 to	 the	 types	 of	
extrapolation	problems.	Extrapolation	can	consist	of	range	extrapolation,	implying	
intra-	or	extrapolation	using	an	available	data	set.	It	can	also	be	a	specific	extrapo-
lation	 from	1	data	 set	 to	parameters	 in	 another	 realm	 (e.g.,	 from	 total	 concentra-
tions	to	bioavailable	concentrations,	or	from	species	sensitivities	to	community-level	
responses).

Finally,	 the	 diversity	 of	 extrapolation	 techniques	 relates	 to	 the	 diversity	 of	
technical	 solutions	 that	 have	 been	 defined	 in	 the	 face	 of	 the	 various	 extrapola-
tion	 problems.	 Methods	 may	 range	 from	 simple	 to	 complex,	 or	 from	 empirical–	
statistical	methods	that	describe	sets	of	observations	(but	do	not	aim	to	explain	them)	
to	mechanism-based	approaches	(in	which	a	hypothesized	mechanism	was	guiding	
in	 the	 derivation	 of	 the	 extrapolation	 method).	 In	 addition,	 they	 may	 range	 from	
those	routinely	accepted	in	formal	risk	assessment	frameworks	to	unique	problem-	
specific	approaches,	and	from	laboratory-based	extrapolations	consisting	of	1	or	var-
ious	kinds	of	modeling	to	physical	experiments	that	are	set	up	to	mimic	the	situation	
of	concern	(with	the	aim	to	reduce	the	need	for	extrapolation	modeling).

When	 there	 is	 a	 practical	 need	 for	 a	 set	 of	 methods	 and	 when	 those	 methods	
are	used	in	an	unsystematic	way,	there	is	a	need	for	developing	guidance.	Guidance	
generally	is	of	help	to	practitioners	who	need	to	solve	practical	risk	assessment	prob-
lems.	This	guidance	offers	guidance	on	the	use	of	the	extrapolation	methods	that	are	
compiled	 in	 this	 book.	 The	 guidance	 discusses	 issues	 that	 are	 relevant	 to	 making	
systematic	use	of	the	available	methods,	such	as	the	concept	of	tiering,	and	the	order-
ing	 of	 extrapolation	 methods	 according	 to	 their	 scientific	 principles	 and	 expected	
precision.

We	are	aware	that	various	tiered	systems	are	in	use	in	different	jurisdictions,	and	
for	different	assessment	problems.	It	is	not	our	view	that	these	methods	should	neces-
sarily	be	changed	on	the	basis	of	this	overview.	These	systems	have	a	formal	status,	
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and	serve	their	purpose.	Our	purpose	is	to	provide	guidance	for	situations	where	there	
is	not	yet	a	prescribed	approach,	and	to	guide	the	way	through	the	possible	options.

10.2	 neeD	FoR	AnD	CHARACteRIstICs	oF	tIeReD	sYsteMs

Ecological	risk	assessments	are	driven	not	only	by	science	but	also	by	pragmatism.	
When	many	methods	are	available,	ecological	risk	assessments	driven	only	by	sci-
ence	would	 likely	 result	 in	 the	 application	of	 the	best	of	 available	methods.	This	
would	result	in	more	precise	predictions	and	similarity	of	outcomes	when	different	
researchers	conduct	the	same	assessment.	However,	this	would	be	a	costly	approach	
when	applied	for	all	problems.	Pragmatism,	cost,	and	efficacy	are	drivers	for	practi-
cal	ecological	risk	assessments	too.	However,	the	application	of	practical	arguments	
as	sole	drivers	could	result	in	too	simplified	and	incorrect	risk	assessments	and	thus	
wrongly	informed	decisions.	When	both	pragmatism	and	science	drive	the	assess-
ment,	 one	 can	 understand	 the	 development	 of	 tiered	 systems,	 with	 conservative,	
simple,	fast,	and	less	costly	approaches	in	the	lower	tiers,	and	increasing	complexity,	
time	consumption,	costs,	and	hopefully	better	predictions	at	higher	tiers.	Lower	tier	
methods	are	usually	referred	to	as	screening-level	or	preliminary	assessments,	fol-
lowed	by	a	refined	assessment	or	site-specific	assessment	in	the	next	higher	tiers.

The	essential	features	of	tiering	are	shown	in	Figure	10.1.	The	general	objective	of	
designing	tiered	systems	is	that	an	assessment	problem	should	be	solved	by	a	limited	
and	efficient	use	of	resources,	with	enough	information	generated	to	make	informed	
and	responsible	decisions.	When	a	simple	problem	definition	allows	for	extrapolation	
methods	yielding	gross	insights,	these	may	be	sufficient	for	that	simple	problem.	A	
key	requisite	for	the	proper	functioning	of	a	tiered	system	is	that	higher	tier	assess-
ment	results	are	generally	more	realistic	and	less	conservative	than	lower	tiers.

2

3

1

4

Simple
(data poor)

Complex
(data rich)

Realistic
(predictive)

Conservative
(protective)

Uncertainty
unknown

Uncertainty
described

High accuracy 
and precision

Low accuracy 
and precision

FIgURe	10.1	 Tiers	 in	 the	 risk	 assessment	 process,	 showing	 the	 refining	 of	 the	 process	
through	acquisition	of	additional	data.
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With	 no a	 priori idea	 on	 how	 to	 design	 a	 tiered	 approach,	 the	 application	 of	
tiered	approaches	could	easily	result	in	an	array	of	different	outcomes	for	the	same	
assessment	problem.	The	outcome	would,	for	example,	be	dependent	on	the	specific	
field	of	expertise	of	the	assessor.	In	that	particular	field,	this	assessor	could	effec-
tively	and	rapidly	apply	state-of-the-art,	higher	tier	methods,	whereas	other	assessors	
would	start	at	the	lowest	tier.	This	way	of	organizing	risk	assessments	would	result	
in	widely	different	approaches	being	applied	to	a	single	type	of	problem,	and	hence	
outcomes	that	differ	in	degree	of	specificity	and	certainty.	Applying	extrapolation	
methods	without	guidance	on	how	to	do	that	would	eventually	result	in	an	adverse	
public	 perception	 on	 the	 quality	 and	 accuracy	 of	 the	 output	 of	 risk	 assessments.	
Credibility	would	be	at	stake.	To	avoid	this	potentially	“damaging	practice,”	tiered	
systems	in	ecological	risk	assessment	should	be	designed	according	to	some	general	
rules.	This	means	the	following:

	 1)	 The	system	as	a	whole	is	internally	consistent.
	 2)	The	 system	 can	 address	 a	 logical	 array	 of	 increasingly	 more	 specific	

assessment	questions.
	 3)	The	system	is	cost-effective.

These	arguments	 together	 represent	both	 the	 science-driven	and	 the	practice-
driven	views	on	tiering.

Thus,	the	concept	of	extrapolation	in	ecological	risk	assessments	requires	sys-
tematic	evaluation	of	both	the	available	scientific	methods	as	well	as	the	optimiza-
tion	of	their	practical	usage.

10.3	 ConCePtUAL	IssUes	In	eXtRAPoLAtIon

Various	 tiered	 risk	 assessment	 schemes	have	been	published;	 for	 some	examples,	
see	Table	10.1.	Tiered	approaches	are	used	to	address	risk	problems	for	“classical”	
chemical	substances,	pharmaceuticals,	pathogens,	and	so	forth,	for	both	ecological	
and	human	risk	assessments.

Conceptually,	 the	 tiering	 of	 these	 risk	 assessment	 systems	 makes	 use	 of	
3	 axes,	 each	 representing	 an	 array	 of	 possibilities	 to	 go	 from	 simple	 to	 complex	
(Figure	10.2):

	 1)	 An	axis	for	problem	type,	that	is,	the	scientific	problem	to	be	solved	by	the	
extrapolation	problem	(e.g.,	from	simple	and	generic	assessment	questions	
to	more	complex	and	specific	ones)

	 2)	An	axis	for	data	type	(e.g.,	source	of	data	on	which	extrapolations	or	deci-
sions	are	based	—	e.g.,	laboratory	data	or	field	data)

	 3)	An	axis	for	the	process	of	data	handling	(e.g.,	deterministic	or	probabilis-
tic	handling	of	the	data)

The	axes	are	chosen	so	that	they	are	practicable	in	solving	the	assessment	prob-
lem,	 that	 is,	 choices	made	on	 these	 axes	 should	be	made	 so	 that	 they	 reduce	 the	
uncertainties	embedded	in	the	available	data	as	much	as	possible.	For	example,	the	
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European	Union,	in	Directive	92/32/EC	and	EC	Council	Regulation	(EC)	793/93,	
requires	 the	 risk	assessment	of	 chemicals.	Under	 these	 regulations,	 the	European	
Union	System	for	the	Evaluation	of	Substances	(EUSES)	software	carries	out	tiered	
risk	assessments	of	increasing	complexity	on	the	basis	of	increasing	data	require-
ments	related	to	scientific	problem	type	(Vermeire	et	al.	1997).	In	the	risk	assessment	
of	plant	protection	products,	the	approaches	taken	in	the	risk	assessment	scheme	are	
organized	 taking	account	of	data	 type	according	 to	EU	Council	Directive	91/414	
(European	Union	1991);	that	is,	laboratory	data	are	used	in	the	lower	tiers,	and	data	
from	field	tests	in	the	highest	tier.	By	this	method,	reduction	of	uncertainties	is	sought	
not	only	by	reduction	of	uncertainties	in	exposure	extrapolation	models	but	also	by	
better	mimicking	 testing	under	 realistic	 (field)	 conditions	 in	 each	 step	 (Campbell		
et	al.	1999).	Finally,	many	risk	assessments	are	developing	ways	to	address	the	prob-
lem	in	a	probabilistic	way	(e.g.,	Hart	2001;	EUFRAM	2005).

tAbLe	10.1
some	examples	of	risk	assessment	systems	with	a	tiered	approach

Regulated	issue Reference

Water	contamination:	ARAMDG SETAC	(1994)
Water	contamination:	Water	Environmental	Research	Foundation	(WERF)	
approach	and	software

Parkhurst	et	al.	(1996)

Bacterial	pathogens	in	drinking	water Rusin	et	al.	(1997)
New	and	existing	chemical	substances:	EU Vermeire	et	al.	(1997)
New	and	existing	chemical	substances:	USEPA USEPA	(1998)
Endocrine-disrupting	chemicals:	European	Chemical	Industry	Council	
(CEFIC)	proposal

Hutchinson	et	al.	(2000)

Plant	protection	products:	EU Campbell	et	al.	(1999)
Human	pharmaceuticals:	EU Straub	(2002)

	

Problem type and scope
(e.g., type and sensitivity)

Data type
(e.g., laboratory or field)

Data handling
(e.g., deterministic, probabilistic)

FIgURe	10.2	 Three	 axes	 along	 which	 extrapolation	 methods	 in	 tiered	 systems	 can	 be	
organized.
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In	the	different	risk	assessment	approaches	that	exist	(e.g.,	Table	10.1),	there	are	
different	ways	to	combine	the	3	axes,	in	prescribing	the	approaches	that	are	needed	
to	address	the	specific	problem,	collect	the	data,	and	handle	the	data	and	models.	Due	
to	their	different	origins	and	the	different	problems	that	they	address,	the	existing	
tiered	systems	are	thus	very	different.	One	method	is,	however,	not	necessarily	better	
or	worse	than	the	other.	For	this	guidance,	we	have	organized	the	methods	according	
to	the	method	characteristics	themselves,	not	to	existing	tiered	frameworks.

A	set	of	“scopes”	can	be	recognized	when	working	with	extrapolation.	Basic	in	
all	possible	extrapolations	is	the	issue	of	range	extrapolation.	Do	the	data	that	are	
available	on	any	extrapolation	aspect	cover	the	data	range	on	which	the	assessment	
focuses?

Furthermore,	3	major	types	of	extrapolation	can	be	distinguished	regarding	the	
focus	of	the	extrapolation:

At	 the	 level	 of	 the	 matrix	 and	 media	 in	 which	 exposure	 takes	 place,	
extrapolation	is	needed	to	predict	exposure	in	the	matrices	and	media	that	
have	not	been	tested.
At	the	level	of	substances	and	their	toxicity,	extrapolation	is	needed	to	pre-
dict	the	toxicity	characteristics	of	substances	that	have	not	been	tested.
At	the	level	of	the	exposed	biota,	extrapolation	is	needed	to	predict	effects	
at	 the	 level	 of	 concern	 (e.g.,	 populations	 and	 communities)	 from	 lower	
levels	of	biological	organization	(e.g.,	tests	on	individuals	exposed	in	test	
systems).

Additionally,	there	are	further	issues	to	be	addressed	in	executing	a	risk	assess-
ment	because	their	influences	shape	the	true	responses	to	be	expected	in	field	condi-
tions.	These	are	as	follows:

Are	there	more	substances	of	potential	relevance,	and,	if	so,	can	and	should	
extrapolation	take	mixed	exposure	and	interactive	effects	into	account?
Are	there	spatial	and/or	temporal	distributions	of	the	substances	and	of	the	
biotic	entity	of	concern	that	warrant	spatially	and/or	temporally	explicit	
risk	assessment?

Although	 distinctions	 among	 scopes	 are	 an	 important	 lead	 in	 characterizing	
and	choosing	extrapolation	methods,	 it	 should	be	clearly	noted	 that	1	 risk	assess-
ment	may	require	the	use	of	various	techniques	simultaneously	or	in	sequence.	For	
example,	one	always	needs	to	consider	both	exposure	and	effect	assessment,	imply-
ing	 for	example	 the	need	 to	use	 substance-to-substance	extrapolation,	matrix	and	
media	extrapolation,	and	extrapolation	across	levels	of	biological	organization,	with	
or	without	range	extrapolation	at	any	level,	and	with	or	without	mixture	issues	or	
spatial	or	temporal	issues	being	taken	into	account.

The	sequential	approaches	should	thereby	follow	the	path	from	cause	to	effect.	
That	is,	a	chemical	mixture	extrapolation	should	consider	first	the	exposure	issues	of	
all	relevant	substances,	then	the	effects	issues	per	substance,	and	finally	the	effects	
of	the	mixture.

•

•

•

•

•
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When	the	scope	is	known	and	the	extrapolation	methods	are	defined,	the	data	for	
the	risk	assessment	steps	(and	extrapolations)	can	be	collected.	For	tiered	systems,	
this	implies	that	choices	need	to	be	made	on	the	manner	in	which	uncertainties	are	
addressed	and	what	to	do	when	these	are	only	addressed	by	simple	methods.	A	dis-
tinction	was	already	made	between	prospective	use	and	retrospective	use	of	extrapo-
lation	methods.	In	both	cases,	extrapolations	are	being	applied,	but	the	way	in	which	
existing	methods	are	selected	for	an	assessment	problem	can	differ.

In	the	prospective	context,	a	common	and	simple	way	to	handle	uncertainty	is	the	
use	of	uncertainty	factors	(UFs).	These	may	suffice	to	derive	a	“safe”	concentration	
of	a	substance	associated	to	a	predefined	protection	level	to	be	used	generically	—		
that	is,	it	is	“safe”	even	in	worst-case	conditions.	The	greater	the	uncertainty	in	mod-
els	or	data	for	the	extrapolations,	the	larger	the	overall	UF	in	the	lower	tiers.	The	UF	
is	applied	to	the	risk	assessment	to	account	for	unquantified	uncertainties.	In	some	
cases,	the	factor	depends	on	the	amount	of	available	data,	or	UFs	per	extrapolation	
are	multiplied	to	provide	the	final	factor	(e.g.,	10	×	10	×	10	as	the	UF	for	3	assessment	
steps	yields	an	overall	factor	of	1000).

In	 a	 retrospective	 context	 (such	 as	 for	 contaminated	 environments),	 UFs	 are	
conceptually	illogical	for	any	step	of	the	assessment.	The	retrospective	use	of	risk	
assessment	implies	a	wish	to	accurately	quantify	the	site-specific	risks	of	existing	
situations	(to	underpin	decisions),	rather	than	to	offer	a	protective	guideline	per	se.	
Whereas	UFs	may	be	a	leading	principle	in	prospective	risk	assessment	or	criteria	
setting	in	which	conservatism	is	the	preferred	bias,	accuracy	in	the	end	product	is	
the	principle	for	retrospective	risk	assessment.	Confidence	intervals	are	the	logical	
way	to	show	uncertainty	in	the	retrospective	risk	assessment.	Because	deterministic	
approaches	do	not	allow	calculation	of	confidence	intervals,	this	suggests	the	use	of	
probabilistic	approaches	in	higher	tiers	of	risk	assessments.

It	 is	 noteworthy	 that	 comparisons	 of	 existing	 assessment	 schemes	 reveal	 dis-
similarities	 in	 the	use	of	extrapolation	methods	and	 their	 input	data	between	dif-
ferent	jurisdictions	and	between	prospective	and	retrospective	assessment	schemes.	
This	 is	 clearly	 apparent	 from,	 for	 example,	 a	 set	of	 scientific	comparisons	of	5%	
hazardous	concentration	(HC5)	values	for	different	substances.	Absolute	HC5	val-
ues	and	their	lower	confidence	values	were	different	among	the	different	statistical	
models	that	can	be	used	to	describe	a	species	sensitivity	distribution	(SSD;	Wheeler	
et	al.	2002a).	As	different	countries	have	made	different	choices	in	the	prescribed	
modeling	by	SSDs	(regarding	data	quality,	preferred	model,	etc.),	it	is	clear	that	dif-
ferent	jurisdictions	may	have	different	environmental	quality	criteria	for	the	same	
substance.	Considering	the	science,	the	absolute	values	could	be	the	same	in	view	
of	 the	 fact	 that	 the	 assessment	problem,	 the	 available	 extrapolation	methods,	 and	
the	possible	set	of	input	data	are	(scientifically)	similar	across	jurisdictions.	When	
it	is	possible,	however,	to	look	at	the	confidence	intervals,	the	numerical	differences	
resulting	 from	 different	 details	 in	 method	 choice	 become	 smaller	 because	 confi-
dence	intervals	show	overlap.

A	detailed	review	of	all	extrapolation	methods	is	given	in	this	book	on	extrapola-
tion.	The	scientific	and	pragmatic	views	on	extrapolation	for	separate	processes	in	
ecotoxicological	risk	assessment	are	presented	in	the	previous	chapters	in	detail.	To	
enable	use	of	all	techniques	in	a	productive	way,	this	guidance	provides	guidance	
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in	using	the	listed	extrapolation	methods	in	a	way	that	is	founded	both	in	science	as	
well	as	on	daily	practices.	A	classification	is	provided	to	highlight	the	hidden	fea-
tures	of	the	extrapolation	techniques,	so	as	to	help	in	clarifying	discussions	on	the	
issue	of	choice	of	extrapolation	techniques.	The	purpose	of	the	recommendations	in	
this	guidance	is	the	promotion	of	discussion	and	thought	on	tackling	extrapolation	
decisions	rather	than	the	setting	of	strict	rules	for	extrapolation.

10.4	 gUIDAnCe	FoR	stePWIse	Use	oF	eXtRAPoLAtIon

10.4.1	 PreParing	for	an	assessment

The	basic	features	of	ecological	risk	assessment	schemes	are	very	similar	through-
out	 the	 world.	 Usually,	 one	 focuses	 on	 effects	 (concentration	 or	 dose	 response	
information),	 exposure,	 and	 risk	characterization.	The	 following	paragraphs	 sum-
marize	how	extrapolation	practices	can	be	developed	in	such	a	way	that	a	consistent	
pattern	emerges.

The	development	of	an	extrapolation	scheme	for	a	specific	problem	may	fre-
quently	need	to	start	from	a	regulatory	perspective,	that	is,	the	set	of	extrapolation	
methods	is	already	clearly	defined	for	a	given	assessment	problem.	Note	that,	for	
such	existing	approaches,	the	issue	of	a	tiered	system	does	apply	as	well,	and	that	
it	may	pertain	to	a	slightly	different	perspective	on	tiering.	In	the	current	guidance,	
tiering	is	proposed	for	a	set	of	extrapolation	techniques	pertaining	to	a	single	issue	
of	the	assessment	problem.	For	example,	various	methods	can	be	used	to	predict	
bioavailability	from	total	ambient	concentrations,	and	these	methods	can	be	tiered	
from	 simple	 and	 conservative	 to	 specific,	 mechanism-based,	 and	 more	 realistic	
approaches.	In	existing	tiered	systems	for	ecological	risk	assessment,	the	tiers	are	
related	 to	 the	 overall	 specificity	 of	 the	 selected	 sets	 of	 approaches	 to	 address	 a	
problem.

10.4.2	 extending	assessments	with	extraPolation	guidance

In	view	of	the	diversity	of	available	extrapolation	options,	risk	assessment	protocols	
would	profit	from	the	definition	of	clear	guidance	on	the	use	of	extrapolation	methods.	
Unless	specifically	excluded,	preferred	procedures	would	include	the	following:

Step	1:	 Motivating	the	needs	for	extrapolation
Step	2:	 Identifying	the	issues	that	would	require	attention	due	to	their	influ-

ence	on	risk	assessment	results
Step	3:	 Identifying	possible	extrapolation	methods
Step	4:	 Assigning	 available	 methods	 to	 tiers	 prior	 to	 working	 through	 an	

assessment
Step	5:	 Choosing	a	consistent	set	of	extrapolation	methods
Step	6:	 Collecting	and	judging	the	data	that	are	needed
Step	7:	 Working	with	the	set	of	extrapolation	methods
Step	8:	 Interpreting	assessment	results

A	standard	protocol	can	be	derived	when	there	is	a	need	for	repeated	or	regulatory	use.
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These	 items	 will	 be	 addressed	 in	 subsequent	 paragraphs.	 Thereafter,	 various	
sets	of	technical	questions	are	posed,	so	as	to	help	decide	on	the	need	and	options	
for	extrapolation.

10.4.3	 steP	1:	motivate	the	need	of	extraPolation

The	first	 issue	 to	be	 tackled	 is	 to	consider	whether	extrapolation	 is	needed	at	all.	
General	“scientific”	questions	can	be	posed	(e.g.,	do	we	have	appropriate	data,	or	is	it	
likely	that	we	can	easily	find	data,	that	are	of	direct	help	in	decision	making	without	
extrapolation?).	Note	that	posing	these	questions	may	not	be	needed	in	cases	where	
risk	assessment	is	executed	within	strictly	prescribed	rules.	In	that	case,	the	whole	
process	boils	down	to	following	the	prescribed	protocol.

Systematically,	the	possible	subjects	of	extrapolation	can	be	considered.	In	line	
with	this	book,	such	issues	are	as	follows:

Do	we	have	original	data	on	 the	 substance	or	 substance	mixture	under	
investigation?
Are	these	data	relevant	regarding	the	matrix	and	medium	of	exposure,	the	
ecological	receptor	(species,	function,	community,	etc.),	and	the	temporal/	
spatial	setting?

And,	more	specifically,	 these	questions	can	be	 translated	 into	questions	such	
as	these:

Can	(Q)SAR	be	of	help	to	address	lack	of	data	on	substance	properties	
and	toxicity?
Can	matrix	and	media	extrapolation	techniques	be	of	help	to	address	bio-
availability	differences	among	test	media	and	the	field?
Can	extrapolation	of	effect	measures	across	levels	of	biological	organiza-
tion	be	of	help?
Is	 there	 a	 need	 for	 accounting	 for	 aggregation	 of	 risks	 because	 of	
mixtures?
Are	there	special	 temporal	or	spatial	conditions	that	magnify	or	reduce	
the	probability	of	exposure	or	effects?

As	a	result,	answering	these	questions	yields	a	list	of	potentially	relevant	extrap-
olation	items.	Each	of	these	items	can	be	detailed	into	other	questions,	but	at	this	
stage,	it	is	sufficient	to	consider	whether	there	is,	or	seems	to	be,	a	need	for	extrapola-
tion,	and	not	how	that	need	is	fulfilled.

10.4.4	 steP	2:	identification	of	issues		
with	high	numerical	relevance

The	list	of	extrapolation	items	can	be	subjected	to	a	test	in	terms	of	pragmatic	issues.	
Choosing	amongst	all	possible	extrapolation	methods	may	be	needed	due	to	resource	
limitations	(pragmatism)	or	preferred	methods	and/or	estimated	lack	of	data	or	meth-
ods	(science).	This	stage	consists	of	a	“preliminary	sensitivity	analysis”	to	identify	

•

•

•

•

•

•

•
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the	items	of	most	concern,	that	is,	those	extrapolation	subjects	that	are	potentially	
most	important	in	a	numerical	sense.	All	other	extrapolations	may	be	scientifically	
worthwhile,	but	either	they	are	too	expensive	or	they	influence	the	numerical	out-
come	of	the	risk	assessment	only	in	a	small	way.	Techniques	that	can	be	applied	are	
expert	 judgment,	 a	 limited	 literature	 search,	 and	 reconsideration	 of	 extrapolation	
practices	regarding	resource	use.	The	result	of	this	step	is	a	preliminary	ranking	of	
extrapolation	needs;	focus	is	placed	on	the	most	sensitive	aspects	of	the	problem.

10.4.5	 steP	3:	identification	of	Possible	extraPolation	methods

The	 next	 step	 is	 the	 identification	 of	 extrapolation	 methods	 that	 are	 available,	 or	
methods	that	need	to	be	derived	on	the	basis	of	available	knowledge.

In	the	first	case,	a	literature	review	provides	a	large	set	of	available	and	applied	
techniques,	both	at	the	conceptual	level	(e.g.,	how	does	it	work,	what	does	it	do,	how	
is	the	technique	founded	in	science,	and	how	well	is	a	technique	validated?)	and	in	
the	 technical	details.	When	no	validated	 technique	 is	 available,	general	 scientific	
knowledge,	such	as	deriving	a	novel	type	of	specific	extrapolation	model	from	spe-
cific	data,	can	be	developed.

When	a	model-based	extrapolation	technique	is	unavailable,	it	may	be	possible	
to	work	along	the	axis	of	Figure	10.2	concerning	the	choice	of	data,	that	is,	to	choose	
for	 the	 use	 of	 physical	 models.	 With	 the	 term	 “physical	 model,”	 it	 is	 meant	 that	
the	model	itself	consists	of	creating	an	experimental	or	observational	situation	that	
mimics	the	situation	of	concern.	This	option	is	often	applied	in	the	registration	of	
pesticides,	where	microcosm,	mesocosm,	and/or	field	experiments	are	used	to	char-
acterize	the	impacts	of	pesticides	on	nontarget	species.	When	the	physical	models	
do	not,	in	some	aspects,	resemble	the	situation	of	concern,	1	or	several	extrapolation	
steps	may	be	needed.

The	result	of	this	stage	is	a	list	of	possible	techniques,	their	operational	details,	
and	their	degree	of	validation.	This	process	may	show	a	lack	of	existing	extrapola-
tion	techniques,	1	unique	method,	or	a	number	of	different	extrapolation	techniques	
that	can	be	used	to	address	the	same	problem.	For	example,	bioavailability	extrapo-
lations	 can	 be	 made	 on	 statistical-based	 techniques,	 describing	 phenomena	 with-
out	understanding	 their	cause	 (such	as	“transfer	 functions”	of	 the	 following	 type:	
exposure	=	 f[pH,	organic	matter	concentration,	hardness,	and	so	on]),	and	also	on	
mechanism-based	techniques	such	as	the	biotic	ligand	model.

As	a	result,	the	investigator	has	a	provisional	list	of	extrapolation	methods,	rang-
ing	from	modeling	approaches	to	experimentation	(i.e.,	physical	models	of	reality).	
If	more	than	1	method	is	available,	the	next	step	is	to	choose	amongst	them,	or	to	
estimate	 the	 level	of	 specificity	 that	 is	 to	be	expected	 from	applying	 the	 singular	
available	model.

10.4.6	 steP	4:	assigning	methods	to	tiers

To	fulfill	 the	general	 requisite	of	 tiering,	higher	 tiers	should	yield	generally	more	
accurate,	more	precise,	and	in	most	cases	also	lowered	estimates	of	risk.	In	the	low-
est	tier,	UFs	are	introduced	to	reflect	that	many	issues	that	may	modify	(reduce)	risk	
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are	neglected.	The	higher	the	tier,	the	more	specific	the	data	that	are	used	and	the	
more	the	need	for	large	UFs	is	reduced.

Even	 without	 specific	 extrapolation	 problems,	 it	 is	 possible	 to	 give	 a	 general	
overview	of	the	ranking	of	extrapolation	methods	in	this	way.	Such	a	general	ranking	
can	be	used	to	rank	a	specific	set	of	extrapolation	techniques	that	address	the	same	
problem,	or	to	give	a	gross	identification	of	the	level	of	operation	of	a	sole	technique.	
The	general	overview	is	based	on	scientific	reasoning,	and	is	shown	in	Table	10.2.	
Note	that	this	implies	that	methods	are	organized	according	to	a	ranking	of	underly-
ing	principles	(statistical	methods	are	at	a	lower	tier	than	mechanistic	ones),	but	that	
various	methods	can	be	categorized	at	2	tiers,	depending	on	context.	For	example,	
an	HC5	derived	from	an	SSD	is	a	fixed	value,	and	is	called	deterministic	by	virtue	of	
this,	but	the	SSD	itself	is	a	probabilistic	technique.	Hence,	practitioners	of	extrapola-
tion	can	use	the	tables	presented	here	as	help	to	categorize	the	methods	they	could	
practically	 use	 for	 a	 problem	 they	 encounter.	 They	 should	 consider	 that	 it	 seems	
impossible	to	create	overview,�	tables	of	extrapolation	methods	that	are	completely	
without	categorization	problems.	The	cases	of	matrix	and	media	extrapolation	and	

�	That	is,	there	is	no	simple	decision	tree	that	links	a	single,	final	set	of	extrapolation	methods	to	a	prob-
lem	definition.

tAbLe	10.2
A	proposal	for	conceptual	tiering	of	extrapolation	approaches	in	ecological	
risk	assessment

generalized	tiers	

Characteristics
Major	and	minor	

tiersa extrapolation Approach

None 0 None None
Simple	generic 1a Deterministic Uncertainty	factor	(UF)	or	simple	

model
1b Probabilistic Data-dependent	UF

Moderately	simple	generic 2a Deterministic Statistical	model,	deterministic	use
2b Probabilistic Statistical	model,	probabilistic	use

Complex	specific 3a Deterministic Complex	statistical	model,	
partially	mechanistic	orientation	
deterministic	use

3b Probabilistic Complex	statistical	model,	
partially	mechanistic	orientation	
deterministic	use

Highly	specific 4a Deterministic Mechanistic	model,	deterministic	
use

4b Probabilistic Mechanistic	model,	probabilistic	use
Special Special Deterministic Specific	approach	(deterministic)

Special Probabilistic Specific	approach	(probabilistic)

Note:	 Major	tiers	(0	to	4)	and	minor	tiers	(a	and	b)	are	discriminated.	For	further	explanation,	see	the	text.
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of	mixture	extrapolation	are	used	to	illustrate	the	organization	of	methods	over	tiers,	
and	introduce	the	tier	characterization	terms.

The	first	general	question	to	be	answered	is	whether	or	not	one	will	make	use	of	
data-driven	extrapolation	methods.	Nonuse	(Tier-0,	“No	extrapolation”)	can	be	chosen	
in	case	there	is	no	need	(Step	1,	Step	2)	or	no	option	for	extrapolation	(Step	3).	An	inter-
esting	case	in	this	respect	is	the	discussion	that	is	ongoing	in	the	realm	of	risk	assess-
ment	of	mixtures.	Especially	here,	the	available	ecotoxicity	data	on	mixtures	in	many	
case	studies	show	that	all	substances	may	contribute	to	toxicity,	as	is	substantiated	by	
the	fact	that	mixture	effects	frequently	occur	at	a	mixture	concentration	that	contains	
approximately	1	toxic	unit	of	all	substances	(i.e.,	close	to	the	prediction	of	the	model	
of	 concentration	 additivity	 [CA]).	 Various	 existing	 assessment	 techniques,	 however,	
prescribe	a	limited	use	of	CA	to	substances	that	share	the	same	toxic	mode	of	action	
(TMoA),	and	do	not	use	mixture	extrapolation	for	substances	with	dissimilar	TMoAs.	
The	latter	may	conceptually	be	 justified	(because	 the	concept	of	CA	is	 theoretically	
derived	for	substances	with	the	same	TMoA).	Considering	the	outcomes	of	the	majority	
of	mixture	studies,	it	may	be	numerically	better	to	consider	overall	mixture	risks	than	
to	refrain	from	using	the	CA	as	a	mechanistically	justifiable	(sole)	fallback	option.	In	
the	case	of	mixtures,	the	competing	models	for	extrapolation	(in	addition	to	CA,	there	
are	also	the	response	addition	[RA]	and	mixed-model	approaches)	provide	numerically	
similar	outcomes	that	are	most	often	much	closer	to	reality	than	no	extrapolation	(see	
Drescher	and	Bödeker	1995).	In	choosing	between	adopting	or	rejecting	extrapolation,	
one	has	 to	answer	 the	 following	question:	which	of	 the	options	 introduces	 the	most	
error	into	the	outcome	and	thus	into	the	decision	to	be	taken?	Such	as	in	the	mixture	
case,	it	might	be	justifiable	to	choose	a	slightly	or	conceptually	“wrong”	extrapolation	
method	rather	than	“no	extrapolation.”	In	any	case,	any	such	decision	should	be	clearly	
communicated.

The	second	general	question	to	be	answered	is	whether	answering	an	assessment	
problem	would	profit	from	a	probabilistic	assessment	over	a	deterministic	one.	 In	
a	probabilistic	assessment,	 the	aspect	of	variation	 in	 the	data	 that	are	used	 in	 the	
extrapolation	is	propagated	in	the	extrapolation	outcome.	That	is,	the	result	is	a	dis-
tribution	of	possible	outcomes,	with	some	answers	being	more	probable	than	others.	
A	probabilistic	approach	is	often	considered	to	be	at	a	higher	tier	than	a	determin-
istic	approach	when	the	same	modeling	principles	are	addressed.	This	introduces	a	
subtiering	(the	minor	tiers	a	and	b,	for	deterministic	and	probabilistic,	respectively)	
when	considering	the	overall	tiers.

Finally,	the	overall	major	tiers	(0	to	4)	can	be	identified	according	to	the	char-
acteristics	given	below.	Note	 that	 further	subtiering,	as	 indicated	 in	Table	10.3,	 is	
possible	from	Tier-2	onward.	For	example,	in	matrix	and	media	extrapolation,	one	
may	apply	statistical	modeling	to	derive	transfer	functions	that	describe	the	entry	of	
substances	in	organisms	as	a	function	of	matrix	characteristics.	These	models	can	be	
simple	so	as	to	address	gross	problems,	such	as	the	function

	 Uptake	=	constant	+	a	×	pH,

or	it	can	be	more	complex,	such	as	the	function

	 Uptake	=	constant	+	a	×	pH	+	b	×	Organic	Matter	+	c	×	Hardness	+	d…,
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which	takes	into	account	all	statistically	significant	variables	in	the	“training	set.”	
Note	further	that	the	generalized	tiering	system	may	lead	to	2	possible	positions	for	
a	single	approach	—	an	extrapolation	model	can	be	of	a	purely	statistical	kind,	but,	
upon	closer	inspection,	it	can	pertain	to	a	semimechanistic	model	too.	For	example,	
a	statistical	model	for	bioavailability	may	have	been	designed	to	be	fitted	to	the	data,	
but	may	in	hindsight	represent	some	major	parameters	of	a	mechanism-based	model	
(e.g.,	the	biotic	ligand	model).	A	specific	tier	may	need	to	be	reserved	for	very	spe-
cific	approaches	that	do	not	fit	the	outline	provided	here.

Conceptually,	the	generalized	tiering	concept	can	now	be	given	as	follows:

Tier-0:	“No	extrapolation,”	as	treated	above.	There	is

no	incentive	to	consider	extrapolation	at	all,
there	are	preliminary	quantitative	judgments	that	suggest	a	low	numerical	
influence	of	the	pertinent	factor	when	subjected	to	extrapolation,	or
there	is	no	technique	for	extrapolation,	neither	an	existent	technique	
nor	a	potential	newly	derived	one.

Tier-1:	 	A	“simple	generic	approach.”	In	this	case,	the	uncertainties	encountered	
in	the	assessment	are	captured	by	a	UF,	or	by	a	simple	generic	model.	
When	used	in	a	deterministic	way,	the	UF	increases	or	decreases	accord-
ing	to	estimated	uncertainties	in	the	data.	The	following	values	for	UFs	
are	frequently	encountered:

10:	relatively	large	data	set,	close	to	the	subject	of	study
100:	less	data,	less	linked	to	the	subject	of	study
1000:	little	data,	low	relevance	for	the	subject	of	study

In	other	cases,	the	UFs	are	multiplied,	usually	yielding	low	hazardous	
concentration	values	 that	are	supposed	to	offer	sufficient	protection	in	
worst-case	conditions.	In	mixture	assessments,	the	simple	generic	model	
consists	of	the	use	of	point	estimates	from	concentration–effect	curves,	
in	combination	with	the	concentration	addition	model,	to	address	mix-
ture	problems.
	 Data-dependent	uncertainty	factors	might	be	identified	as	a	probabi-
listic	variant	of	a	simple	generic	approach.	For	example,	calculation	of	
the	lower	confidence	limit	of	the	95%	confidence	interval	of	the	5th	centile	
of	 an	SSD	can	be	considered	a	 statistically	derived	UF.	The	UF,	when	
presented,	would	be	different	between	substances,	depending	on	the	avail-
able	data.	Next	to	the	use	of	SSD-derived	UFs,	whereby	SSDs	are	consid-
ered	Tier-2	methods	(because	they	are	of	a	statistical	kind),	other	methods	
could	be	envisaged	to	derive	Tier-1b	—	data-driven	uncertainty	factors.

Tier-2:	 	The	tier	with	“moderately	simple	generic approaches.”	In	the	second	tier,	
instead	of	UFs,	a	statistical	model	is	applied	to	handle	the	known	data.	The	
statistical	model	is	thereby	not derived	on	the	basis	of	a	mechanistic	work-
ing	hypothesis,	but	solely	on	the	basis	of	the	fact	that	the	factor	under	inves-
tigation	does	numerically	matter.	In	the	case	of	mixtures,	a	generalized		

•
•

•

•
•
•
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working	hypothesis	is	adopted	for	all	substances.	Tier-2	extrapolations	are	
numerical	approximations	of	the	true	phenomena,	not	mechanistic	ones.	
SSDs,	for	example,	are	statistical	descriptions	of	the	fact	that	species	differ	
with	respect	to	sensitivity;	they	do	not	explain	why	those	species	differ	in	
sensitivity.	In	this	case,	the	principle	of	parsimony	(a	pragmatic	argument)	
is	chosen	as	a	major	determinant	for	selecting	a	model.	When	the	sim-
pler	model	suffices	as	to	the	specific	assessment	problem,	why	use	a	more	
complex	one?	An	example	of	this	is	the	derivation	of	the	above-mentioned	
transfer	functions:	why	take	the	function	with	all	statistically	significant	
variables	in	cases	where	the	last	4	variables	together	only	contribute	5%	to	
the	total	variation	in	the	training	set?	Why	not	take,	for	example,	only	pH	
in	the	case	of	extrapolations	of	metal	exposures?

Tier-3:	 	The	tier	with	“complex	specific	approaches.”	In	the	third	tier,	a	mecha-
nistic	or	semimechanistic	model	is	adopted	in	addition	to	an	empirical,	
statistical-modeling	part.	For	example,	the	use	of	SSDs	is	a	statistically	
oriented	 approach,	 but	 the	 use	 of	 this	 model	 can	 be	 refined	 by	 using	
mechanism-oriented	 insights	 (i.e.,	 by	 considering	 separate	 species	
groups	that	are	inherently	more	sensitive	than	others	for	the	individual	
substance	or	 the	components	of	a	mixture).	 In	 this	way,	 the	approach	
becomes	more	complex	to	handle,	but	likely	also	yields	more	accurate	
results	than	the	“moderately	simple	generic”	approach.

Tier-4:		The	“highly	specific set	of	approaches.”	There	are	2	kinds	of	approaches	
here,	one	based	on	the	modeling	axis	of	Figure	10.2	and	the	other	on	the	
choice	of	more	appropriate	data	that	are	directly	linked	to	the	protection	
target.

	 1)	 In	 the	 case	 of	 extrapolations	 based	 on	 modeling,	 for	 example,	 the	
simple	 or	 more	 complex	 empirical	 transfer	 functions	 of	 the	 lower	
tiers	of	exposure	assessments	are	replaced	by	biotic	ligand	modeling	
(BLM).	In	BLM,	the	specific	characteristics	of	the	system	are	inves-
tigated	(e.g.,	sorption	sites	on	a	gill,	sorption	sites	in	the	matrix,	and	
the	concentrations	of	the	target	ion	and	competing	ions),	shaped	into	a	
model,	and	applied	after	measurement	of	the	mechanistically	justified	
parameters.	Such	modeling	 is	better	described	as	 semimechanistic,	
because	in	contrast	to	physics,	the	biological	systems	in	their	natural	
or	test	environment	cannot	usually	be	fully	described	by	mechanistic	
models.	There	are	always	additional	parameters	that	are	unknown	or	
not	recognized.	Nonetheless,	a	population	model	does	not	address	the	
statistical	features	of	a	population;	it	tries	to	capture	the	most	relevant	
biological	processes	that	determine	population	size,	and	is	thus	con-
sidered	a	semimechanistic	model	here.

	 2)	 In	 collecting	 the	 most	 appropriate	 data,	 one	 can	 recognize	 the	 use	
of	highly	 specific	 testing	approaches,	which	can	be	called	physical	
models	of	the	real	system	of	concern.	For	example,	in	the	pesticide	
registration	process,	one	can	make	use	of	(multispecies)	microcosms,	
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302 Extrapolation Practice

mesocosms,	or	field	tests.	These	tests	are	designed	to	mimic	the	situ-
ation	of	concern	as	closely	as	possible.	The	required	measurements,	
for	 example,	on	 species	 composition	and	 food-web	parameters,	 are	
directly	 made	 rather	 than	 modeled,	 and	 they	 are,	 therefore,	 highly	
specific.	As	a	strategy	for	extrapolation	 in	which	the	research	aims	
to	mimic	the	real	situation	as	closely	as	possible	by	physical	experi-
ments,	this	should	reduce	the	need	for	making	sets	of	extrapolations	
because	they	mimic	the	situation	of	concern.

Note	that	the	assigning	of	extrapolation	methods	to	tiers	can	be	ambiguous.	For	
example,	(Q)SARs	are	most	often	of	a	purely	statistical	kind	(Tier-2),	but	also	do	
touch	upon	mechanistically	relevant	molecular	parameters	(Tier-3),	which	shows	that	
there	is	room	for	a	choice	of	tiers	in	(Q)SAR	extrapolation.	Further,	if	1	extrapola-
tion	model	addresses	both	exposure	and	effects,	it	may	be	that	exposure	is	addressed	
in	a	“simple	generic	way,”	and	effects	in	a	“moderately	simple	generic	way,”	which	
poses	a	problem	when	one	has	to	assign	this	method	to	the	above	set	of	tiers.	These	
examples	illustrate	that	the	set	of	tiers	proposed	here	should	not	be	interpreted	as	
clear-cut	discrimination	between	extrapolation	types,	but	as	guidance	toward	pro-
viding	insight	into	the	consistency	of	what	one	is	doing.	The	more	a	set	of	extrapola-
tion	methods	can	be	assigned	to	the	same	level	of	scientific	tiering,	or	to	adjacent	
tiers,	the	more	the	extrapolation	process	as	a	whole	can	be	considered	scientifically	
consistent	as	to	their	common	design.

At	the	end	of	this	chapter	(Section	10.4.7)	the	extrapolation	techniques	in	this	
book	have	been	arranged	according	to	the	system	proposed	here.

In	 Table	10.3,	 the	 overview	 is	 organized	 according	 to	 the	 generalized	
tiers,	and	thereafter	to	the	subjects	of	extrapolation,	so	that	one	can	select	
conceptually	consistent	sets	of	extrapolation	methods	(e.g.,	for	matrix	and	
media	extrapolation	and	mixture	extrapolation).
In	Table	10.4,	 the	same	overview	is	presented;	however,	 it	 is	now	orga-
nized	from	the	perspective	of	 the	subjects	of	extrapolation	(e.g.,	matrix	
and	media	extrapolations),	so	that	one	can	inspect	the	presence	of	extrapo-
lation	methods,	at	different	tiers,	for	a	given	extrapolation	problem.

10.4.7	 steP	5:	choosing	a	consistent	set	of	extraPolation	methods

Usually,	 a	 number	of	 extrapolations	 are	needed	 for	 a	 single	 assessment.	 In	many	
cases,	 bioavailability	 is	 an	 issue	 of	 concern,	 as	 well	 as	 others	 such	 as	 mixture	
extrapolation	and	extrapolation	from	1	level	of	organization	to	the	other	(e.g.,	spe-
cies–community	extrapolation).	When	the	need	for	various	extrapolations	has	been	
established,	and	the	techniques	listed,	one	can	fill	out	the	generalized	tiered	system	
with	the	selected	methods	that	are	conceptually	consistent	(e.g.,	statistics	based	or	
mechanism	based),	thereby	addressing	the	assessment	problem	with	a	certain	degree	
of	 specificity.	 Moreover,	 the	 system	 can	 be	 considered	 technically	 consistent,	 in	
that	the	efforts	spent	in	each	tier	are	roughly	equivalent.	For	example,	using	trans-
fer	functions	to	control	for	bioavailability	is	an	empirical	statistics-based	process,	

•

•
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conceptually	matching	 to	 the	statistics-based	approach	of	SSDs.	Utilizing	 these	2	
approaches	 in	 1	 assessment	 is	 both	 scientifically	 and	 technically	 more	 consistent	
than	using	conceptually	diverse	approaches.

Note	 that,	 although	 the	criterion	of	consistency	may	be	a	general	guideline	 for	
designing	a	whole	assessment	scheme	including	extrapolations,	it	is	not	always	neces-
sary,	possible,	or	appropriate.	For	example,	it	may	be	acceptable	to	use	a	statistics-based	
approach	for	bioavailability	extrapolation	(e.g.,	transfer	functions)	in	combination	with	
semimechanistic	population	models	that	are	founded	in	the	biology	of	the	species.	In	
many	cases,	the	conceptually	ideal	combination	of	extrapolation	approaches	might	be	
beyond	reach,	because	of	lack	of	techniques	of	similar	kinds,	or	lack	of	data.	In	such	
cases,	conceptually	nonsimilar	techniques	can	be	used	and	are	used	in	an	assessment,	
as	long	as	the	basic	feature	of	the	tiering	system	is	acknowledged.	That	is,	a	Tier-3	
effects	approach	can	be	used	together	with	a	(conservative)	Tier-1	exposure	approach,	
because	the	net	outcome	will	still	be	more	conservative	than	using	Tier-3	approaches	
for	both	exposure	and	effects.	Verdonck	et	 al.	 (2003)	have,	however,	warned	about	
complete	misinterpretations	that	could	follow	from	the	use	of	different	measures	for	
the	 exposure	 and	effects	 assessments	 (e.g.,	 pore	water	 exposure	 concentrations	 and	
total-concentration-based	effects	assessment).	In	any	case,	the	different	approaches	for	
exposure	and	effects	should	be	similar	in	measurement	units	and	meaning.

10.4.8	 steP	6:	collection	of	data	needed

A	key	step	in	any	risk	assessment	is	the	collection	of	data	to	feed	into	the	extrapo-
lations.	The	use	of	an	extrapolation	method	will	be	possible	only	with	appropriate	
input	data.	The	data	that	are	needed	can	be	literature	data	(e.g.,	laboratory	toxicity	
data)	or	field	data	 (measured	or	predicted	environmental	 concentrations),	 and	 the	
extrapolation	is	then	to	move	these	toward	common	currencies,	that	is,	the	estima-
tion	of	bioavailable	concentrations,	derived	from	total	concentrations,	 in	both	 test	
systems	and	the	field,	or	species-to-community	extrapolation	when	the	concern	is	the	
“effect	of	exposure	on	biodiversity.”	Step	6	will	often	be	made	together	with	Step	7,		
because	a	method	without	data	is	as	useless	as	data	without	a	method.

In	extrapolation,	specific	attention	should	be	paid	to	data	quality;	however,	this	is	
a	subjective	concept.	There	is	no	such	thing	as	high-quality	data.	Quality	assessment	
depends	on	the	assessment	problem.	For	example,	when	the	problem	is	“derivation	
of	an	environmental	quality	criterion	(EQC),”	one	must	often	apply	clearly	defined	
and	strict	quality	criteria	 to	select	data:	 for	example,	data	should	be	NOECs,	and	
those	NOECs	should	be	derived	from	statistical	tests	and	the	like.	Quality	selection	
thus	results	in	a	limited	subset	of	data	considered	of	sufficient	quality	for	the	objec-
tive	of	deriving	an	EQC.	However,	when	an	accident	or	spill	occurs	for	a	substance	
for	which	one	has	no	formal	EQC	and	little	data	(e.g.,	only	LC50s),	the	assessment	
must	be	executed	with	these	data,	especially	when	the	only	alternative	option	would	
be	guessing.	For	extrapolation	in	this	gross	context,	it	can	become	very	clear	from	
such	LC50	data	whether	the	situation	should	be	considered	“very	dangerous,”	war-
ranting	immediate	response	by	the	authorities,	or	“of	negligible	concern,”	warrant-
ing	no	response	or	delayed	response.	Thus,	LC50s	are	“high-quality	data”	for	this	
problem.	Hence,	 the	circumstances	determine	 the	view	on	data	quality.	Although		

73907_C010.indd   309 4/23/08   11:49:09 AM



310 Extrapolation Practice

“data	quality”	generally	is	an	important	item,	this	guidance	assumes	that	the	data	
that	are	used	in	extrapolation	are	of	sufficient	quality	for	the	extrapolation	process.

After	quality,	attention	should	be	paid	to	data	quantity.	All	extrapolation	meth-
ods	that	are	in	use	have	a	quantitative	format,	that	is,	a	model.	These	models	have	
different	foundations,	 the	simplest	model	being	a	fixed	UF	and	the	most	complex	
one	 being	 a	 mechanistic	 description	 of	 the	 phenomena	 under	 investigation.	 The	
quantitative	format	implies	that	each	extrapolation	result	can	be	accompanied	by	the	
presentation	of	confidence	intervals,	although	this	is	not	always	common.	When	an	
extrapolation	method	is	used	that	is	founded	on	little	data,	the	confidence	intervals	
may	be	wide.	In	general,	one	may	expect	a	trade-off	between	the	amount	of	input	
data	(and	their	quality	and	precision)	and	the	precision	in	the	extrapolation	output.	
For	this	reason,	amongst	others,	in	practice	it	may	be	counterproductive	to	strive	for	
the	best	possible	extrapolation	technique	per	se.	The	conceptually	better	technique	
might	have	a	weak	data	support.	In	turn,	this	may	lead	to	greater	uncertainty	and	
higher	risk	estimates	in	higher	tiers,	which	is	an	undesired	characteristic	of	tiered	
systems.	Although	the	problems	of	data	quality	and	quantity	cannot	be	solved	here,	it	
is	important	to	consider	both	when	choosing	amongst	alternative	methods,	and	when	
possible	apply	the	window-of-prediction	approach.

10.4.9	 steP	7:	working	with	the	set	of	extraPolation	methods

When	various	extrapolations	are	needed,	assessors	have	to	decide	in	which	order	they	
should	use	the	methods.	In	the	mixture	assessment,	it	was	already	argued	that	the	
approaches	that	are	applied	in	mixture	extrapolation	are	founded	in	mechanistic	the-
ory	on	toxicant–receptor	interactions	at	the	molecular	level.	The	latter	highlights	the		
idea	that	matrix	and	media	extrapolation	should	be	executed	before	a	mixture	toxic-
ity	extrapolation	is	made.	Otherwise,	one	would	work	with	mixture	theory	developed	
for	molecular	interactions	at	the	target	site	within	an	organism’s	tissue	while	apply-
ing	this	to,	for	example,	total	environmental	concentrations.	It	is	logical	reasoning	
that	should	be	used	to	decide	on	the	order	of	tackling	extrapolation	problems.	The	
order	of	addressing	extrapolation	problems,	in	general,	should	be	organized	along	
the	cause–effect	chain,	that	is,

matrix	and	media	aspects	first,
substance-	and	toxicity-related	aspects	second,	and	
biotic	aspects	third.

A	particular	feature	of	working	with	various	extrapolations	is	that	one	can	obtain	
results	of	the	subsequently	applied	methods,	all	with	confidence	intervals.	In	the	pro-
cess,	one	has	to	decide	how	to	handle	this.	The	main	question	is,	“How	do	uncertain-
ties	proliferate	through	the	subsequent	extrapolations?”	Do	we	eventually	end	up	with	
an	estimate	of	risk	in	a	confidence	interval	from	0%	to	100%?	Little	attention	has	been	
devoted	to	this	subject.	Various	mathematical	techniques	do	exist,	but	(almost)	none	
have	been	specifically	discussed	in	the	context	of	the	subsequent	application	of	extrap-
olation	 methods.	 Maybe	 the	 strongest	 scientific	 argument	 for	 attaining	 consistency	
amongst	extrapolation	methods	 is	associated	with	 this	question:	when	extrapolation	

•
•
•
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methods	are	inconsistent,	the	proliferation	of	uncertainties	through	the	different	steps	
cannot	be	handled,	technically	or	the	results	of	the	assessment	become	meaningless.	
An	example	of	pitfalls	in	the	interpretation	of	extrapolation	results	obtained	by	incon-
sistent	approaches	is	given	by	Verdonck	et	al.	(2003)	on	exposure	concentration	distri-
butions	(ECDs),	SSDs,	and	joint	probability	curves	(JPCs).	It	was	shown	that	the	data	
used	to	generate	ECDs	should	be	consistent	in	space	and	time	with	the	data	used	to	
construct	the	SSDs;	otherwise,	the	JPC	would	be	uninterpretable.	In	particular,	this	
example	shows	that	the	exposures	and	the	effects	need	to	be	expressed	in	the	same	
terms,	which	implies	 that	 the	extrapolation	techniques	applied	for	both	sides	of	 the	
coin	should	also	be	consistent.

A	final	issue	in	extrapolation	practice	is	the	use	of	various	extrapolation	methods	
to	address	a	single	problem.	This	situation	occurs	when	there	is	no	key	argument	in	
favor	of	a	particular	method.	An	example	is	the	problem	of	using	either	concentra-
tion	addition	or	response	addition	as	models	to	predict	mixture	risks.	In	such	cases,	
one	could	use	the	concept	of	“window	of	prediction,”	that	is,	one	uses	both	models	
and	presents	 the	outcomes	of	both	as	a	window	of	prediction.	 In	cases	where	 the	
window	 is	 positioned	 (much)	 higher	 or	 lower	 than	 the	 acceptable	 limit	 for	 risks,	
the	decision	on	cleanup	needs	 is	equivocal	and	 independent	of	 the	model	chosen.	
This	can	be	interpreted	as	double	support	for	a	decision.	In	cases	where	the	window	
overlaps	with	the	decision	criterion,	there	is	a	strong	justification	to	go	to	a	next	tier.	
In	summary,	the	window	of	prediction	is	a	pragmatic	approach	to	cut	the	Gordian	
knot	in	cases	where	risk	assessors	have	no	good	reasons	to	choose	between	2	or	more	
(scientifically)	competing,	possibly	appropriate	models.

10.4.10	 steP	8:	handling	and	interPretation	of	assessment	results

Risk	 assessment	 can	 be	 based	 on	 various	 extrapolation	 methods.	 When	 possible,	
uncertainty	should	be	propagated	through	the	subsequent	extrapolation	steps,	pro-
vided	that	 this	 is	 technically	feasible	and	scientifically	meaningful	for	 the	assess-
ment	problem.	The	latter	requires	scientific	consistencies	in	the	types	of	data	and	the	
issues	to	which	they	refer,	for	example,	similarity	with	respect	to	temporal	or	spatial	
dimensions.	Eventually,	the	outcome	has	to	be	interpreted.	In	the	interpretation,	the	
assessor	 can	 follow	 the	 general	 guidelines	 for	 ecological	 risk	 assessments	 again.	
Various	textbooks	and	legally	adopted	approaches	are	available.

The	 interpretation	may	be	very	 simple,	 such	as,	 for	 example,	 the	observation	
that	the	predicted	exposure	concentration	(PEC)	is	below	the	no-effect	concentration	
(NEC);	in	other	words,	PEC/NEC	<	1,	which	is	interpreted	as	“sufficient	protection.”	
Data	 interpretation	may	also	be	quite	complex,	 such	as	 the	 interpretation	of	 joint	
probability	curves	in	species-to-community	extrapolations	where	a	set	of	exposure	
data	 is	used.	Also,	overinterpretation	of	data	may	occur.	An	example	 is	 the	 inter-
pretation	that	SSDs	would	represent	an	ecological	method	that	generates	ecological	
predictions.	Instead,	the	method	is	a	statistical	method	used	in	an	ecological	context,	
and	it	allows	ranking	the	relative	hazard	of	a	site	on	a	scale	from	0	to	1,	or	amongst	
a	 set	 of	 sites	on	 this	 scale,	 rather	 than	predicting	 specific	 ecological	 phenomena.	
Statistically,	it	only	predicts	the	proportion	of	test	species	that	would	experience	a	
response	if	they	were	present	in	the	exposed	environment.	For	all	extrapolations,	one	
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would	be	critical	about	the	output,	ask	whether	the	output	interpretation	is	supported	
by	 the	data	and	methods	used	as	 input,	and	present	 the	 issues	not	handled	 in	 the	
extrapolation	process,	including	the	expected	effect	of	that	on	the	outcomes.

10.5	 PRACtICAL	gUIDAnCe	on	eXtRAPoLAtIon

The	above	sections	of	the	guidance	have	been	conceptual	and	organizational	rather	
than	offering	 insight	 regarding	 the	 set	 of	practicable	 extrapolation	methods.	This	
book	on	extrapolation	offers	 theoretical	background	and	practical	 suggestions	 for	
extrapolation	techniques.	Each	of	those	techniques	can	be	positioned	in	the	general-
ized	tiered	system	that	was	proposed	above	and	in	the	2	decision	matrices,	as	shown	
in	Table	10.3	and	Table	10.4.

A	variety	of	techniques	are	available.	As	a	consequence,	1	assessment	problem	
could	yield	a	large	number	of	different	answers	from	the	combination	of	different	
extrapolation	techniques.	This	underscores	the	importance	of	risk	assessors	being	
aware	of	the	possible	inconsistencies	that	can	be	created	by	haphazard	and	inappro-
priate	selection	of	extrapolation	methodologies.

Assessors	should	base	their	selection	of	methods	on	clearly	defined	decision	cri-
teria,	and	they	need	to	communicate	the	results	using	clear	and	transparent	language.	
This	 includes	 statements	 on	 the	 extrapolation	 issues	 that	 were	 considered	 but	 not	
addressed,	and	 the	magnitude	and	direction	of	 the	bias	 that	may	have	been	 intro-
duced	by	the	extrapolation	or	lack	thereof.	In	lower	tiers	and	prospective	risk	assess-
ment,	 this	 should	 lead	 to	 setting	more	appropriate	UFs	and	ensure	 that	 lower	 tier	
approaches	are	more	conservative	than	higher	tier	approaches.	All	this	helps	asses-
sors	to	make	informed	decisions,	on	one	hand,	but	it	also	allows	the	identification	of	
future	research	needs,	on	the	other	hand,	especially	when	methods	are	not	available.

The	overview	of	the	available	techniques	and	their	provisional	systematic	order	
across	tiers	and	method	types	does	not	provide	guidance	on	the	decisions	that	have	
to	be	taken.	How	can	an	assessor,	in	practice,	get	an	overview	of	the	extrapolation	
practices	that	should	be	applied,	given	the	assessment	problem?

To	facilitate	working	with	extrapolation	problems,	a	set	of	questions	is	presented.	
Given	the	assessment	problem,	these	questions	can	be	asked	by	the	assessor.	These	
questions	have	been	ordered	according	to	the	steps	identified	earlier.	Together	with	
Table	10.3	and	Table	10.4,	these	questions	show	how	a	risk	assessment	proceeds.	Note	
that	1	question	can	occur	various	times,	because	of	the	fact	that	1	issue	is	encoun-
tered,	 for	example,	 from	 the	perspectives	of	exposure	extrapolation	 (time-varying	
exposure)	and	of	effects	extrapolation	(time-varying,	age-specific	sensitivity).

10.5.1	 steP	1:	motivating	the	needs	for	extraPolation	
and	Procedural	Questions

10.5.1.1	 to	be	Answered	before	starting	Any	Assessment

Before	starting	an	assessment,	one	should	clearly	define	the	objectives	of	the	assessment	
and	consider	the	consequences	of	that	choice	regarding	the	extrapolation	practices	to	
be	applied.	These	key	issues	are	defined	and	handled	in	this	book	on	extrapolation,	and	
these	issues	are	the	basis	for	any	assessment.	Weak	or	nonoperational	definitions	in	
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this	stage	make	many	risk	assessments	ambiguous.	In	this	stage,	a	series	of	questions	
needs	to	be	answered	or	addressed	to	make	both	the	scientific	assessment	problem	and	
the	practical	context	of	addressing	this	problem	clear:

	 1)	 What	is	the	assessment	endpoint,	and	what	is	the	protection	goal?
Is	the	target	of	the	assessment	the	derivation	of	EQCs	and/or	a	decision	
on	the	marketing	or	use	of	substances	(prospective)?
Is	the	target	of	the	assessment	a	specific	assessment	of	risks	in	a	con-
taminated	ecosystem	(retrospective)?
By	 which	 measures	 of	 effect	 are	 the	 protection	 goals	 operationally	
defined?

The	consequences	for	the	design	of	your	assessment	are	as	follows:
For	the	derivation	of	EQCs	and	the	registration	of	substances	(prospec-
tive	risk	assessment),	worst-case	assumptions	are	usually	applied	in	the	
lower	tiers,	and	UFs	may	be	applied,	whereas	more	specific	data	are	
used	in	higher	tiers
In	retrospective	risk	assessment,	the	output	should	be	as	accurate	as	possible	
at	any	tier.	Tiers	differ	by	the	level	of	sophistication	and	realism.

The	 assessment	 endpoint	 can	 follow	 from	 legal	 requirements	 or	 from	
concerns	(e.g.,	established	by	scientific	reasoning).

	 2)	What	 is	 the	valued	characteristic	of	 the	environment	 that	 is	possibly	at	
risk?	This	characteristic	must	be	defined,	including	the	definition	of	the	
measure	of	effects	on	that	characteristic	that	is	to	be	used	to	judge	dam-
age	(Suter	et	al.	1993).	An	example	is	“the	probability	of	10%	reduction	of	
abundance”	(Suter	et	al.	1993).

10.5.1.2	 to	Manage	the	extrapolation	Processes

Upon	defining	the	assessment	endpoint,	answers	to	the	following	questions	either	are	
taken	from	existing	protocols	or	need	to	be	defined	in	the	assessment	context.	The	
relevant	questions	are	as	follows:

	 1)	 Is	there	a	prescribed	procedure	to	be	followed?	If	so,	follow	that.	If	not,	
proceed	with	the	subsequent	questions.

	 2)	 If	yes,	is	that	procedure	tiered?
	 3)	 If	yes,	how	are	the	tiers	defined?
	 4)	If	no,	how	could	the	tiers	be	defined,	given	the	formulated	assessment	

endpoint?

If	 the	 risk	 assessment	 protocol	 that	 you	 are	 following	 is	 tiered	 by	 prescribed	
procedures	or	by	your	choice:

	 1)	 Given	 the	 results	 you	 obtain	 in	 a	 lower	 tier,	 is	 there	 a	 specific	 trigger	
defined	for	progression	to	a	next	tier?

	 2)	Can	cutoff	values	be	used	as	an	answer	to	the	assessment	(i.e.,	point	esti-
mates),	especially	in	prospective	assessments?	An	example	is	the	HC5,	the	
hazardous	concentration	for	5%	of	the	species,	where	the	cutoff	level	for	
the	proportion	of	species	that	is	potentially	affected	is	maximized	at	5%.

•

•

•

•

•
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	 3)	Are	there	triggers	to	use	probabilistic	evaluation	in	either	a	prospective	or	
a	retrospective	context?

	 4)	Are	confidence	limits	helpful	in	your	assessment,	especially	in	the	case	of	
retrospective	assessments?

	 5)	Can	 and	 should	 a	 probabilistic	 approach	 be	 applied	 to	 exposure	 and	
effects,	given	the	assessment	endpoint?

And,	in	the	case	of	a	prospective	risk	assessment:

	 1)	 Is	there	a	level	of	certainty	defined	that	needs	to	be	met?
	 2)	 Is	there	a	need	to	report	the	confidence	bounds	and	their	meanings?
	 3)	Do	we	want	to	establish	the	presence	or	absence	of	effects,	given	a	cutoff	

value	for	effects?
	 4)	Do	we	want	to	establish	the	presence	of	an	exposure-effect	gradient?
	 5)	Do	 we	 need	 to	 establish	 a	 cause–effect	 relationship	 —	 for	 example,	

because	the	polluter	needs	to	be	prosecuted,	or	because	emissions	need	to	
be	reduced?

Answers	 to	 these	questions	provide	an	outline	of	 the	risk	assessment	process,	
in	terms	of	requisites	of	the	process	itself.	The	next	part	is	to	address	the	technical	
extrapolation	issues	within	the	process	of	risk	assessment.

10.5.2	 steP	2:	Preliminary	assessment	and	relevant	extraPolation	issues

The	following	questions	can	be	helpful	in	a	preliminary	assessment,	which	is	needed	
to	identify	the	most	relevant	extrapolation	issues.	The	target	of	this	step	is	to	identify	
the	key	items	that	are	likely	influencing	the	outcomes	of	the	risk	assessment	most,	
and	 to	discard	 the	numerically	 less	 important	 items,	especially	 in	 the	 lower	 tiers.	
The	important	question	is	whether	 the	extrapolation	issues	can	be	ranked	accord-
ing	to	(numerical)	importance.	It	motivates	the	need	for	extrapolation,	and	the	most	
relevant	extrapolation	issues	(Step	1	and	Step	2,	as	introduced	above).

	 1)	 Do	we	have	data	pertinent	 to	 the	problematic	 substances,	 or	 is	 there	 a	
need	for	substance-to-substance	extrapolation	(e.g.,	by	(Q)SAR)?	If	so,	is	
there	a	trigger	to	consider	this	quantitatively	important?

	 2)	Do	we	have	data	pertinent	 to	 the	matrix	or	medium	in	which	exposure	
takes	place,	or	do	we	need	to	consider	matrix	and	media	extrapolation?	If	
so,	is	there	a	trigger	to	consider	this	quantitatively	important?

	 3)	Do	we	have	data	pertinent	to	the	exposed	biota,	or	do	we	need	to	consider	
extrapolation	 through	 levels	of	biological	organization?	 If	 so,	 is	 there	a	
trigger	to	consider	this	quantitatively	important?

	 4)	 In	the	case	of	mixtures,	do	we	have	data	on	the	overall	effect	of	the	per-
tinent	mixture,	or	do	we	need	to	consider	mixture	extrapolation?	If	so,	is	
there	a	trigger	to	consider	this	quantitatively	important?

	 5)	Do	we	have	data	pertinent	to	the	exposure	situation	to	be	considered,	or	
are	there	specific	temporal	aspects	in	the	exposure	regime	(intermittent	
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exposure,	exposure	gradually	changing	over	time,	etc.)?	If	so,	is	there	a	
trigger	to	consider	this	quantitatively	important?

	 6)	Do	we	have	data	pertinent	to	the	exposure	situation	to	be	considered,	or	
are	there	specific	spatial	aspects	in	the	exposure	regime	(e.g.,	spatial	gra-
dient	of	substance,	or	spatial	distribution	of	exposed	biota)?	If	so,	is	there	
a	trigger	to	consider	this	quantitatively	important?

Answers	 to	 these	 questions	 provide	 preliminary	 insight	 into	 the	 variables	 for	
which	extrapolation	can	be	considered	most	urgent,	due	to	an	estimated	numerical	
influence	on	 the	assessment	 results.	For	example,	matrix	and	media	extrapolation	
might	be	identified	as	the	most	important	modifying	factor,	and	the	risk	assessment	
might	fully	focus	on	this	factor	in	the	lowest	tier.	Information	on	issues	for	which	no	
extrapolation	will	be	applied	need	to	be	kept	in	the	dossier,	for	reporting	which	fac-
tors	have	been	considered	and	what	numerical	influence	(magnitude	and	direction)	
is	expected.

10.5.3	 steP	3:	identifying	the	(set	of)	Possible	extraPolation	methods

After	 establishing	 the	 likely	need	 for	 extrapolation	on	various	 issues,	 and	not	 on	
others,	the	next	task	is	to	list	the	operational	extrapolation	methods	for	each	of	the	
important	issues.	A	list	of	the	methods	that	are	presented	in	the	previous	chapters	of	
this	book	is	compiled	in	Table	10.3.	The	identification	of	the	set	of	possible	extrapo-
lation	methods	should	include	a	check	on	the	availability	of	data.	If	either	of	these	
are	lacking,	the	extrapolation	for	this	aspect	will	not	work	at	all,	or	will	not	yield	
results	of	sufficient	quality.	The	questions	are	thus:

	 1)	 Which	extrapolation	methods	are	available	for	a	problem?
	 2)	Are	the	data	needed	to	use	the	extrapolation	method	available?

Answers	to	these	questions	provide	insight	into	the	potential	chance	for	success-
fully	addressing	the	problems	for	which	extrapolation	is	considered	to	be	needed.	A	
set	of	specific	questions	can	be	helpful	for	further	refining	the	tasks	to	be	executed.

10.5.3.1	 Questions	Related	to	substances

As	compiled	from	all	aspects	influencing	the	issue	of	exposure	and	effects	of	a	sub-
stance	or	substance	mixture,	there	is	an	array	of	relevant	questions:

Associated with the Aspect “Single Substance or Mixture”
	 1)	 Is	the	assessment	concerned	with	a	single	substance	or	a	mixture?

	 2)	 If	concerned	with	a	mixture,	do	we	know	the	components	in	the	mixture?
	 3)	 If	concerned	with	a	mixture,	is	it	a	mixture	with	a	stable	composition?

Associated with the Aspect “Toxic Mode of Action (TMoA)”
	 1)	 Do	we	know	the	primary	TMoA	of	the	substance	or	of	all	substances?

	 2)	 Is	the	TMoA	general	(baseline	toxicity)	or	specific	(e.g.,	receptor	based)?
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Associated with the Toxicity of the Substances
	 1)	 Is	the	toxicity	of	the	substances	known?

	 2)	To	what	extent	do	the	available	 toxicity	data	match	the	 locally	exposed	
biota	regarding	tested	species	and	field	species?

Associated with Modifying Factors
	 1)	 Is	there	a	need	for	site-specific	evaluation?

	 2)	Matrix	and	media:	do	the	available	toxicity	data	match	the	matrix?
	 3)	Time:	is	exposure	stable	in	time?
	 4)	Space:	is	exposure	stable	in	space?

Associated with Metabolism of the Substance
	 1)	 Does	the	substance	break	down?

	 2)	 	If	so,	which	metabolites	are	created	along	the	breakdown	pathway?
	 3)	 If	so,	are	the	metabolites	toxic?
	 4)	 If	so,	 is	 there	a	need	to	consider	only	the	parent	substance,	or	does	 the	

assessment	also	concern	the	metabolites?

Answers	 to	 these	 questions	 provide	 insight	 into	 the	 specific	 actions	 that	 are	
needed	as	to	the	issue	of	the	substances	that	are	present.

10.5.3.2	 Questions	Related	to	Matrix	and	Media	extrapolation

As	compiled	from	all	aspects	influencing	the	issue	of	exposure	and	due	to	matrix	and	
media	influences,	there	is	an	array	of	relevant	questions:

	 1)	 What	is	the	matrix?
	 2)	What	properties	of	the	matrix	could	affect	availability?	If	these	are	sub-

stance	dependent,	answer	this	question	for	separate	substances.
	 3)	What	properties	of	 the	matrix	 could	 act	 as	 (additional)	 stressors	 to	 the	

exposed	biota?	For	example,	 acid	 soil	both	 influences	 the	 speciation	of	
metals	(increasing	bioavailability)	and	may	cause	stress	in	terrestrial	spe-
cies	such	as	earthworms.

	 4)	Do	properties	of	the	matrix	vary	in	time?
	 5)	Do	properties	of	the	matrix	vary	in	space?
	 6)	Are	there	geographical	factors	to	be	considered?
	 7)	 Is	there	a	need	for	site-specific	evaluation?
	 8)	 Is	there	a	need	for	intermedia	extrapolation?
	 9)	 Is	there	a	need	for	intramedium	extrapolation?
	 10)	Are	there	properties	of	the	media	influencing	degradation?
	 11)	Are	there	other	chemicals	in	the	matrix	that	need	to	be	considered?

Answers	to	these	questions	provide	insight	into	the	specific	actions	that	are	needed	
as	to	the	issue	of	the	matrices	and	media	that	are	involved	in	the	assessment.
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10.5.3.3	 Questions	Related	to	biota

As	compiled	from	all	aspects	influencing	the	issue	of	exposure	and	effects	on	biota	at	
different	levels	of	biological	organization,	there	is	an	array	of	relevant	questions:

	 1)	 Do	we	know	the	routes	of	exposure	of	the	substances	to	the	biota?
	 2)	Are	there	specific	biota	to	protect?
	 3)	 Is	there	specific	concern	for	structural	or	functional	endpoints?
	 4)	What	types	of	effects	are	expected	(acute,	chronic,	biodiversity,	and/or	

function)?
	 5)	Are	there	multiple	data	for	1	endpoint	in	1	species,	and	in	what	way	are	

these	data	handled	(geometric	mean,	and/or	other)?
	 6)	Do	we	know	the	spatial	distribution	of	biota	in	relation	to	the	substance	

distribution?
	 7)	Are	there	unexposed	subpopulations	or	habitats	nearby	from	which	recol-

onization	and	recovery	take	place?
	 8)	 Is	recovery	relevant?
	 9)	Are	indirect	effects	of	concern?
	 10)	Are	there	behavioral	issues	that	might	affect	exposure?
	 11)	 Is	there	a	sensitive	life	stage,	and	if	so,	which?
	 12)	 Is	there	a	need	for	site-specific	evaluation?
	 13)	Are	there	specific	ecological	receptors	of	concern,	in	view	of	the	presence	

of	substances	with	a	specific	TMoA?
	 14)	Are	mixture	effects	to	be	considered?
	 15)	 Is	 the	 organization	 level	 of	 the	 test	 endpoint	 equal	 to	 the	 level	 of	 the	

assessment	endpoint?
	 16)	 Is	there	a	need	to	consider	resistance	or	selection	for	tolerance?
	 17)	What	is	the	relationship	between	temporal	change	in	concentration	of	the	

substance	 and	 the	 life	 history	 characteristics	 of	 the	 potentially	 exposed	
biota?

Answers	 to	 these	 questions	 provide	 insight	 into	 the	 specific	 actions	 that	 are	
needed	as	to	the	issue	of	the	exposed	biota	that	are	involved	in	the	assessment.

10.5.3.4	 Questions	Related	to	temporal	extrapolation

	 1)	 What	is	the	duration	of	the	exposure?
	 2)	What	 is	 the	duration	of	 the	exposure	as	compared	 to	 the	 life	history	of	

the	 exposed	 species;	 that	 is,	 can	one	 assign	 an	 exposure	 to	be	 acute	or	
chronic?

	 3)	 Is	the	incipient	toxicity	level	reached	during	exposure,	or	is	there	a	need	to	
predict	the	incipient	level	from	the	data?

	 4)	 Is	the	exposure	constant	or	variable	over	time?
	 5)	Does	exposure	change	over	time,	for	example,	due	to	leaching,	breakdown	

of	the	substance,	or	other	systematic	(pulsing)	or	stochastic	processes?
	 6)	Are	there	sensitive	life	stages,	and	if	so,	which?
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	 7)	What	is	the	timing	of	exposure	as	compared	to	the	sensitive	life	stages	of	
the	organism?

	 8)	Can	existing	data	on	acute	exposure	be	used	to	predict	chronic	effects,	or	
vice	versa?

	 9)	 Is	the	response	latent?
	 10)	 Is	there	a	possibility	for	reversibility	or	recovery	from	responses?
	 11)	 Is	there	seasonal	variation	in	exposure	and/or	sensitivity	of	life	stages?
	 12)	 Is	there	succession	with	or	without	an	associated	change	of	sensitivity?
	 13)	 Is	long-term	exposure	resulting	in	adaptation?

10.5.3.5	 Questions	Related	to	spatial	extrapolation

	 1)	 What	is	the	spatial	distribution	of	the	contaminant	concentrations?
	 2)	What	 is	 the	 spatial	 distribution	 of	 the	 exposed	 species	 with	 regard	 to	

both	home	ranges	(as	compared	to	the	exposure	sites)	as	well	as	the	pres-
ence	of	refugia	(in	the	case	of	a	metapopulation	structure	of	the	exposed	
species)?

	 3)	 Is	spatial	complexity	influencing	exposure	or	effects,	and/or	does	it	allow	
for	recovery	from	unexposed	refugia?

	 4)	 Is	the	sensitivity	of	test	species	associated	with	their	geographical	home	
ranges?	In	other	words,	are	sensitivities	the	same	for

	 A.	 tested	temperate	species	and	polar	and	tropical	species?
	 B.	 tested	 northern	 hemisphere	 species	 and	 southern	 hemisphere	

species?
	 C.	 tested	Nearctic	species	and	Palearctic	species?
	 D.	 lentic	and	lotic	habitats?
	 E.	 saltwater	and	freshwater	habitats?

	 5)	 Is	 the	sensitivity	 in	 test	systems	related	 to	 the	scale	of	 testing	(i.e.,	single-
species	 tests	 in	small	 test	systems,	via	microcosms	to	mesocosms	and	the	
field)?

	 6)	Can	data	from	small-scale	studies	be	used	to	predict	effects	at	the	land-
scape	scale?

	 7)	Are	 multiple	 stressors	 influencing	 the	 sensitivity	 and	 responses	 of	 the	
exposed	species?

10.5.3.6	 Questions	Related	to	the	Availability	and	type	of	Data

	 1)	 Do	the	data	that	can	be	collected	pertain	to	the	problem,	that	is,
	 A.	 How	similar	is	the	exposure	period?
	 B.	 How	similar	are	the	tested	species	to	those	in	the	exposure	situation		

of	concern?
	 2)	Are	 there	 no	 data,	 limited	 data,	 or	 many	 data	 for	 a	 problem,	 and	 how	

would	method	improvement	(choice	of	a	higher	tier)	likely	trade	off	with	
reduced	availability	of	the	relevant	data?

	 3)	What	is	the	general	quality	of	the	data,	either	from	a	scientific	viewpoint	
(methodology	of	 the	 test	 is	appropriate)	or	from	a	regulatory	viewpoint	
(matching	with	prescribed	quality	rules)?
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10.5.4	 steP	4	and	steP	5:	assigning	methods	to	tiers	
and	choosing	a	consistent	aPProach

At	this	point	in	the	process,	the	set	of	extrapolation	types	has	been	defined,	as	well	
as	the	set	of	available	methods	for	each	of	the	extrapolation	types.	Following	the	idea	
of	tiering,	the	available	methods	can	be	designated	to	tiers,	according	to	the	most	
relevant	questions:

	 1)	 What	 is	 the	 order	 of	 handling	 extrapolation	 problems?	 Following	 the	
cause-to-effect	chain	of	events,	for	example,	(Q)SARs	first,	then	matrix	
and	media,	and	then	mixture	assessment.

	 2)	Can	a	set	of	extrapolation	methods	for	all	relevant	issues	be	positioned	in	
tiers	and	levels,	so	that	a	methodologically	consistent	view	emerges?

Tables	10.3	and	10.4	can	be	used	for	this.

10.5.5	 steP	6	and	steP	7:	working	with	extraPolation		
data	and	methods

In	these	steps,	the	methods	are	used,	and	appropriate	data	for	executing	the	extrapo-
lations	 are	 collected.	 The	 methods	 were	 identified	 in	 the	 above	 process,	 and	 are	
described	in	this	book.

Basic	questions	that	may	need	to	be	answered	are	as	follows:

	 1)	 Is	there	a	need	to	show	the	uncertainty	or	confidence	interval	of	the	final	
result	of	all	extrapolations,	and/or	of	each	extrapolation	step?

	 2)	What	is	the	list	of	items	for	which	no	extrapolation	has	been	applied,	and	what	
is	the	likely	influence	(magnitude	and	direction)	of	this	on	the	end	results?

10.5.6	 steP	8:	Questions	relating	to	the	interPretation	
and	use	of	extraPolation	results

In	this	step,	a	short	list	of	questions	of	major	importance	can	be	posed	so	as	to	avoid	over-
interpretation	of	results,	and	to	clarify	the	meaning	of	the	output	of	extrapolation.

Key	questions	are	as	follows:

	 1)	 What	is	(known	about)	the	validity	of	the	extrapolation	steps	and	the	over-
all	outcome	of	the	whole	set	of	extrapolation	steps?	In	other	words,	is	the	
outcome	 of	 the	 extrapolation	 plausible	 in	 comparison	 to	 facts	 or	 other	
lines	of	evidence?

	 2)	Will	the	extrapolation	outcome	be	interpreted	as	a	fixed	and	final	value,	
like	an	EQC?	If	so,	what	strengths	and	weaknesses	with	 respect	 to	 the	
outcome	can	be	listed	before	an	outcome	is	chosen	as	an	EQC?

	 3)	Will	 the	 extrapolation	 outcome	 be	 interpreted	 in	 comparison	 to	 other	
cases	or	lines	of	evidence?	For	example,	in	the	case	of	site-specific	risk	
assessment,	risk	managers	might	make	decisions	on	the	basis	of	relative	

73907_C010.indd   319 4/23/08   11:49:13 AM



320 Extrapolation Practice

ranking,	which	relaxes	the	need	to	generate	absolute	outcomes	and	associ-
ated	validation	criteria	—	in	this	case,	relative	ranking	should	plausibly	
represent	effect	ranking.

10.6	 oVeRVIeW,	DIsCUssIon,	AnD	ConCLUsIons

This	 chapter	 provides	 guidance	 in	 using	 the	 extrapolation	 methods	 listed	 in	 this	
book	 on	 extrapolation	 practices,	 including	 considerations	 to	 select	 extrapolation	
approaches	not	addressed	therein	in	a	way	that	is	founded	both	in	science	as	well	as	
in	daily	practices.

A	generalized	guidance	is	provided	by	the	following:

A	stepwise	protocol	to	decide	on	the	use	of	extrapolation	methods	for	an	
assessment	protocol
A	 design	 for	 assigning	 extrapolation	 methods	 to	 a	 scientifically	 based	
tiered	system,	with	the	tiers	being:

Tier-0:	no	extrapolation
Tier-1:	extrapolation	(mostly	for	protection	purposes)	based	on	simple	
generic	approaches	(usually	uncertainty	factor)
Tier-2:	moderately	simple	generic	approaches,	for	example,	statistics-
based	extrapolation	methods
Tier-3:	complex	specific approaches,	for	example,	methods	that	merge	
(semi-)mechanism-based	assumptions	with	a	statistics-based	approach
Tier-4:	highly	specific	approaches,	for	example,	methods	using	mecha-
nism-based	approaches,	plus	physical	models	(models	that	mimic	the	sit-
uation	of	concern	experimentally,	such	as	microcosms	or	mesocosms)

The	proposed	tiers	are	not	obligatory	but	contain	extrapolation	tools	that	can	be	
used	differently	in	a	number	of	situations	and,	in	some	cases,	regulatory	protocols,	in	
which	certain	combinations	of	extrapolation	methods	are	prescribed	as	methods	that	
must	be	used	for	the	assessment,	such	as	in	the	formal	registration	of	pesticides.	The	
proposed	tiered	system	is	based	on	a	scientific	classification	of	the	available	extrapola-
tion	method	types.	With	ideal	data	and	concepts	for	extrapolation,	this	scheme	may	be	
expected	to	yield	reduced	degrees	of	overestimation	of	risk	when	moving	up	the	tiers	
from	Tier-0	to	Tier-4	(i.e.,	risks	are	more	precisely	estimated	in	the	higher	tiers).

It	is	often	the	case	that,	when	using	the	system,	various	extrapolation	techniques	
must	be	applied	in	sequence,	and	it	is	proposed	that	(in	general)	the	extrapolation	
should	follow	the	pathway	from	cause	to	effect.	When	applicable,	and	generally	this	
will	be	in	higher	tiers	of	risk	assessment,	specific	attention	can	be	paid	to	spatial	and	
temporal	modifications	of	risk.

Various	pitfalls	can	occur	when	using	a	tiered	system.	In	the	ideal	case,	the	esti-
mated	risk	appears	to	be	indeed	less	and	less	conservative	as	one	increases	the	tiers.	
However,	the	quality	and	quantity	of	the	available	data	influence	the	outcome	of	a	
tier,	so	that	it	may	not	always	work	out	this	way.	Care	should	be	taken	in	applying	
tiered	systems.	An	option	is	to	develop	and	apply	methods	that	show	the	confidence	
interval	in	the	outcomes	next	to	the	extrapolated	values	per	se.	In	the	case	of	highly	

•

•

•
•

•

•

•
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uncertain	 results,	or	a	 tendency	 for	 the	 risk	 to	 increase	with	 increasing	 tiers,	 this	
effect	would	then	clearly	be	visible.	A	further	option	is	to	use	a	window	of	prediction	
when	alternative	models	are	available.

There	 are	 various	 dead	 ends	 in	 the	 generalized	 tiered	 system.	 The	 tiers	 are	
not	 equally	 filled	 out	 for	 all	 extrapolation	 problems.	 That	 is,	 for	 some	 extrapola-
tion	issues,	the	available	methods	range	up	to	sophisticated	mechanistic	approaches,	
whereas	for	other	issues	there	are	“only”	empirical-	and	statistics-based	approaches.	
These	dead	ends	first	identify	the	areas	that	are	ripe	for	research,	especially	when	the	
missing	items	pertain	to	numerically	highly	relevant	issues.	In	the	case	of	dead	ends,	
researchers	might	be	forced	to	develop	a	tailored	extrapolation	approach.	One	of	the	
dead	ends	in	practice	seems	to	be	the	issue	of	proliferation	of	uncertainties	through	
the	cause–effect	chain	of	extrapolations	when	using	a	set	of	extrapolation	techniques.	
Showing	 the	 confidence	 intervals	 that	 result	 from	 the	overall	 set	 of	 extrapolation	
efforts	within	a	risk	assessment	is	necessary	to	allow	the	risk	assessor	to	interpret	the	
results	of	an	assessment,	to	avoid	overinterpretation,	and	to	check	for	a	reduction	in	
the	overestimation	of	risks	in	higher	tiers.	Application	of	Monte	Carlo	methods,	and	
other	ways	of	handling	variability	and	uncertainty,	might	be	the	way	out.

The	critical	use	of	extrapolation	methods	implies	consideration	of	the	issue	of	
validation.	It	has	been	remarked	that	validation	of	an	extrapolation	method	should	be	
considered	in	view	of	the	target	of	an	assessment,	so	that	1	approach	can	be	sufficient	
for	1	target	(e.g.,	setting	quality	criteria)	but	not	for	others	(precise	quantification	of	
risk	at	contaminated	sites).	Higher	tier	methods	can	be	used	to	address	the	degree	
of	validity	of	lower	tier	methods,	especially	in	the	case	of	the	higher	tier	physical	
models	of	reality.

A	 major	 question	 to	 be	 answered	 from	 a	 practical	 point	 of	 view	 is	 whether	
rejecting	an	extrapolation	method	introduces	more	(numerical)	error	in	the	decision-	
making	processes	than	using	an	extrapolation	method.	An	example	is	the	discussion	
on	mixture	extrapolation,	where	strict	mechanism-based	reasoning	would	call	any	
joint-effect	prediction	highly	disputable.	For	example,	separate	assessments	for	all	
substances	in	an	ecosystem	in	which	there	are	10	substances	just	below	their	EQCs	
would	not	suggest	the	presence	of	risks	(all	risk	quotients	<	1,	with	aggregated	risk	
not	considered).	However,	the	facts	that	most	mixture	toxicity	data	suggest	the	use	
of	mixture	extrapolation,	and	that	joint	effects	of	toxicants	are	often	almost	equally	
well	predicted	 (numerically)	by	either	of	 the	2	competing	mixture	models,	would	
suggest	the	same	situation	to	be	a	case	of	serious	concern.

When	there	is	no	guidance	to	choose	the	best	method,	it	is	always	possible	to	use	
the	window	of	prediction.	Especially	for	retrospective	risk	assessments	that	should	
result	 in	a	decision,	2	or	more	extrapolation	approaches	can	be	used	for	the	same	
problem	(for	example,	the	2	mixture	models),	and	both	results	can	be	compared	to	
the	decision	criterion.	In	case	both	predictions	are	(by	far)	lower	or	higher	than	the	
decision	criterion,	the	decision	would	remain	the	same,	irrespective	of	the	model!	
Only	in	cases	where	the	window	of	prediction	overlaps	with	the	decision	criterion	
would	further	work	be	necessary.

A	final	consideration	on	validation	is	that	many	methods	have	been	adopted	for	
formal	use,	which	implies	that	the	method	suffices	in	practice.	Wrong	predictions	
would	 likely	 have	 resulted	 in	 regulators	 abandoning	 the	 approach.	 In	 that	 sense,	
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various	extrapolation	methods	have	reached	this	practical	level	of	validation.	Scien-
tific	validation	(that	is,	the	model	precisely	predicts	phenomena)	is	less	well	devel-
oped.	It	should	be	pointed	out	that	very	precautionary	methods	of	extrapolation	may	
be	consistently	protective	because	the	uncertainty	factors	used	are	large.	In	this	case,	
the	fact	that	the	results	are	consistent	does	not	mean	that	they	are	accurate.	In	fact,	
“overregulation”	may	be	harmful	because	more	costly	or	more	environmentally	haz-
ardous	processes	than	are	needed	are	selected	instead.

It	is	concluded	that

	 1)	 An	 array	 of	 extrapolation	 methods	 is	 needed	 and	 available	 to	 solve	 a	
diversity	of	ecological	risk	assessment	problems.

	 2)	These	 methods	 can	 be	 used	 within	 the	 context	 of	 an	 existing	 (tiered)	
risk	assessment	protocol	 (designed	 for	a	particular	purpose	and	 regula-
tory	adopted	as	such)	as	well	as	in	a	generalized	tiered	system,	whereby	
the	overestimation	of	risks	can	be	reduced	as	one	moves	up	through	the	
tiers.

	 3)	Tiers	 can	 be	 generally	 described	 by	 the	 use	 of	 fixed	 UFs,	 statistically	
based	methods,	mechanistic	methods,	and/or	experimentation	in	physical	
models	(e.g.,	mesocosms).

	 4)	A	systematic	approach	can	be	followed	so	as	to	decide	on	choosing	and	
using	extrapolation	methods.

	 5)	Many	assessment	problems	ask	for	 the	application	of	extrapolations	 for	
various	issues	simultaneously	and/or	subsequently.

	 6)	Validation	 “by	 practical	 use”	 occurs	 frequently,	 especially	 for	 the	 lower	
tier	methods;	scientific	validation	is	less	well	developed;	and	one	extrapola-
tion	approach	can	be	considered	valid	for	1	assessment	type,	but	not	for	the	
other.
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a

Absorption, 269
ACE, see Acute-to-chronic estimation
Acetylcholinesterase (AChE), 23
AChE, see Acetylcholinesterase
Acid-volatile sulfides (AVS), 41, 169
ACR, see Acute-to-chronic ratio
Acute-to-chronic estimation (ACE), 196
Acute-to-chronic ratio (ACR), 170, 195
Acute toxicity, 269
Adsorption, 269
Adverse effect, 269
AgDrift computer model, 27
ALMaSS model, 113
Ameiurus melas, 93
Americamysis bahia, 93
Analysis of effects, 269
Analysis of exposure, 269
ANN, see Artificial neural network
Antagonism, 269
AQUATOX model, 62, 68, 69, 72,  

209, 236
Arctopsyche grandis, 242
Artificial neural network (ANN), 83
Asellus
 aquaticus, 246
 brevicaudus, 93
Assessment endpoint, 270
AVS, see Acid-volatile sulfides

b

BACI design, see Before–after control  
impact design

Background concentration, 270
Battery toxicity testing, 270
BCF, see Bioconcentration factor
BDF, see Bioassay-directed fractionation
Before–after control impact (BACI) design, 126
Benthos, 270
Beta testing, 266
Bioaccumulation, 270
Bioassay, 270
Bioassay-directed fractionation (BDF), 166
Bioavailability, 270
Bioconcentration factor (BCF), 56, 270
 log KOW values and, 56, 57
 maximal observed value for, 57
 toxicity and, 60

Bioindicators, 108
Biological organization in ecological risk 

assessment, 105–133, 260
 action at a distance, 126
 aquatic model ecosystems, 122, 123
 architectural complexity, 124
 bioindicators, 108
 biomarker categories, 108
 communities, 114–121
  experimental approaches, 114–115
  species sensitivity distribution concept, 

116–121
 community metabolism response, 127–128
 computational models behind exergy, 132
 definition of community, 114
 definition of complexity, 124
 disadvantage of ecosystem-based models, 131
 discussion, 132–133
 distribution-free bootstrapping method, 119
 ecological network analysis, 131
 ecological significance of response, 106
 ecosystem definition, 105
 ecosystem simulation models, 107
 energy-related biomarkers, 111
 food-web models, 117, 131
 grazing pressure of zooplankton, 126
 hierarchy, 106
 indirect effects, 117, 124
 individuals, 107–111
  biomarkers as early warning indicators, 

108–109
  predictive value of biomarker responses, 

109–111
 landscapes and ecosystems, 121–132
  community, ecosystem, and landscape 

models, 130–132
  extrapolating from effects on structure to 

effects on function, 126–130
  indirect effects, 124–126
  models, 133
  semifield tests for extrapolation, 121–124
 mesocosms, 115, 123
 metapopulation-modeling exercise, 126
 microcosms, 115
 photosynthesis-inhibiting herbicides, 117, 

127–128
 populations, 111–113
  complex population models, 113
  generic population models, 112–113
 risk assessment ecosystem, 133
 rivet-popping hypothesis, 129

Index
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 single-species toxicity tests, 106
 software packages, 131
 top-down biomanipulation experiment, 126
 water quality–monitoring programs, 116
Biological response signatures (BRS), 167
Biomagnification, 270
Biomarker(s), 270, 294
 AChE as, 23
 categories of, 108
 criticism of use of, 109
 as early warning indicators, 108
 energy-related, 111
 examples of, 108
 predictive value, 132
 responses, predictive values of, 109
 short-term, 23
 site-specific risk assessment and, 27
Biomass, 270
Biota-sediment accumulation factor (BSAF), 

57, 64
Biotic ligand model (BLM), 40, 53, 301
Biotransformation processes, BCF and, 56
BLM, see Biotic ligand model
Brotia hainanensis, 215
BRS, see Biological response signatures
BSAF, see Biota-sediment accumulation factor
Bufo woodhousii fowleri, 205

c

Caenis horaria, 210
Canadian Environmental Protection Act 

(CEPA), 26, 101
Carassius auratus, 93
Case-based reasoning (CBR), 248
CASM model, 204
Cation exchange capacity (CEC), 51
CATS model, 204
CBR, see Case-based reasoning
C-COSM model, 209, 236
CCU, see Cumulative criterion unit
CDF, see Cumulative distribution function
CEA, see Cellular energy allocation
CEC, see Cation exchange capacity
Cellular energy allocation (CEA), 23
Centile, 270
CEPA, see Canadian Environmental  

Protection Act
Ceriodaphnia dubia, 166
Chaoborus obscuripes, 208
Chara chlobularis, 192
CHESS model, 50, 53
Chironomous plumosus, 93
Chironomus
 riparius, 193, 215, 216
 salinarius, 234
Chlamydomonas reinhardtii, 214
Chronic toxicity, 270

Claassenia sabulosa, 93
Cloeon dipterum, 210
CoMFA, see Comparative molecular field 

analysis
Community (biotic), 271
Comparative molecular field analysis  

(CoMFA), 84
Conceptual model, 271
Contaminant, 271
Crassostrea virginica, 93
Criteria setting and risk assessment, 1–32
 alien species, 25
 assessment endpoints and regulatory goals, 

8–15
  ecological protection goals, 9–11
  examples, 10
  risk perception and ecological protection 

goals, 11–15
 benchmark effect, 15
 biological response thresholds, 19
 biomarkers, 23
 computer models, 27
 database inadequacies, 7
 definitions and characterization of 

uncertainty, 27–31
  analysis of uncertainty, 31
  knowledge uncertainty, 28
  precision and accuracy, 29–31
  stochastic uncertainty, 29
  systematic uncertainty, 29
 ecological threshold principle, 12
 ecosystem food-web models, 8
 ecosystem restoration, 9
 effects of chemical stressors, 25
 experiments with complex mixtures,  

21
 extrapolation types, 15–26
  ecological data extrapolations,  

22–24
  extrapolation of exposure regimes, 22
  extrapolation with mixtures, 20–21
  matrix and media extrapolation, 20
  range extrapolation, 15–20
  temporal and spatial extrapolations,  

24–26
 field studies, 8
 functional redundancy principle, 14
 generic risk assessments, 2
 legislation, 26
 measures of effect, 15
 metallothionine proteins, 25
 model ecosystem experiments, 8
 Monte Carlo models, 30
 pharmacologically based pharmacokinetic 

models, 21
 pollution prevention principle, 12
 precautionary principle, 12
 problem formulation, 2–5
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 recovery principle, 12
 regulatory background, 26–27
  criteria setting and predictive risk 

assessment, 26–27
  retrospective site-specific risk assessment, 

27
 rules of tier application, 4
 spatial extrapolations, 25
 specific risk assessments, 2
 temporal extrapolation, 22
 terminology of extrapolation, 5–8
 test organism extrapolation methods, 5
 toxicological benchmark concentration, 19
 uncertainty analysis, 31
 uncertainty factor, 5, 7
Critical body burden, 271
Critical toxicity values (CTVs), 271
CTVs, see Critical toxicity values
Cumulative criterion unit (CCU), 253
Cumulative distribution function (CDF), 271
Cumulative effect, 271
Cumulative risk, 271
Cypridopsis vidua, 93
Cyprinodon variegatus, 93
Cyprinus carpio, 93

d

Daphnia magna, 23, 60–61, 93, 111, 166,  
190, 218

DEB, see Dynamic energy budgets
DEBtox model, 191
Desorption, 271
Deterministic hazard (risk) assessment  

(DHA), 271
DHA, see Deterministic hazard (risk) 

assessment
Direct effect, 271
Dissolved organic carbon (DOC), 42
Distribution coefficient, 42
DOC, see Dissolved organic carbon
Domain, 271
Domestic Substances List (DSL), 101
Dreissena polymorpha, 194
DSL, see Domestic Substances List
Dugesia lugubris, 190
Dynamic energy budgets (DEB), 111

e

EC, see Effective concentration
ECDs, see Exposure concentration distributions
ECETOC database, 205
ECn, see Effective concentration n
Ecological condition, living organisms as 

indicators of, 165
Ecological resilience, 209

Ecological risk assessment (ERA), 271, see also 
Biological organization in ecological risk 
assessment

Ecological threshold principle, 12
ECOPATH software, 131
Ecosystem, 271
 -based models, disadvantage of, 131
 definition of, 105
 experiments, geographical extrapolation  

of, 237
 food-web models, 8
 function, 220, 271
 interactions within populations, 203
 measures, purposes for, 251
 model, lentic, 235
 MPC in, 11–12
 performance, SSD prediction of, 266
 risk assessment, 133
 simulation models, 107
 species richness, 232
 structure, 272
ECOTOX database, 159
Ecotoxicity, 272
Ecotoxicologically relevant concentration 

(ERC), 247
Ecotoxicology, 272
EDCs, see Endocrine-disrupting compounds
Effect criterion, 272
Effective concentration (EC), 89
Effective concentration n (ECn), 272
Effect measure, 272
EINECS, see European Inventory of Existing 

Commercial Substances
ELISA, see Enzyme-linked immunosorbent 

assay
Endocrine-disrupting compounds (EDCs),  

109, 110
Endpoint entity, 272
Environmental mixture studies, objectives  

of, 138
Environmental quality criteria (EQC), 2, 137, 

272, 283, 309, 319
Environmental risk assessments, 2
Enzyme-linked immunosorbent assay  

(ELISA), 29
EP, see Equilibrium partitioning
EPT taxa, 232
EQC, see Environmental quality criteria
Equilibrium model assumptions, 56
Equilibrium partitioning (EP), 41, 43, 258
ERA, see Ecological risk assessment
ERC, see Ecotoxicologically relevant 

concentration
Estimated environmental concentration, 272
European Inventory of Existing Commercial 

Substances (EINECS), 76
European Union System for the Evaluation of 

Substances (EUSES), 65, 100, 286
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EUSES, see European Union System for the 
Evaluation of Substances

EXAMS model, see Exposure analysis modeling 
systems model

Expected environmental concentration, 272 
Exposure, 272
 analysis modeling systems (EXAMS)  

model, 30
 characterization, 272
 concentration distributions (ECDs), 311
 pathway, 273
 route, 273
Extinction vortex, 245
Extrapolation, 273
 acute-to-chronic, 196
 cause–effect chain of, 321
 combined effect, tiers in, 150
 data-driven, 293
 guidance on, 264
 knowledge uncertainty in, 28
 semifield tests, 121
 substance-to-substance, 287, 314
 tiered approach, 258
Extrapolation of effects, 258–267
 beta testing, 266
 biological organization, 260
 calibration and validation, 264–267
 critical body residue, 261
 diagnostic indicators, 264
 extrapolation across levels of biological 

organization, 259–260
 food-web models, 259
 guidance on extrapolation, 264
 hazardous concentration, 265
 latent responses, 262
 life history models, 262
 mixture extrapolation, 260–261
 (Q)SARs, 258–259
 single-species laboratory tests, 259
 size of test system, 263
 spatial extrapolation, 263–264
 temporal extrapolation, 261–263
 tolerance, 262
 uncertainty factor, 265
 validation, 265
Extrapolation methods, guidance on application 

of, 281–322
 conceptual issues, 285–289
 data collection, 309
 data-dependent uncertainty factors, 300
 data-driven extrapolation, 293
 data quality, 309–310
 data quantity, 310
 decision matrix, 294–299
 discussion, 320–322
 environmental quality criteria, 288
 extrapolation scheme development, 289
 matrix and media extrapolation questions, 316

 need for and characteristics of tiered systems, 
284–285

 need for extrapolation, 290
 overregulation, 322
 physical model, 291
 practical guidance, 312–320
  assigning methods to tiers and choice of 

consistent approach, 319
  identifying possible extrapolation methods, 

315–318
  motivation of needs for extrapolation and 

procedural questions, 312–314
  preliminary assessment and relevant 

extrapolation issues, 314–315
  questions relating to interpretation and use 

of extrapolation results, 319–320
  working with extrapolation data and 

methods, 319
 prospective risk assessments, 283
 retrospective risk assessments, 283
 screening-level assessments, 284
 sequential application of extrapolation 

techniques, 320
 spatial extrapolation, 318
 statistical model, 300
 stepwise use of extrapolation, 289–312
  assigning methods to tiers, 291–302
  choosing consistent set of extrapolation 

methods, 302–309
  collection of data needed, 309–310
  extending assessments with extrapolation 

guidance, 289–290
  handling and interpretation of assessment 

results, 311–312
  identification of issues with high numerical 

relevance, 290–291
  identification of possible extrapolation 

methods, 291
  need of extrapolation, 290
  preparation for assessment, 289
  working with set of extrapolation methods, 

310–311
 substance-to-substance extrapolation,  

287, 314
 sufficient protection, 311
 techniques, 303–308
 temporal extrapolation, 317
 toxicant–receptor interactions, 310
 training set, 300
 uncertainty factors, 288
 window of prediction, 310, 311

f

FAO, see Food and Agricultural Organization
Federal Insecticide, Fungicide, and Rodenticide 

Control Act (FIFRA), 26
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FIAM, see Free ion activity model
FIFRA, see Federal Insecticide, Fungicide, and 

Rodenticide Control Act
Food and Agricultural Organization (FAO), 25
Food-web models, 117, 131, 250, 259
Free ion activity model (FIAM), 53
Frequency distribution, 273
Functional redundancy principle, 14

g

Gammarus
 pseudolimnaeus, 93
 pulex, 119, 190, 211
GENEEC model, 27
Geographic information systems (GIS), 242, 

263, 273
Gill site interaction model (GSIM), 53
GIS, see Geographic information systems
Global positioning systems (GPS), 255, 263
Glossary, 269–279
GLP, see Good laboratory practice
Good laboratory practice (GLP), 78
GPP, see Gross primary production
GPS, see Global positioning systems
Gross primary production (GPP), 217
Groundwater, definition of, 36
GSIM, see Gill site interaction model

h

HA, see Hazard assessment
HARAP, see Higher Tier Aquatic Risk 

Assessment for Pesticides
Hazard, 273
 assessment (HA), 273
 quotient (HQ), 6, 91, 273
 units (HUs), 159
Hazardous concentration, 273
Henry’s law, 42
HERBEST model, 112
Higher Tier Aquatic Risk Assessment for 

Pesticides (HARAP), 120
High-production-volume (HPV) chemicals, 77, 

99, 161
Homo sapiens, 226
Hormidium sp., 241
HPV chemicals, see High-production-volume 

chemicals
HQ, see Hazard quotient
HUs, see Hazard units
Hydropsyche angustipennis, 205

i

ICE, see Interspecies correlation estimation
Ictalurus punctatus, 93

IFEM model, 209, 236
Indirect effect, 273
Interactive joint toxicity, mixture extrapolation 

and, 157
Interspecies correlation estimation (ICE), 78, 91
 -based SSDs, 93
 estimates, 91
Intervention value, 273
Intrinsic sensitivity, extrapolation related to, 46–47
 differences in body size, 46–47
 freshwater versus marine toxicity, 46

j

Joint action, 273
Joint probability curves (JPCs), 311
JPCs, see Joint probability curves

k

KOWWIN™ model, 57

l

LAS, see Linear alkylbenzene sulfonate
LCA, see Life-cycle assessment
Lemna gibba, 218
Lepomis
 cyanellus, 93
 macrochirus, 93, 192
Lethal concentration, 273
Life-cycle assessment (LCA), 274
Life history models, 220, 262
Limnephilus lunatus, 202
Limnodrilus hoffmeisteri, 215
Linear alkylbenzene sulfonate (LAS), 91, 238
Line of evidence, 274
Litoria citropa, 203, 204
LOAEC, see Lowest-observed-adverse-effect 

concentration
LOEC, see Lowest-observed-effect 

concentration
LOECecosystem, 274
Log-normal distribution, 274
Lowest-observed-adverse-effect concentration 

(LOAEC), 23, 284
Lowest-observed-effect concentration (LOEC), 

91, 284
Lymnaea stagnalis, 204

m

MASTEP model, 113
MATC, see Maximum allowable toxicant 

concentration
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Matrix and media extrapolation, 33–74
 atmosphere, 36, 38
 biota–sediment accumulation factors, 64
 biotransformation processes, 56
 chemical sequestration, 43
 choice of extrapolation methods, 69–71
 computer-operated models, 73
 distribution coefficient, 42
 environmental quality objectives, 39
 equilibrium-partitioning concept, 41
 extrapolation tools, 48–69
  exposure and bioavailability of metals, 

48–68
  exposure and fate and species sensitivity, 

68–69
  species properties, 68
 Henry’s law, 42, 72
 media- and matrix-related effects, 44–48
  intrinsic sensitivity, 46–47
  modifiers of toxicity, 47–48
  organism behavior, 44–46
 media- and matrix-related exposure, 38–44
  extrapolation related to physicochemical 

properties of media and toxicants, 39–44
  media- and matrix-related differences in 

degradation of chemicals, 44
 models, 50
 multimedia mass balance model, 65
 octanol–water partition coefficients, 72
 one-compartment model, 55
 organic compounds, 42
 partition coefficient, 42, 56
 population models, 68
 problem formulation, 34–38
  sources of pollution and routes of entry  

and exposure, 38
  types of media and matrices, 35–37
 questions related to, 316
 sediment, 37, 38, 41, 52
 SimpleBox, 66
 soil, 36–37, 38, 51
 soil bioavailability, 40
 sorption, 42
 surface water, 38, 40
 tiers, 69
 toxicant ionization, 58, 62
 two-compartment models, 61
 uncertainties, 71–73
 water, 36
Maximum allowable toxicant concentration 

(MATC), 29, 274
Maximum permissible concentration (MPC), 11
Measure of effect, 274
Measure of exposure, 274
MEC, see Mesocosm effect concentrations
Mechanism of action, 274
Mechanistic model, 275

Media extrapolation, see Matrix and media 
extrapolation

Median lethal concentration, 275
Melanotaenia nigrans, 218
Mesocosm effect concentrations (MEC), 200
MFO, see Mixed-function oxidase
Micropterus salmoides, 93
Minimum viable population (MVP), 244
MINTEQ model, 51
MINTEQA2 model, 50
Mixed-function oxidase (MFO), 23, 25
Mixture extrapolation approaches, 135–185, 

260–261
 applications in risk management practices, 

168–176
  absolute versus relative interpretations, 

175–176
  assemblage-level mixture extrapolation, 

172–175
  overview, 168
  species-level mixture extrapolation, 

168–172
 aquatic data, 144
 assemblage-level mixture extrapolation, 

157–163
  mixed models allowing species-dependent 

modes of action, 163
  protocols for calculation of concentration 

addition, 160–162
  protocols for calculation of response 

addition, 162–163
  species sensitivity distributions and 

mixture extrapolation, 157–160
 biometrical requirements, 143
 concentration addition, 140
 concepts, 139–144
  limitations and solutions, 141–142
  pharmacodynamic, 139–140
  quality issues, 142–144
 data, 144–148
  bias, 147–148
  justification, 146–147
  reviews on experimental evidence, 144–146
 dose–response observations, 155
 early-warning effect tools, 180
 ecological condition, 165
 ecological receptor, 182
 ecosystem engineers, 163
 ECOTOX database, 159
 estimates of ecotoxicity, 173
 experiment requirements, 142
 false positives, 170
 general protocol, 148–151
  assessment problem, 148
  effects extrapolation issues, 151
  executing and interpreting mixture 

extrapolation, 151
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  exposure extrapolation, 149
  mixture extrapolation in tiered risk 

assessments, 149–150
 inferences, 143
 interactive joint action, 139
 interactive mixture toxicity, 141
 joint toxicity model, 176
 keystone species, 163
 logistic regression, 152
 mechanisms of joint action, 140
 mixture stability, 165
 molecule–receptor interactions, 158
 noninteractive joint action, 139
 nonweighting, 163
 objectives of environmental mixture studies, 

138
 pharmacological transparency, 143
 prediction windows, 179
 probit models, 152
 protocols, 139
 reference models, 139
 response surface models, 171
 RIVPACS ecological modeling, 174, 175
 simultaneously extracted metals, 169
 species-level combined effect prediction, 

151–157
  calculation of concentration addition, 

151–154
  calculation of response addition, 155
  interactive joint toxicity, 157
  mixed-model prediction, 155–156
 specificity, 143
 spreadsheet calculation, 154
 target-receptor responses, 142
 terrestrial data, 146
 tiered system, 185
 TU summation approach, 152
 uncertainties and future issues, 176–184
  general, 176
  mixture effects, 178–184
  mixture exposure, 176–178
 undefined components, 164–168
  diagnosis and identification of relevant 

compounds, 165–168
  overview and typology, 164–165
  predictions of toxicity, 167–168
 USEPA guidance document, 170
 weighting, 163
 whole-effluent toxicity approach, 137
 window of prediction assessment, 151
Mixture toxicity index (MTI), 151
Mode of action, 275
Model(s), 275
 AgDrift, 27
 ALMaSS, 113
 AQUATOX, 62, 68, 69, 72, 209, 236
 -based extrapolation, 291

 bias in, 147
 biotic ligand, 40, 53, 301
 CASM, 204
 CATS, 204
 C-COSM, 209, 236
 CHESS, 50, 53
 computer-operated, matrix and media 

extrapolation, 73
 coupled differential equation, pesticide 

effects, 131
 DEBtox, 191
 ecosystem
  disadvantage of, 131
  experiments, 8
  lentic, 235
  simulation, 107
 equilibrium
  assumptions, 56
  -partitioning, 64
 European Union System for the Evaluation  

of Substances, 65, 100
 evaluation of, 76
 EXAMS, 30
 food-web, 117, 131, 250, 259
 free ion activity, 53
 GENEEC, 27
 gill site interaction, 53
 HERBEST, 112
 IFEM, 209, 236
 KOWWIN™, 57
 landscape, 130
 life history, 220, 262
 MASTEP, 113
 mathematical
  accuracy in, 30
  mixture extrapolation and, 185
  stochastic uncertainty, 29
 matrix and media extrapolation, 50
 mechanistic, 194, 219, 275
 metapopulation
  environmental heterogeneity, 244
  toxicant-treated, 245
 MINTEQ, 51
 MINTEQA2, 50
 mixture extrapolation, 181
 Monte Carlo, 30
 multimedia mass balance, 65
 MUSCRAT, 27
 PERPEST, 24, 248
 pesticide root zone, 30
 pharmacokinetic, 21, 103, 142, 177, 195
 PHREEQE, 50
 population
  complex, 1143
  generic, 112
  matrix and media extrapolation, 68
  semimechanistic, 301, 309
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 probit, mixture extrapolation, 152
 (Q)SAR, 23, 79, 82
  predictions, 259
  validation, 98
 RANDOM, 48
 reference, mixture extrapolation and, 139
 response surface, mixture extrapolation, 171
 source codes for, 30
 spatial extrapolation, 224
 species sensitivity distribution, 260
 SSD, 260
  spatial extrapolation, 230
  uncertainty analysis of, 184
  validity of, 265, 266
 statistical, (Q)SAR, 82
 toxicity, body-burden-based, 103
 toxic metal speciation, 48, 51
 TOXSWA, 30
 uncertainty, 275
 UNIFAC, 80
 validation, 265
 WHAM, 50
Modifiers of toxicity, extrapolation related  

to, 47–48
 low oxygen, 47
 presence of other toxicants, 48
 resource limitation, 47–48
 temperature, 47
Monte Carlo models, 30
Monte Carlo simulation, 275
MPC, see Maximum permissible concentration
MTI, see Mixture toxicity index
Multivariate regression formulas, 53
MUSCRAT model, 27
MVP, see Minimum viable population
Mytilis galloprovincialis, 206
Mytilopsis leucophaeata, 194
Mytilus edulis, 194, 206

n

NAFTA, see North American Free Trade 
Agreement

Natural organic matter (NOM), 50
NEC, see No-effect concentration
NETWRK4 software, 131
NOAEC, see No-observed-adverse-effect 

concentration
NOEC, see No-observed-effect concentration
NOECcommunity, 207, 236, 275
NOECeco values, 255
NOECecosystem, 237, 275
NOECecosystemvalue, 263
No-effect concentration (NEC), 311
NOM, see Natural organic matter
No-observed-adverse-effect concentration 

(NOAEC), 275

No-observed-effect concentration (NOEC), 91, 
146, 193, 275

Normal distribution, 275
Normalization, 276
North American Free Trade Agreement 

(NAFTA), 25

o

OC, see Organic carbon
Octanol–water partition coefficient, 78, 276
OECD, see Organization for Economic 

Cooperation and Development
Oncorhynchus
 clarki, 93
 kisutch, 93
 mykiss, 92, 93
OP biocides, see Organophosphate biocides
Organic carbon (OC), 42
Organism behavior, extrapolation related to, 

44–46
 avoidance, 46
 feeding behavior, 45–46
 habitat preferences, 45
 trophic status, 44–45
Organization for Economic Cooperation and 

Development (OECD), 97, 189
Organophosphate (OP) biocides, 162

p

PAF, see Potentially affected fraction
Palaemonetes pugio, 93, 201
Partial least squares (PLS) regression, 83
Partial order ranking (POR), 83
Particulate organic carbon (POC), 61
Partition coefficient, 42, 56, 276
PBPK models, see Pharmacologically based 

pharmacokinetic models
PCA, see Principal component analysis
PCBs, see Polychlorinated biphenyls
PCP Act, see Pest Control Products Act
PCR, see Principal component regression
PDF, see Probability density function
Perca flavescens, 93
Percentile, 276
PERPEST database, 248
PERPEST model, 24
Pest Control Products (PCP) Act (Canada), 26
Pesticide(s), 276
 effects
  coupled differential equation model for, 131
  testing of, 6
 exposure scenarios, 27
 freshwater fish sensitivity to, 263
 freshwater species sensitivity to, 254
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 impacts, GIS maps of, 173
 landscape information, 250
 model, 24
 risk assessment of, 3
 root zone model (PRZM), 30
 uncertainty factor of, 219
 usage landscape, 250
 use patterns, 27, 250
 water-soluble, 201, 253
Pharmacologically based pharmacokinetic 

(PBPK) models, 21, 103, 142, 177, 195
PHREEQE model, 50
PICT, see Pollution-induced community 

tolerance
Pimephales promelas, 92
Plant protection product (PPP), 276
PLS regression, see Partial least squares 

regression
PMN, see Premanufacture Notification
PNEC, see Predicted no-effect concentration
POC, see Particulate organic carbon
Pollution-induced community tolerance (PICT), 

217, 240, 276
Pollution prevention principle, 12
Polychlorinated biphenyls (PCBs), 57, 246
PondFX Aquatic Life D, 212
Population, 276
POR, see Partial order ranking
Potamopyrgus antipodarum, 172, 218
Potentially affected fraction (PAF), 65, 157
PPP, see Plant protection product
PRA, see Probabilistic risk assessment
Predicted environmental concentration, 276
Predicted exposure concentration, 311
Predicted no-effect concentration (PNEC),  

7, 90, 276
Premanufacture Notification (PMN), 99
Principal component analysis (PCA), 82
Principal component regression (PCR), 83
Priority Substances List (PSL), 26
Probabilistic risk assessment (PRA), 276
Probability, 276
Probability density function (PDF), 277
Problem formulation, 277
PRZM, see Pesticide root zone model
PSL, see Priority Substances List
Pteronarcella badia, 93
Pteronarcys californica, 93

q

(Q)SAR, 22, 75–104, 258–259, 277
 acute species sensitivity distribution data, 96
 acute toxicity tests, 85
 artificial neural network, 83
 baseline toxicity, 78
 black box, 102

 development, 78–86
  general, 78
  limitations and outlook of (Q)SAR models, 

84–86
  octanol–water partition coefficient, 78–79
  statistical models, 82–86
  training sets and applicability domains, 

80–82
 disclaimer, 104
 ECOSAR program, 86, 90, 102
 EPI Suite version 3.12, 86–90
  calibration of ECOSAR, 88–90
  ECOSAR, 86–88
  SMILES, 88
 EU–US MPD–SAR validation study, 90
 extrapolation, choice of tiers in, 302
 green algal toxicity test, 90
 HPV chemicals program, 77, 99
 model(s), 23
  development, data sets used to develop,  

78
  predictions, 259
  validation, 98
 MPD–SAR study, 89
 partial least squares regression, 83
 partial order ranking, 83
 prediction of toxicity using, 258
 principal component regression, 83
 probabilistic effects assessment, 90–96
  ECOSAR estimates, 91
  example discussion, 96
  ICE-based SSDs, 93–96
  ICE estimates, 91–93
 problem formulation, 76–78
  problem formulation, 78
  regulatory policies, 76–78
 regulatory outlook, 102–103
 regulatory uses of, 97–102
  Canada, 101–102
  European Union, 99–101
  Organization for Economic Cooperation 

and Development, 97–98
  United States, 98–99
 screening information data set, 77
 software, 79
 statistical models, 82–86
  artificial neural network, 83–84
  comparative molecular field analysis,  

84
  linear regression, 82
  multilinear regression, 82
  ordination methods, 82–83
  partial least squares, 83
  partial order ranking, 83
 toxicity models, 103
 toxicodynamic modeling, 85
 uncertainty factors, 99
 UNIFAC model, 80
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Quantile, 277
(Quantitative) structure-activity relationship,  

see (Q)SAR

r

RA, see Risk assessment
RADAR, see Risk Assessment Tool to Evaluate 

Duration and Recovery
Rana
 arvalis, 205
 sphenocephala, 205
RANDOM model, 48
Random variable, 277
REACH, see Registration, Evaluation,  

and Authorization of Chemicals
Receptor, 277
Recovery, 277
Refugia, 277
Registration, Evaluation, and Authorization of 

Chemicals (REACH), 76–77, 100
Remote sensing, 263
Resiliency, 277
Risk, 277
 characterization, 277
 evaluation, media extrapolation and,  

35
 management, 278
 maps, landscape analysis, 243
 perception, ecological protection goals  

and, 11
 prediction, single-species, 140
 quotient (RQ), 278
Risk assessment (RA), 277, see also Biological 

organization in ecological risk 
assessment; Criteria setting and risk 
assessment

 exposure and effects data and, 258
 extrapolation(s), 257
  methods, 283
  types, 16–18
 generic, 2
 hazard quotient, 91
 mixed-model mixture, 156
 probabilistic, 276
 process
  systematic errors in, 29
  tiers in, 284, 286
 prospective, 283
 retrospective, 283
 specific, 2
 tiered, 149–150
Risk Assessment Tool to Evaluate Duration  

and Recovery (RADAR), 195
Rivet-popping hypothesis, 129
RIVPACS ecological modeling, 174, 175
RQ, see Risk quotient

s

Safety factor, 278
Salmo
 salar, 93
 trutta, 93
Salvelinus
 fontinalis, 93
 namaycush, 93
SAR, see Structure activity relationship
Screening information data set (SIDS), 77
Sediment quality guidelines (SQGs), 169
SIDS, see Screening information data set
Simocephalus vetulus, 210
SimpleBox, 66
SMILES notation, 88
Soil organic carbon partition coefficient, 278
Soil partition coefficient, 278
Spatial extrapolation, 223–256, 263–264
 aquatic food-web models, 250
 atrazine, 231, 238
 biodiversity, 226, 227
 chaotic dynamics in population, 224
 chlorpyrifos, 237
 computer models, 236
 corn–soybean pesticide landscape, 250
 cotton landscape, 242
 ecosystem experiments with herbicides, 239
 ecotoxicologically relevant concentration, 247
 endosulfan, 253
 environmental heterogeneity, 244
 EPT taxa, 232, 253
 extinction vortex, 245
 false negatives, 253
 GIS data compilation, 255
 GIS software, 242
 kepone, 235
 landscape ecotoxicology, 225, 240–254, 255
  exposure scenario approach, 247
  field monitoring and verification of 

extrapolation tools, 252–254
  GIS and risk maps, 242–243
  prediction of impact of multiple stressors, 

249–252
  prospective and retrospective risk 

assessment, 246–248
  spatially explicit and metapopulation 

modeling approaches, 243–246
 matrix and media extrapolation questions, 318
 models, 224, 234
 multiple-stress impacts, 255
 outlook, 254–256
  future for landscape and watershed 

ecotoxicology, 255–256
  spatial extrapolation of toxicity data, 

254–255
 PERPEST database, 248
 pesticide usage landscape, 250
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 phytoplankton densities, 235
 PICT concept, 240
 plankton-dominated microcosms, 236
 polychlorinated biphenyls, 246
 risk maps, 243
 risks of chemicals at landscape level, 224
 riverine systems, 241
 scaling up in landscape ecotoxicology,  

241
 sediment–water interactions, 234
 spatial variability and ecotoxicological data 

extrapolation, 225–240
  geographical extrapolation of model 

ecosystem experiments, 237–240
  global distribution of species, 226–228
  size and complexity of test systems and 

community responses, 234–236
  spatial extrapolation of toxicity data 

between species, 228–234
 SPEAR concept, 252
 species distribution, 225, 226, 227
 SSD comparisons of species sensitivities,  

230
 state of the watershed, 251
 stressor–effect relationships, 249
 stressor identification, 254
 temperature–toxicity relationships, 228
 toxicity data for saltwater organisms, 233
 tropical forests, 225
 watershed ecotoxicology, 255
 weight-of-evidence approach, 256
 worst-case scenarios, 248
 zoogeographical regions, 226
SPEAR concept, see Species at risk concept
Speciation, 278
Species at risk (SPEAR) concept, 252
Species sensitivity distribution (SSD), 7, 29, 116, 

159, 278
 -based models, uncertainty analysis of, 184
 definition of, 8
 ICE-based, 93
 model, 260
  spatial extrapolation, 230
  validity of, 265, 266
 protection of tropical species assemblages, 

229–230
 regularities observed in, 196
 transfer of TU principle to, 159
SQGs, see Sediment quality guidelines
SSD, see Species sensitivity distribution
Streptocephalus sudanicus, 211
Stressor, 278
Structure activity relationship (SAR),  

278
Stylaria lacustris, 204
Surface water, 278
Susceptibility, 278
Synergism, 278

t

TBC, see Toxicological benchmark 
concentration

Technical Guidance Document (TGD), 76
TEFs, see Toxic equivalence factors
Temporal extrapolation, 22, 187–221, 261–263
 acclimation, 214
 acute bioassays, 194
 aquatic microcosm experiments, 199
 CLASSIC guidance document, 208
 co-tolerance, 216
 DEBtox model, 191
 ECETOC database, 205
 ecological resilience, 209
 estimates of recovery potential, 213
 extrapolation across time-varying exposure 

regimes, 189–204
  acute-to-chronic response, 195–201
  exposure duration and incipient toxicity 

levels, 189–191
  latency of responses, 201–204
  mechanistic models to predict effects of 

time-variable exposure, 194–195
  reversibility of responses and time-variable 

exposure, 191–194
 generation times for aquatic organisms, 212
 indirect effects, 204
 macrophyte-dominated ditch system, 212
 matrix and media extrapolation questions, 317
 measurable properties of populations, 188
 microbenthic films, 207
 microcosm constraints of experimentation, 

213
 outlook, 218–221
  extrapolation across time-varying exposure 

regimes, 218–219
  temporal variability addressed when 

extrapolating toxicity data, 220–221
 photosynthesis inhibitor, 193
 PondFX Aquatic Life D, 212
 population growth model, 214
 population-level effects of stressors, 206
 predictive risk assessment procedures, 188
 reciprocity, 193
 single-species tests, 193, 211
 species life-cycle characteristics, 210
 temporal variability and ecotoxicological data 

extrapolation, 205–218
  adaptation to chemical stress, 214–218
  developmental variation in sensitivity of 

individuals and populations, 205–206
  recovery, 209–214
  seasonal and successional variations in 

sensitivity of communities, 207–209
 time to reach incipient toxicity, 191
 tolerance, 214
 toxicity test interpretation, 219
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 toxicity tests using early life stages, 206
 uncertainty factor, 198
 vertebrate toxicity data, 205
 Winter Stress Syndrome, 203
 worst-case approach, 188
TEQs, see Toxicity equivalent quotients
Test endpoint, 278
TGD, see Technical Guidance Document
TIE, see Toxicity identification and evaluation
TMoA, see Toxic mode of action
Toxicant(s)
 detection, improvements in, 177
 ecological risks of, landscape level, 246
 persistence of genetic adaptation to, 216, 221
 –receptor interactions, 310
 single-species risk prediction, 140
 -treated metapopulation model, 245
Toxic equivalence factors (TEFs), 168
Toxicity, 279
 equivalent quotients (TEQs), 168
 identification and evaluation (TIE), 166
 modifiers of, extrapolation related to, 47–48
  low oxygen, 47
  presence of other toxicants, 48
  resource limitation, 47–48
  temperature, 47
 test, 279
Toxic metal speciation models, 48, 51
Toxic mode of action (TMoA), 279, 315
Toxicological benchmark concentration  

(TBC), 19
Toxic Substances Control Act (TSCA), 26, 76, 

77, 98
Toxic substances in surface waters (TOXSWA) 

model, 30
Toxic unit (TU), 144, 279
Toxin, 279
TOXSWA model, see Toxic substances in 

surface waters model
Training data set, 279
TSCA, see Toxic Substances Control Act
TU, see Toxic unit
TUS approach, see TU summation approach
TU summation (TUS) approach, 152

u

UF, see Uncertainty factor
Uncertainty analysis, SSD-based models, 184
Uncertainty factor (UF), 5, 107, 265, 279, 288

UNIFAC method, see Universal quasi-chemical 
functional group activity coefficient 
method

United Nations, Globally Harmonized System 
for classification and labeling of 
chemicals, 97

Universal quasi-chemical functional group 
activity coefficient (UNIFAC) method, 
80

USEPA
 AQUATOX model, 62, 68, 69, 72, 209, 236
 assessment factors, 107
 data quality assessment categories, 31
 ECOSAR program, 90, 102
 ECOTOX database, 159
 EPI Suite package, 86
 Evolution of ECOSAR in, 90
 guidance document, toxicity identification 

evaluation, 170
 KOWWIN™ model, 57
 Office of Pollution Prevention and Toxics, 80, 

81, 87
 P2 framework models, 103
 Premanufacture Notification submitted to,  

99
 (Q)SAR uncertainty factors, 99
 Toxic Substances Control Act, 76, 77

v

Vibrio fischeri, 166

w

Watershed
 ecotoxicology, 255
 state of, 251
WET approach, see Whole-effluent toxicity 

approach
WHAM model, 50
WHO, see World Health Organization
Whole-effluent toxicity (WET) approach, 137
Winter Stress Syndrome, 203
World Health Organization (WHO), 25

x

Xenopus laevis, 205
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